JPS6288904A - Detecting method for displacement and rotation - Google Patents

Detecting method for displacement and rotation

Info

Publication number
JPS6288904A
JPS6288904A JP23050885A JP23050885A JPS6288904A JP S6288904 A JPS6288904 A JP S6288904A JP 23050885 A JP23050885 A JP 23050885A JP 23050885 A JP23050885 A JP 23050885A JP S6288904 A JPS6288904 A JP S6288904A
Authority
JP
Japan
Prior art keywords
displacement
light
substrates
ring
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23050885A
Other languages
Japanese (ja)
Other versions
JPH0715367B2 (en
Inventor
Masaru Otsuka
勝 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP60230508A priority Critical patent/JPH0715367B2/en
Publication of JPS6288904A publication Critical patent/JPS6288904A/en
Publication of JPH0715367B2 publication Critical patent/JPH0715367B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To detect displacement and an angle with high precision by detecting the displacement perpendicular to the projection direction of a beam and the direction of rotation around an axis perpendicular to the projection direction of said beam from the combination of the outputs of plural two-dimensional photodetecting means. CONSTITUTION:A laser beam oscillated by a laser light source is split by a parallel prism 4 into two laser beams, which are converted by an axicon 5 into two ring-sectioned laser beams and incident on photodetecting element substrates 6 and 7 in a sensor housing 10. Then, the lengthwise position of a ring piece is detected by optical array sensors 6a-6d and 7a-7d arrayed in a cross shape to detect the beam positions on the substrates. Namely, when a stage 5 enters motion with the degree 5 of freedom, variation patterns of the ring positions on the substrates 6 and 7 are different as to y-directional and z-directional displacement and rotation. For the purpose, the variation patterns are detected by the optical arrays sensors simultaneously with the shaft in position, and then the extent of variation in a motion component direc tion is known.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、半導体製造のリングラフィ行程における高精
度な位置決めステージ装置をはじめ、起精密工作機械の
送りテーブル装置、各種計測装置用高精度ステージ等あ
らゆる高精度運動ステージ装置に応用可能な変位・回転
検出方法に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention is applicable to a high-precision positioning stage device in the phosphorography process of semiconductor manufacturing, a feed table device for precision machine tools, a high-precision stage for various measuring devices, etc. The present invention relates to a displacement/rotation detection method that can be applied to any high-precision motion stage device.

〔従来技術〕[Prior art]

従来IJ ニアステージ装瀘等で高+S直な直進運動を
実現するためには、例乙ば静IE軸受茶内機構や但気軸
受案内愼購にレーザ干渉計と制御卸機博を組み会わせ、
レーザ干渉計で誤差を測定し、軸受部を制御機構で制御
卸して誤差を補正する方法が用いられできた。しかし、
ステージ等の進行方向以外の誤差方向成分をレーザ干渉
計で測定するためにはその成分方向Iこレーザ干渉計を
必要とし、又進行方向に垂直な誤差成分を測定する為の
レーザビームが照射される点はステージの運動と共に移
動するので、基準面をステージの長さ一杯までとらねば
ならず、更に高n度な直進運動かこの基準面の長さに制
限されるという欠点があった。
In order to achieve high +S linear motion with conventional IJ near stage equipment, etc., it is necessary to combine a laser interferometer and a control machine with the Otoba static IE bearing mechanism or Tadaki bearing guide mechanism, for example. ,
A method was used in which the error was measured using a laser interferometer and the bearing was controlled by a control mechanism to correct the error. but,
In order to measure error direction components other than the direction of movement of a stage, etc. with a laser interferometer, a laser interferometer is required in the direction of the component, and a laser beam is irradiated to measure error components perpendicular to the direction of movement. Since the point moving along with the movement of the stage, the reference plane must extend to the full length of the stage, and furthermore, there is a drawback that linear movement at a high n degree is limited to the length of this reference plane.

