JPS60102513A - Azimuth-angle detecting device of running unit and the like - Google Patents

Azimuth-angle detecting device of running unit and the like

Info

Publication number
JPS60102513A
JPS60102513A JP58211278A JP21127883A JPS60102513A JP S60102513 A JPS60102513 A JP S60102513A JP 58211278 A JP58211278 A JP 58211278A JP 21127883 A JP21127883 A JP 21127883A JP S60102513 A JPS60102513 A JP S60102513A
Authority
JP
Japan
Prior art keywords
azimuth angle
light source
convex lens
conversion element
azimuth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58211278A
Other languages
Japanese (ja)
Other versions
JPH0481127B2 (en
Inventor
Toshio Nakamura
寿夫 中村
Toshihiko Sasahara
利彦 笹原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP58211278A priority Critical patent/JPS60102513A/en
Publication of JPS60102513A publication Critical patent/JPS60102513A/en
Publication of JPH0481127B2 publication Critical patent/JPH0481127B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/002Active optical surveying means

Abstract

PURPOSE:To detect the azimuth of a running unit accurately and quickly, by forming a light spot from light emitted from a rotary light source of the running unit, and converting the movement of the light spot into the amount of linear electrical change by a photoelectric conversion element. CONSTITUTION:A turntable 4 is attached to a master unit 1 so that the turntable can be freely rotated. The central line of the rotation is made to agree with the optical center. Thus an azimuth angle sensor 5 is provided. Meanwhile, a rotary light source 9, which has the rotating surface that is in parallel with the rotating surface of the turntable 4 and the direction of the width of the azimuth angle sensor 5, is provided on a slave unit 2. An operating means such as a CPU is provided on a master unit 3. Based on the outputs of the azimuth angle sensor 5 and the photoelectric conversion element 16, the optical axes and directions of a convex lens 15 and the photoelectric conversion element 16 and the position of a light spot are detected. Thus the azimuth angle of the rotary light source is operated and detected.

Description

【発明の詳細な説明】 本発明は方位角度検出装置に係り、特に任意に移動する
無軌道走行ユニツ1などの方位を高い精度で検出する場
合に有用な方位角度検出装置に四するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an azimuth angle detection device, and particularly to an azimuth angle detection device useful for detecting the azimuth of an arbitrarily moving trackless traveling unit 1 or the like with high accuracy.

熱軌道走行ユニットのように走行支持面に沿って任意の
各方向に移動する物体の方位を正確に検出するためには
1例えば光学センサを角度センサとして利用することが
考えられる。すなわ′C)、走行ユニットに発光器を塔
載するとともに、基準位置に覆砂の受光素子を並べでお
いて、光の到達の有無によって方位を検出する方法など
である。しかしながら、この例では受光素子の数が非常
に多くなり、かつ、その数によって角度の分解能が影響
されて誤差が大きくなり易いなどの難点がある。
In order to accurately detect the orientation of an object moving in arbitrary directions along a traveling support surface, such as a thermal orbit traveling unit, it is conceivable to use, for example, an optical sensor as an angle sensor. In other words, 'C) is a method in which a light emitting device is mounted on a traveling unit, and sand-covered light receiving elements are arranged at a reference position, and the direction is detected based on whether or not light arrives. However, in this example, the number of light-receiving elements is extremely large, and the angular resolution is affected by the number of light-receiving elements, which tends to increase errors.

また1例えば原子炉圧力g器の表面に沿って移動する走
行ユニットであると、その移動が広範囲に及ぶから、受
光素子を急純に並べる方法によって方位検出會保紅する
ことが、技術的に困難となる問題を生じるものであった
In addition, for example, in the case of a traveling unit that moves along the surface of a reactor pressure gauge, the movement is over a wide range, so it is technically difficult to improve the direction detection system by arranging light receiving elements in a rapid manner. This gave rise to difficult problems.