〔発明の目的〕[Purpose of the invention]

本発明の目的は前述従来例の欠点を解消し、ステージの
位置に照射点が影響されないステージの進行方向に平行
なビームのみを用いてステージの進行方向以外の誤差方
行成分すべてを測定でき、同時にその誤差方向を容易識
別できる変位・回転検出方法を提供する事にある。
An object of the present invention is to eliminate the drawbacks of the conventional example described above, and to be able to measure all error direction components other than the stage's traveling direction using only a beam parallel to the stage's traveling direction, where the irradiation point is not affected by the stage position. At the same time, it is an object of the present invention to provide a displacement/rotation detection method that can easily identify the error direction.

〔実施例〕〔Example〕

第1図と第4図に本発明の1番目の実施例を示す。第1
図は誤差測定部の斜視図で1は光源であるところのレー
ザ発振器、4はレーザビーム−!E−2本の平行ビーム
にする平行プリズム、5はレーザビームの断面形状をリ
ング吠1c変換する光学素子(アキシコ/)、6と7は
受光素子基板、6a〜6d及び7a〜7dはそれぞ几受
元素子基板6,7上に配置された元アレイセ/す、10
はセンサ一部を保持するセンサハウジングである。図に
は示していないがハウジング10はステージ上に、レー
ザ発振器lと平行プリズム4とアキシコン5は固定基板
上に設置さnている。ステージは矢印方向に移動可能で
ある。
A first embodiment of the present invention is shown in FIGS. 1 and 4. FIG. 1st
The figure is a perspective view of the error measurement unit, where 1 is a laser oscillator which is a light source, and 4 is a laser beam! E-Parallel prism to make two parallel beams, 5 is an optical element (axico/) that converts the cross-sectional shape of the laser beam into a ring shape, 6 and 7 are light receiving element substrates, 6a to 6d and 7a to 7d are respectively The original array/su arranged on the receiving element substrates 6, 7
is a sensor housing that holds a part of the sensor. Although not shown in the figure, the housing 10 is placed on a stage, and the laser oscillator 1, parallel prism 4, and axicon 5 are placed on a fixed substrate. The stage is movable in the direction of the arrow.

上記構成において、レーザ光源1より発振されたレーザ
ビームは、平行プリズム4によって、2本のレーザビー
ムに分けられ、ざら憂こアキシコン5によって断面がり
/グ状となった2本のレーザビームにf換され、センナ
ハウジング101F3でそれぞれ受光素子基板6.7上
に入射し十字に並んだ元アレイセンサ、6a〜6d、7
a〜7d によってそれぞれの長さ方向リング片位置が
検出され、結果的に基板上のビーム位置が検出される。
In the above configuration, the laser beam oscillated by the laser light source 1 is divided into two laser beams by the parallel prism 4, and is divided into two laser beams having a curved cross section by the axicon 5. The original array sensors 6a to 6d, 7 are incident on the light receiving element substrate 6.7 in the sensor housing 101F3 and arranged in a cross pattern.
a to 7d, the respective longitudinal ring piece positions are detected, and as a result, the beam position on the substrate is detected.

一般にステージに第2図Iこ示す様な座標を設定し、ス
テージを同図矢印の方向、即ちXa万同へ送ると他の5
自由度の運動、即ちy軸、2軸方向の並進運動%X@1
3’軸、2軸まわりの回軸運動が発生する。第2図にX
軸、y軸tz@丈わりの回転方向をそnぞれ”X+’Y
、’Nで表わす。
Generally, if you set the stage coordinates as shown in Figure 2 I and send the stage in the direction of the arrow in the figure, that is, in the direction of Xa, the other 5
Movement of degree of freedom, i.e. y-axis, translational movement in 2-axis direction %X@1
Rotational motion around the 3' axis and the 2nd axis occurs. X in Figure 2
Axis, y-axis tz@The direction of rotation according to the length is “X+’Y”
, 'N.

第1図の構成に於てステージが上記5自由度のam+行
った場合の、受光基板上に入射しているリング状し−ザ
元の位置の変化を第3図に示す。
FIG. 3 shows changes in the position of the ring-shaped laser source incident on the light-receiving substrate when the stage moves am+ with the five degrees of freedom in the configuration shown in FIG.

図中破線は運動前のリング位置、実線は運動後のリング
位置を表わしている。図かられかる様にy方向a!方向
の変位−! 方向ガ 方向の回転それぞれについて受光
素子基板6,7におけるり/グ位置の変化パターンが異
なる。従って元アレイセンチでり/グ位置の変化と同時
にこの変化パターンを検出する事でどの運動成分方向に
どれだけ変化した力)を測定する事ができる。
In the figure, the broken line represents the ring position before the movement, and the solid line represents the ring position after the movement. As shown in the figure, y direction a! Displacement in direction -! For each rotation in the direction, the change pattern of the sliding/gating position on the light-receiving element substrates 6 and 7 is different. Therefore, by detecting this change pattern at the same time as the original array centimeter position changes, it is possible to measure the force that has changed in which motion component direction.

第4図に本実施例の制御系のブロック線図を示す0図中
、11はステージ本体、13はガイド、14はアクチュ
エータ、人はセ/サカ)ら送られてきた信号を変換、増
幅等処理するエラー信号検出部、Bはエラー信号を一定
の指令に従って演算処理する演算部と指令部、Cは送ら
れてきた信号によりアクチュエータ14を操作するアク
チュエーメドライバ部である。ステージが移動し、姿勢
が変化すると基準となるレーザ元からのずれが光センナ
上に生じ、この信号を検出し、適当な演算処理を行ない
、姿勢を補正すべく指令を出し、ドライバを介してステ
ージに属するアクチュエータヲ動かすことによりステー
ジは高精度な運動を行なう事が可能になる。
Figure 4 shows a block diagram of the control system of this embodiment.In Figure 4, 11 is the stage body, 13 is the guide, 14 is the actuator, and the signals sent from the main body are converted, amplified, etc. Reference numeral B designates an error signal detection section for processing, a calculation section and a command section that process the error signal according to a certain command, and C an actuator driver section that operates the actuator 14 based on the sent signal. When the stage moves and its posture changes, a deviation from the reference laser source occurs on the optical sensor, and this signal is detected, performs appropriate arithmetic processing, issues a command to correct the posture, and sends a signal via the driver. By moving the actuator belonging to the stage, the stage can move with high precision.

ビームがステージの進行方向に平行なので、ステージの
前記5自由匿運動が発生しない限り、ステージがどこに
移動してもビームは基板6,7上の同じ位置に入射する
。従ってステージの長ストロークの高精度直進運動が可
能である。又ビームの方向は1方向でよいので誤差測定
装置が簡単である0アキシコンでリング状にしたビーム
を十字に並べたアレイ状七ンサーで検出しているので単
に出射レーザビームをそのまま元電板等に入射する場合
よりも少ない光電素子数でビーム位置検出ができ、元ア
レイセンサの並び方向に略一致するリングの厚みは充分
小さくできるので元アレイセンサによる位置検出精度を
充分上げる事ができる。
Since the beam is parallel to the advancing direction of the stage, the beam will be incident on the same position on the substrates 6 and 7 no matter where the stage moves unless the above-mentioned free movement of the stage occurs. Therefore, high-precision linear motion with a long stroke of the stage is possible. In addition, since the beam direction only needs to be in one direction, the error measuring device is simple.Since the ring-shaped beam is detected by the zero axicon with an array of seven sensors arranged in a cross, the emitted laser beam can simply be used as it is on the original electric board, etc. Since the beam position can be detected with a smaller number of photoelectric elements than when the beam is incident on the beam, and the thickness of the ring that substantially coincides with the direction in which the original array sensor is arranged can be made sufficiently small, the accuracy of position detection by the original array sensor can be sufficiently increased.

@1図の実施例の誤差測定装置の構成ζこするとX紬よ
りりの旦伝方向ダX の変化は検出しにくく、恢出器の
位置や回転中心位置によっては他の運動成分変化のパタ
ーンと同様のパターンが出る場合も考えつる。第5図ζ
こ示T2番目の実施例ではこの問題も解消できる。
Configuration of the error measuring device in the embodiment shown in Figure 1 I can think of cases where a similar pattern appears. Figure 5 ζ
The second embodiment shown here can also solve this problem.