本発明はこのような背景に基づいてなされたもので、任
意の位置を高速走行する走行ユニットに適用し得て、方
位を^い精度で迅速に繰り返し検出するとともに、検出
範囲が大きく受光部t−1個とする仁とのできる方位角
度検出装置の提供を目的としている。このような目的の
達成のため、本発明は、走行ユニツ(の回転光源からの
放射光を凸レンズによって元スポット化し1元スポット
の移動を光で、変換孝子により直線的な畢気変化?にt
′換して、その変化計の中心における光スボツ1の位置
と、凸レンズなどの光軸とにより方位検出を行なう技術
措成となっている。
The present invention has been made based on this background, and can be applied to a traveling unit that travels at high speed at any position, rapidly and repeatedly detects the direction with high accuracy, and has a large detection range and a light-receiving part t. - The object of the present invention is to provide an azimuth angle detection device that can be used as a single unit. In order to achieve such an object, the present invention converts the emitted light from the rotating light source of the traveling unit into an original spot using a convex lens, converts the movement of the original spot into a linear light change by converting it into a linear light change.
In other words, the technical arrangement is to detect the orientation based on the position of the optical slot 1 at the center of the change meter and the optical axis of a convex lens or the like.

以下1本発明の一実施例を図面に基づいて説明すると、
第1図は現象1と子機2と全使用して、任、tの方向に
任意の速度で移動する無軌道走行ユニッ)3の方位′を
検出する状態ケチす概1唱平面図である。親機1の上に
回転自在に嘔り付けられたターンテーブル4には、その
回転中心6号と光学的中心とを一致させ”〔方位角度セ
ンサ5が設けられる、また、ターンテーブル4は駆動モ
ータ6、ウオームギヤ7などからなる回転(嘔動機構に
より。
Below, one embodiment of the present invention will be described based on the drawings.
FIG. 1 is a schematic plan view showing a state in which the phenomenon 1 and the handset 2 are used to detect the orientation of the trackless traveling unit 3 moving at an arbitrary speed in the direction t. The turntable 4, which is rotatably mounted on the base unit 1, is provided with an azimuth angle sensor 5 whose rotation center No. 6 is aligned with the optical center. Rotation consisting of motor 6, worm gear 7, etc. (by vomiting mechanism).

例えば揺動角270’、2.5’/秒で左右に往復回転
し得る囁能を・有している。そして、ターンテーブル4
にはその回転角を例えばo、oi’の分解能で検出する
ためのロータリーエンコーダ8が設けられる。
For example, it has the ability to reciprocate from side to side at a swing angle of 270' and 2.5'/sec. And turntable 4
is provided with a rotary encoder 8 for detecting the rotation angle with a resolution of, for example, o, oi'.

一方、前記子機2には、ターンテーブル4の回転面およ
び方位角度センサ5の幅方向と平行な回転面を有する回
転光源9が設けられる。この回転元源9は、内蔵され几
レーザーダイオード(図示略)で発生させたレーザービ
ームを発光灯台10の頂部に取りつけられたトップミラ
ー11から走行ユニット3の走行面に沿って360 全
方向に放射′させるものであシ1発光灯台10には駆動
モータ12、プーリ13.ベル)14などからなる高速
回転機構が連結されて、例えば3000 r+p*m程
度の回転光を発生させるようになっている、次いで回転
光を受光する部分、すなわち、方位F[センサ5の詳細
について説明すると、方位角度センサ5は光学的中心が
前記ターンテーブル40回転中心線上に位置するように
設定されるとともに前記回転元源9からの放射光を非光
するための凸レンズ15と、この凸レンズ15の光軸上
に左右中心を有して焦点位l!i!または光学的中心に
若干近い位置などに配されて光スポットの移動を電気信
号に変換するための光電変換素子16とa−%借成され
る。そして、この光電変yA素子16は。
On the other hand, the slave device 2 is provided with a rotating light source 9 having a rotating surface parallel to the rotating surface of the turntable 4 and the width direction of the azimuth angle sensor 5. The rotation source 9 emits a laser beam generated by a built-in laser diode (not shown) from a top mirror 11 attached to the top of the light emitting lighthouse 10 in all directions of 360 degrees along the running surface of the running unit 3. 1 The light emitting lighthouse 10 includes a drive motor 12, a pulley 13. A high-speed rotation mechanism consisting of a bell) 14 etc. is connected to generate rotating light of, for example, about 3000 r+p*m. To explain, the azimuth angle sensor 5 is set so that its optical center is located on the rotation center line of the turntable 40, and includes a convex lens 15 for blocking the emitted light from the rotation source 9, and this convex lens 15. The focal point l! has its left and right center on the optical axis of i! Alternatively, it may be used as a photoelectric conversion element 16 arranged at a position slightly near the optical center to convert the movement of the light spot into an electrical signal. And this photoelectric variable yA element 16 is.