第5図1こおいて第1図の部材と同じ部材には同じ表示
記号を記載した。2はレーザ元82方向に分Nu fる
ビームスプリッタ、3はレーザ元の進行方向を折り曲げ
るビームペンダでビームスプリッタ2とビームペンダ3
は2本の平行レーザ光を作るように配置さ几ている。4
°は4と同じ平行プリズム、5′は5と同じアキ7コン
、8a〜8d、9a〜9dはそれぞn6a〜6d、7a
〜7d #こ対厄する元アレイセンサ、10Iは10と
同じセンサーハウジングである。ハウジング10.10
’は靜圧案内型のリニアステージ本体11に設置されて
いる。12はステージ駆動用リニアモータである。
In FIG. 5, the same members as those in FIG. 1 are given the same symbols. 2 is a beam splitter that splits Nu f in the direction of the laser source 82, and 3 is a beam pender that bends the direction of travel of the laser source.Beam splitter 2 and beam pender 3
are arranged to create two parallel laser beams. 4
° is the same parallel prism as 4, 5' is the same Aki 7 as 5, 8a to 8d, 9a to 9d are n6a to 6d, 7a respectively
~7d #This is the original array sensor, 10I is the same sensor housing as 10. Housing 10.10
' is installed on a linear stage main body 11 of a silent pressure guide type. 12 is a stage driving linear motor.

前記構成において、レーザ光源1より発振されたレーザ
元はビームスプリッタ2Iこよって2方向に分割さ几、
透過光は平行プリズム47i−経てアキンコ15に入り
l!?面をリング状に変換さitでセンサハウジング1
0内の受光素子基板6,7上に入射し、元アレイセンサ
6a〜6d、7a〜7d  で検出される。同様(こ反
射光もど一ムベンダ3で反射し、平行プリズム411ア
キ7コン51ヲ姪て、光アレイセンサ8a〜8d、9a
、9d  で検出される。
In the above configuration, the laser source oscillated by the laser light source 1 is split into two directions by the beam splitter 2I;
The transmitted light enters Akinko 15 through parallel prism 47i! ? Sensor housing 1 by converting the surface into a ring shape
The light is incident on the light receiving element substrates 6 and 7 inside the sensor 0, and is detected by the original array sensors 6a to 6d and 7a to 7d. Similarly (this reflected light is also reflected by the bender 3, the parallel prism 411, and the optical array sensors 8a to 8d, 9a)
, 9d.

センナハウジングl 0 、10’はリニアステージの
駆動方向1こむかつて左右対称に立置してステージ本体
上に設置されでいる。この場合の、駆動方向以外の5自
由度達鯛に伴う基板6,7,8.9  上のリングの変
化例を第6図に示す。この図カ)られかるようEこ、y
方向と2方向の変位、XpYmZ:I’11まわりの回
転それぞ几の場合で4枚の基板上のり/グ装置の変化パ
ターンが異なる。従って変化量と変化パターンを同時検
出してどの方向iこと几だけ変化したかを一度に測定o
T能である。
The senna housings l 0 , 10' are installed on the stage main body in a vertically symmetrical manner, one direction apart from each other in the driving direction of the linear stage. FIG. 6 shows an example of changes in the rings on the substrates 6, 7, 8.9 as the five degrees of freedom other than the driving direction are achieved in this case. This image
The change patterns of the mounting/gating device on the four substrates are different depending on the direction, displacement in two directions, and rotation around XpYmZ:I'11. Therefore, by simultaneously detecting the amount of change and the change pattern, you can measure in which direction and by how much it has changed at once.
It is T-noh.

第7図に3番目の実施列を示T0同一において第1図、
第5図の部材と同じ部材については同じ員示記号を記載
しである。センサノ)クジング10゜10叫ま直動式磁
気軸受案内の軸受本体11舅こ設置されている。15は
電磁石、13a はガイドである。
The third implementation column is shown in FIG. 7, and FIG.
Components that are the same as those in FIG. 5 are indicated by the same reference symbols. The bearing body of the direct-acting magnetic bearing guide is installed at 11 degrees. 15 is an electromagnet, and 13a is a guide.