いわゆる1に丁フオlセンサが適用され、直線的に移動
する光スボツ[の位置を連続的に変化する■気信号とし
て出力し、受光素子両極の電極と光スポットとの距離に
応じて光屯流が按分されて。
A light sensor is applied to the so-called 1, which outputs the position of a linearly moving optical spot as a signal that changes continuously, and the light spot changes depending on the distance between the electrodes on both sides of the light receiving element and the light spot. The flow is divided proportionally.

光スポットの位置を例えば34門の範囲に亘って検出す
るものである。
The position of the light spot is detected over a range of, for example, 34 gates.

また、親機3には、中央処理装置耐(CPU)などの演
算手段が備えられて、方位角度センサ5の光電変換素子
16の出力信号により、後述する方法で凸レンズ15お
よび光電変換素子16の光軸の方向と光スボツFの位置
とにより回転光源9の方位角を演算検出するようにして
いる。
The main device 3 is also equipped with a calculation means such as a central processing unit (CPU), and uses the output signal of the photoelectric conversion element 16 of the azimuth angle sensor 5 to operate the convex lens 15 and the photoelectric conversion element 16 in a manner to be described later. The azimuth angle of the rotating light source 9 is calculated and detected based on the direction of the optical axis and the position of the optical spot F.

以下、方位角を検出する方法について、第2図および第
3図に基づいて説明する。
Hereinafter, a method for detecting the azimuth angle will be explained based on FIGS. 2 and 3.

まず、親機1と子機2とをそれぞれ運転状■として、子
@2の回転光源9から3606の各方向にレーザービー
ムを!I5!放射させると、レーザービームの届く範囲
、すなわち、基準位置の親機lから子機2の回転光源9
を臨み得る範囲であると。
First, the main unit 1 and the slave unit 2 are set to operating status ■, and the laser beam is emitted from the rotating light source 9 of the slave @2 in each direction of 3606! I5! When emitted, the range that the laser beam reaches is from the base unit 1 at the reference position to the rotating light source 9 of the slave unit 2.
It is within the range that we can face.

走行ユニット3の方位や距離、移動速度などに関係なく
、レーザービームが方位角度センサ5を照射する瞬間が
間欠的に(3000r*pem とすると毎秒50回ず
つ)発生する。
Regardless of the azimuth, distance, moving speed, etc. of the traveling unit 3, the moment when the laser beam irradiates the azimuth angle sensor 5 occurs intermittently (50 times per second, assuming 3000 r*pem).

このとき、方位角度センサ5の光軸Bmが第2図に示す
ようにはソ回転光源9の方向に向けられているト、レー
ザービームが凸レンズ15によって集光されてスボツ[
状の結像が形成される。
At this time, the optical axis Bm of the azimuth angle sensor 5 is directed toward the rotary light source 9 as shown in FIG.
An image of the shape is formed.

この結像距MFt は、方位角度センサ5と回転光源9
との距PaLが有限(例えば3m以内など)であるため
に凸レンズ15の焦点距離Fよりも若干大きくなる。し
九がって、凸レンズ15と光電変換素子16との距1l
IIf:焦点距離Fと等しくするかあるいは若干小さく
なるようにしておくと、第2図に示すように回転光源9
が移動することに基づいて、光スボツ1の位置がA、 
G、 BK:順次移動する現象が生じる。
This imaging distance MFt is between the azimuth angle sensor 5 and the rotating light source 9.
Since the distance PaL from the convex lens 15 is finite (for example, within 3 m), it is slightly larger than the focal length F of the convex lens 15. Therefore, the distance between the convex lens 15 and the photoelectric conversion element 16 is 1l.
IIf: If the focal length is set to be equal to or slightly smaller than the focal length F, the rotating light source 9 as shown in FIG.
Based on the movement of , the position of the optical slot 1 is A,
G, BK: A phenomenon of sequential movement occurs.