センナハウジング10 、10’は軸受本体11’上の
上下対称な位置1こ設置されており前記5自由度運動に
伴なう4つの基板上のリング変化は2番目の実施例の時
と同様第6図のようなパターンになる。
The senna housings 10 and 10' are installed in one vertically symmetrical position on the bearing body 11', and the ring changes on the four substrates caused by the movement of the five degrees of freedom are the same as in the second embodiment. The pattern will be as shown in Figure 6.

従って同様に変化方向変化量同時測定が可能である。直
動式の磁気軸受なので電磁石の電流を制御する事により
アクチュエータなしの補正操作ができる。
Therefore, it is possible to simultaneously measure the amount of change in the direction of change. Since it is a direct-acting magnetic bearing, correction operations can be performed without an actuator by controlling the electromagnet current.

第8図に4番目の実施例を示す。同図において第1図、
第5図、第7図の部材と同じ部材については同じ表示記
号を記載しである。T 、 91は透明な部材より成る
光電素子基板、6aI〜6dlと8al〜8dM!そn
ぞれ光アレイセンサ7 a1〜7d’ 、 9a’〜9
dlと45°の角度を成すように基板6’ 、 8’ 
 上に並べられた元アレイセンサである。
FIG. 8 shows a fourth embodiment. In the same figure, Figure 1,
The same symbols are used for the same members as those shown in FIGS. 5 and 7. T, 91 is a photoelectric element substrate made of a transparent member, 6aI to 6dl and 8al to 8dM! Son
Optical array sensors 7a1-7d', 9a'-9, respectively
The substrates 6' and 8' form an angle of 45° with dl.
These are the original array sensors arranged above.

レーザ発振器1より出射したビームはビームスプリッタ
2で2本に分けられ、透過光はそのまま、反射光はビー
ムペンダ3で透過光に平行にされてアキ7コン5,5+
を通過し、断面をリング状に変換されてそれぞn基板7
°9gに入射する。入射ビームリングのうち、光アレイ
センサ7a“〜7d1゜9 a1〜9dl  に当たっ
た部分は遮られるが、その他の部分は透明な基板7’ 
、 9’を通過し、それぞrt、基板51 、81に入
射する。
The beam emitted from the laser oscillator 1 is split into two by the beam splitter 2, and the transmitted light remains unchanged, while the reflected light is made parallel to the transmitted light by the beam pender 3.
, the cross section is converted into a ring shape, and each n-substrate 7
It is incident at 9g. The part of the incident beam ring that hits the optical array sensor 7a''~7d1°9a1~9dl is blocked, but the other part is blocked by the transparent substrate 7'.
, 9' and enter rt, substrates 51 and 81, respectively.

基板6’ 、 8’上の元アレイセ/す6a’〜6d’
 、 8a’〜8dlはそれぞれ元アレイセ/す7 a
’ 〜7 d’ 、 9 a’9dlと45@ずらして
並べである。基板7“ 91上の元アレイセンチで影に
なったリング部分が考えつるステージ11の運動の範囲
内で元アレイセ/す6a”〜6d’ 、 8a’〜8d
’上には米ず、常に基板T。
Original arrays/substrates 6a' to 6d' on substrates 6' and 8'
, 8a' to 8dl are respectively former Aleise/su7 a
'~7d', 9a'9dl and 45@ shifted arrangement. The ring part shaded by the original array centimeter on the substrate 7'91 is the original array within the range of movement of the stage 11.6a'~6d', 8a'~8d
'No rice on top, always substrate T.