すなわち、レーザービームの方向が第2図矢印のように
変化して、凸レンズ15の上縁に父差したときの初期照
射hJ Pa に対応する初期スボツF位置Aから、凸
レンズ15の下縁にに交差したときの終期照射@ Pb
 に対応する終期スポット位置Bまでスポットが移II
Iすると、光電変P素子16の画”fJ、%ka 、 
+10 にはスボツ[の移動距IIIIXの範囲にだけ
、第3図(A)、(B)に示すような信号が現われるう )を電変換素子16における有効長さslの範囲を光ス
ポットが移動し念ときの両電極A、 、 n。
That is, the direction of the laser beam changes as shown by the arrow in FIG. Final irradiation when crossed @ Pb
The spot moves to the final spot position B corresponding to II
Then, the image of the photoelectric transformer P element 16 is "fJ, %ka,
+10, the light spot moves within the range of the effective length sl in the electrical conversion element 16. Signals as shown in FIGS. Just in case, both electrodes A, , n.

の出力イB号の変叱り・は、それぞれ第3図(A)。The outputs of I and B are shown in Figure 3 (A).

(B)の破線で示されるようにN続したものとなるが、
有効長さSβの一部分にだけ光スポットが当ったときの
両電極A、 、 B、の出力信号の変化量は、第3図(
A)、(B)にそれぞれ実線で示される如くである。
As shown by the broken line in (B), it is N consecutive, but
The amount of change in the output signal of both electrodes A, B, when the light spot hits only a part of the effective length Sβ is shown in Figure 3 (
As shown by solid lines in A) and (B), respectively.

光スポットの移チ11距nlXと凸レンズ150口径り
との間に の関係がある6″g、た、このときのブ0スボツ1の中
心点Gと光軸Bmとのずれ=光スボツ)の移動中心Xは
The relationship between the shift distance of the light spot 11 nl The center of movement is X.

X”Ftan Δθ −−−−−−−−It )したが
ってレーザービームが光スボッ)A点に達しているとき
の光WJ、変換8子16の電極A、の信ただし、C□ 
ニゲイン常数。また、光電変換素子である。
X”Ftan Δθ −−−−−−−−It) Therefore, when the laser beam reaches the point A of the light beam WJ, the belief of the electrode A of the conversion element 16, however, C□
Nigain constant. It is also a photoelectric conversion element.

ここで1両1!極AO+ no の信号出力の差をめる
と。
1 car 1 here! If we take the difference in signal output of poles AO+no.

AO、BOの(i分出力の和は光N変t1!!素子16
の原理上、第3図からも明らかなように光スポットがあ
るときはC1と等しくなる。
The sum of the i-minute outputs of AO and BO is the light N variable t1!!Element 16
According to the principle, as is clear from FIG. 3, when there is a light spot, it becomes equal to C1.

したがって。therefore.

で、光軸Bmと凸レンズ15の光学的中心を通る回転光
源中心管での方向線Pg とのなす角Δ0゜すなわち、
子機8の方位をめることができる。
The angle Δ0° between the optical axis Bm and the direction line Pg in the rotating light source central tube passing through the optical center of the convex lens 15 is Δ0°, that is,
The direction of the handset 8 can be set.

また、Vll)式から明らかなように1回転光源9が1
回転して凸レンズ15と交差する(スキャンする)毎に
、両電極Ag 、 Bo の出力信号の変化計と、予め
知り得る凸レンズ15の焦点距pa(光電変換素子16
の離間距離)Fおよび)を電変換素子16の有効長さS
、e とによって演算をして、子機8の方位角を迅速に
縁り返し検出することかできる。
Also, as is clear from the equation (Vll), the one-rotation light source 9 is one
Every time it rotates and intersects (scans) the convex lens 15, a change meter of the output signal of both electrodes Ag, Bo and a focal length pa of the convex lens 15 (photoelectric conversion element 16) which can be known in advance are measured.
The separation distance ) F and ) are the effective length S of the electric conversion element 16
, e, the azimuth angle of the handset 8 can be quickly detected.

一方、;@2図からも明らかなように、光軸Bmと方向
線Pg とのなす角Δ0が 、θ≦tan−’士昨 の範囲であると、方位角度センサ5を回転光源9に正確
に対向させなくても、方位角の検出音することができる
ものであるが、方位角の検出1′W度は主として)を輔
nrnの向きを基準方向に設定するロータリーエンコー
ダ7の精度などによって左右され、■11式で表わされ
るように子機8までの距離などによって左右されること
がなか。
On the other hand, as is clear from Figure @2, if the angle Δ0 between the optical axis Bm and the direction line Pg is in the range θ≦tan-' Although it is possible to detect the azimuth angle without having to face the azimuth angle, the azimuth angle detection 1'W degree depends mainly on the accuracy of the rotary encoder 7 that sets the direction of the direction as the reference direction. ■It is not affected by the distance to the handset 8, etc., as shown in formula 11.