グを通過したリング部分が検知されるよう対向する光ア
レイセンサの間隔は十分とっである。従って1本のり/
グ状ビームを2組の十字枕元アレイセンサで検出する事
が可能になり、1〜3番目の実施例に比較して構造が簡
単かつ小型になる。又2〜3番目の実施例では1つのハ
ウジング内に2枚の基板をy方向ないし2方向にずらし
て設置する為、#エ 方向の回転が行なわ几た場合この
2枚の基板上のり/グの変化量が互いIこ異なる値をと
り、これに他の方向の運動が加わった場合の変化パター
ンが複雑だった。この4番目の実施例では1つのハウジ
ング内の2枚の基板はy方向、2方向にずれがなくω!
 方向の回転が行なわれた場合も2枚の基板上のリング
の変化量は等しく、他の方向の運動が加わった場せの変
化パターンも複雑にはならない。44目の実施例1こお
りる、駆動方向以外の5自由度達!@に伴う基板6’、
 7’、 8′、 9’上のリングの変化例を第9図1
こ示す。基板6′、8°の元アレイセンサの位置は異な
るがリングの変化パターンは第6図と変わらない。
The distance between the opposing optical array sensors is sufficient so that the portion of the ring that has passed through the ring is detected. Therefore, one glue/
This makes it possible to detect the cross beam with two sets of cross bedside array sensors, and the structure becomes simpler and more compact than the first to third embodiments. In addition, in the second and third embodiments, two boards are installed in one housing shifted in the y direction or two directions, so when the rotation in the The amount of change in each of them takes on different values, and when movement in other directions is added to this, the pattern of change is complicated. In this fourth embodiment, the two substrates in one housing are not misaligned in the y direction and the two directions, ω!
Even when the ring is rotated in one direction, the amount of change in the rings on the two substrates is the same, and the pattern of change when movement in another direction is applied does not become complicated. 44th Example 1 Cool, 5 degrees of freedom other than the driving direction! Substrate 6' accompanying @,
Examples of changes in the rings on 7', 8', and 9' are shown in Figure 91.
This is shown. Although the position of the original array sensor at 8° on the substrate 6' is different, the ring change pattern is the same as in FIG.

第10図に5番目の実施例を示す。同図において第1図
、第5図、第7図、第8図の部材と同じ部材については
同じ表示記号を記載しである。
FIG. 10 shows a fifth embodiment. In this figure, the same symbols are used for the same members as those in FIGS. 1, 5, 7, and 8.

17.19はステージ11の進行方向に4511傾向し
て・・ウジングに設ifさ几ている受光素子基板、16
.18はそれぞれ受光素子基板17.19に入射した図
中のビームが略反射する位置に受光素子基板17.19
と45°の角に’e成すようハウジング(こ設置されて
いる受光素子基板である。
17. 19 is a light-receiving element substrate 16 which is installed in the housing, tilting 4511 in the direction of movement of the stage 11.
.. Reference numerals 18 denote light receiving element substrates 17 and 19 at positions where the beams shown in the figure that are incident on the light receiving element substrates 17 and 19 are approximately reflected.
The housing (this is the light-receiving element board) is installed so as to form an angle of 45 degrees with the housing.

基板17.19の表面−こは基板に密着してハーフミ°
ツーが設置しである。バー7ミ之−は入射光か透過時に
なるべく屈折しないよう十分厚さを小さくしている。基
板17.19上のハーフミラ−(こそれぞれ入射したビ
ームは2本に分けられ透過光はそのまま密着した基板上
の元アレイセンサ17a〜17d、19a〜19d  
に検知される。一方反射元はハーフミラ−に45°傾斜
した基板16.18にそれぞれ入射し元アレイセンサ1
6a〜16d、18a〜18d  に受光さ几る。この
場合の駆動方向以外の5自由度運動に伴う基板16.1
7,18.19 上のリングの賀化例を第11図に示す
。第6図と異なり、”Y 方向及び#2 方向回転時に
基板17.19上のリングの位置は変化しない。しかし
、各運動ごとの4板の基板上のリングの位置の変化パタ
ーンはそれぞれ異なるので2〜4番目の実施例同様変化
方向変化量同時測定が可能である。また#工方向回転時
のパターン複雑化もなく、第4の実施例よりもさらに装
置i8小型化でき、ステージ上の小区域のみの変位・角
度測定が可能である。
The surface of the substrate 17.19 is in close contact with the substrate and is half-mirrored.
The two are installed. The thickness of the bar 7 is made sufficiently small so that the incident light is not refracted as much as possible when transmitted. The original array sensors 17a to 17d, 19a to 19d are connected to the half mirrors on the substrates 17 and 19 (the incident beams are divided into two, and the transmitted light remains in close contact with the original array sensors 17a to 17d, 19a to 19d).
is detected. On the other hand, the reflection sources are incident on the substrates 16 and 18 tilted at 45 degrees to the half mirror, respectively, and the source array sensor 1
Light is received at 6a to 16d and 18a to 18d. In this case, the substrate 16.1 accompanies movement in 5 degrees of freedom other than the driving direction.
7, 18.19 An example of the decoration of the above ring is shown in Fig. 11. Unlike Fig. 6, the position of the ring on the substrate 17.19 does not change during rotation in the Y direction and the #2 direction.However, the pattern of change in the position of the ring on the four substrates for each movement is different. Similar to the second to fourth embodiments, it is possible to simultaneously measure the amount of change in the direction of change. Also, the pattern does not become complicated when rotating in the # direction, and the device i8 can be further miniaturized than the fourth embodiment. It is possible to measure the displacement and angle of only the area.