なお、方位角度センサ5を回転光源9に対向させる場合
、回転wAm+mmによりターンテーブル4を揺動させ
るようにして1回転光源9がその揺動角内にあるときに
は、これを容易に検出することができるものであるが、
一度、回転光源の方位を検出した後は、揺動を引き続き
繰り返す方法以外に、毎秒に数回検出される方位角に基
づいて、少しずつターンテーブル4の向きf修正し、正
対する状態に維持するかどの方法によって行なうことも
できる。
Note that when the azimuth angle sensor 5 is arranged to face the rotating light source 9, the turntable 4 is oscillated by the rotation wAm+mm, and when the azimuth angle sensor 5 is within the oscillating angle of the rotation wAm+mm, this can be easily detected. Although it is possible,
Once the direction of the rotating light source is detected, in addition to the method of continuously repeating the rocking, the direction f of the turntable 4 is corrected little by little based on the direction angle detected several times every second, and the direction f of the turntable 4 is corrected to keep it facing directly. It can be done by any method.

以上説明したように本発明によれば、次のような優れた
効果を奏するものである。
As explained above, according to the present invention, the following excellent effects are achieved.

■ 方位の測定に回転をともなう光、レーザービームを
利用することにより、任意の位置、任意の方向、任意の
速度で移動する走行ユニツtの方位角を静止状聾と同様
に迅速にかつ、正確に検出することができる。
■ By using rotating light or laser beams to measure the azimuth, the azimuth of a traveling unit t moving at any position, any direction, and any speed can be determined as quickly and accurately as a static deaf person. can be detected.

■ 回転光源の光、レーザービームが届く位置で方位角
の測定か可能となるため、検出範囲を拡犬することがで
きる。
■ The detection range can be expanded because the azimuth can be measured at the location where the light from the rotating light source or laser beam reaches.

■ 凸レンズで4fs )cさせた)℃スポットの移f
TII t 利用することにより、方位角度センサと走
行ユニットの方向とが多少ずれていても方位角1r検出
でき実中性が高い。
■ 4 fs ) C spot movement f with a convex lens
By using TII t, the azimuth angle 1r can be detected even if the direction of the azimuth angle sensor and the traveling unit are slightly different, and the actual neutrality is high.

■ 回転うし源の回転にともなう光スポットの直線的な
移動f@出信号化することにより、受光部分?−1個と
しで爪純な欝造とすることができる。
■ Linear movement of the light spot as the rotating cow source rotates f@By converting it into an output signal, the light receiving part? -One piece can be made into a pure structure.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例を示すもので、第1図は親機と
子(きとの関係の概略平面図、第2図は光学系の明係駈
明図、第3図(A)、(B)はセンサの信号出力状1川
の説明図である。 1・・・・・・親fi、2・・・・・・子機、3・・・
・・・熱軌道走行ユニット、4・・・・・・ターンテー
ブル、5・・・・・・方位角度センサ、6・・・・・・
駆動モータ、8・・・・・・ロータリーエンコーダ、9
・・・・・・同転光源、12・・・・・・駆動モータ、
15・・・・・・凸レンズ、16・・・・・・)し電変
換素子。
The drawings show one embodiment of the present invention, and Fig. 1 is a schematic plan view of the relationship between the parent unit and the slave unit, Fig. 2 is a schematic diagram of the optical system, and Fig. 3 (A). , (B) is an explanatory diagram of sensor signal output status 1. 1... Parent fi, 2... Slave device, 3...
...Thermal orbit traveling unit, 4...Turntable, 5...Azimuth angle sensor, 6...
Drive motor, 8...Rotary encoder, 9
......Synchronous light source, 12... Drive motor,
15...convex lens, 16...) and electric conversion element.

Claims (1)

【特許請求の範囲】[Claims] 走行ユニット等に塔載された回転光源からの放射光全焦
光するための凸レンズを設け、該凸レンズの焦点付近に
)tスボツ)の移動を電気信号に変換するだめの3’e
 m変換孝子1設けるとともに、該光可変u子は、その
受光部上の光ヌボットの位置によって按分される信号レ
ベルの変化計の中間点に対応する位置と、前記凸レンズ
および光電変換素子の光軸とにより、回転光源の方位角
を検出する手段を備えてなることを特徴とする走行ユニ
ッ1等の方位角度検出装置。
A convex lens is provided to fully focus the emitted light from a rotating light source mounted on a traveling unit, etc., and a convex lens 3'e is provided near the focal point of the convex lens to convert the movement of the (spot) into an electrical signal.
An m-conversion element 1 is provided, and the optical variable element has a position corresponding to the midpoint of a signal level change meter proportionally divided according to the position of the optical unit on the light receiving part, and an optical axis of the convex lens and the photoelectric conversion element. An azimuth angle detection device for a traveling unit 1, etc., characterized in that it comprises means for detecting an azimuth angle of a rotating light source.
JP58211278A 1983-11-10 1983-11-10 Azimuth-angle detecting device of running unit and the like Granted JPS60102513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58211278A JPS60102513A (en) 1983-11-10 1983-11-10 Azimuth-angle detecting device of running unit and the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58211278A JPS60102513A (en) 1983-11-10 1983-11-10 Azimuth-angle detecting device of running unit and the like

Publications (2)

Publication Number Publication Date
JPS60102513A true JPS60102513A (en) 1985-06-06
JPH0481127B2 JPH0481127B2 (en) 1992-12-22

Family

ID=16603273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58211278A Granted JPS60102513A (en) 1983-11-10 1983-11-10 Azimuth-angle detecting device of running unit and the like

Country Status (1)

Country Link
JP (1) JPS60102513A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62254007A (en) * 1986-04-04 1987-11-05 Toshihiro Tsumura Apparatus for detecting position of moving body

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50110792A (en) * 1974-02-08 1975-09-01
JPS50134460A (en) * 1974-04-10 1975-10-24
JPS5369066A (en) * 1976-12-02 1978-06-20 Nippon Telegr & Teleph Corp <Ntt> Detection system for optical posture angle displacement
JPS5594508A (en) * 1979-01-11 1980-07-18 Sumitomo Electric Industries Method of laying of cable at high height difference route
JPS57116814U (en) * 1981-01-12 1982-07-20

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50110792A (en) * 1974-02-08 1975-09-01
JPS50134460A (en) * 1974-04-10 1975-10-24
JPS5369066A (en) * 1976-12-02 1978-06-20 Nippon Telegr & Teleph Corp <Ntt> Detection system for optical posture angle displacement
JPS5594508A (en) * 1979-01-11 1980-07-18 Sumitomo Electric Industries Method of laying of cable at high height difference route
JPS57116814U (en) * 1981-01-12 1982-07-20

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62254007A (en) * 1986-04-04 1987-11-05 Toshihiro Tsumura Apparatus for detecting position of moving body

Also Published As

Publication number Publication date
JPH0481127B2 (en) 1992-12-22

Similar Documents

Publication Publication Date Title
US4782239A (en) Optical position measuring apparatus
JP2862417B2 (en) Displacement measuring device and method
JP2014071038A (en) Laser radar device
US4561778A (en) Apparatus for measuring the dimensions of cylindrical objects by means of a scanning laser beam
US3194966A (en) Photosensitive star tracking system
JPS58210506A (en) Photoelectric measuring device
JPS60102513A (en) Azimuth-angle detecting device of running unit and the like
JPH1090008A (en) Apparatus for detecting origin position of encoder
JPS57207806A (en) Optical measuring device
JPH10267624A (en) Measuring apparatus for three-dimensional shape
US3814495A (en) Apparatus for producing a moving beam displaced parallel to itself
JPS5855813A (en) Optical distance measuring meter
JPS60107016A (en) Device for obtaining parallel scanning luminous flux from incident luminous flux
JPS6288904A (en) Detecting method for displacement and rotation
JP3168282B2 (en) Method for detecting the movement reference position of a moving object
JPS62287107A (en) Center position measuring instrument
JPS60173837A (en) Controlling method of positioning of gap by combination diffraction grating
JPH02266702A (en) Detector for azimuth and elevation angle of parabolic antenna
SU781560A1 (en) Displacement photosensor
SU411296A1 (en)
JP2572641B2 (en) Light beam reflector, light emitting / receiving device thereof, moving object position detecting method and moving object traveling control method
CN104034423B (en) High stability tilting mirror interferometer
JPH0552523A (en) Optical dimension measuring apparatus
JPH11132793A (en) Origin position detector for encoder
JPS5927841B2 (en) Displacement posture measuring device