1〜3番目の実施例1こおいて図では〕1ウジング内の
2枚の基板は2方向にずらしであるか、y方向にずらす
構成にしてもかよりない04番目の実施例においてレー
ザ発振器側から見て手前の基板上の光アレイセンチと奥
の基板上の光アレイセンチとのすn方は手前の光アレイ
センチの影が考えつるステージの運動の範囲内で英の光
アレイセ/す上に米ないようなものであわばどのような
形でもかまわない。5曽目の実施例において進行方向に
対して45°傾斜しているハーフミラ−の反射光を受け
る基板がハウジング側面側や底面側にある構成であって
もよい。またハーフミラ−をつけずに填料基板を全反射
ミラーで形成し、反射光を受ける基板の光アレイセンチ
の並び万を4番目の実施例のように傾斜基板の元アレイ
センサの並び方とずらす構成にしてもかまわない。全実
施例でアキ7コンを用いてビームの?tr面形状をリン
グ状lコしているカT本発明の範囲内であわばビームの
断面形状はどのようなものでもよい。例えば、レーザ光
の断面強度分布は第12図のととくガウス分布をしてい
るので、ある強度の点を元アレイセンサで検出Tるよう
にすれば記載の実施例と同様の効果が得られる。基板上
の光電素子の配列は実施例の効果を損なわない範囲で十
字以外Iこもあらゆる形が可能である。レーザ発振器等
と受yt、部を逆に設置してもよい。
1st to 3rd Embodiments In the figure, the two substrates in one housing may be shifted in two directions or may be shifted in the y direction.In the fourth embodiment, the laser oscillator Viewed from the side, the distance between the optical array centimeters on the front substrate and the optical array centimeters on the back substrate is the distance between the optical array centimeters on the front substrate and the optical array centimeters on the back substrate. As long as it doesn't have rice on top, it can be in any shape. In the fifth embodiment, the substrate that receives the reflected light from the half mirror, which is inclined at 45 degrees with respect to the traveling direction, may be located on the side or bottom side of the housing. In addition, the filler substrate is formed of a total reflection mirror without a half mirror, and the alignment of the optical array centimeters of the substrate that receives the reflected light is shifted from the alignment of the original array sensor of the tilted substrate as in the fourth embodiment. It doesn't matter. Beam beam using Aki7con in all examples? The cross-sectional shape of the beam may be any shape within the scope of the present invention. For example, since the cross-sectional intensity distribution of the laser beam has a Gaussian distribution as shown in FIG. 12, the same effect as the embodiment described can be obtained by detecting a point with a certain intensity using the original array sensor. . The photoelectric elements on the substrate can be arranged in any shape other than a cross as long as the effects of the embodiments are not impaired. The laser oscillator and receiver may be installed in reverse.

〔発明の効果〕〔Effect of the invention〕

本発明により、ステージの移動距離の影Vを受けずステ
ージのすべてのfiLlltで高精度な変位・角度検出
が可能かつ同時にその変位方間・角度方向の答易な識別
が9罷になった。
According to the present invention, it is possible to detect displacements and angles with high precision at all fiLllts of the stage without being influenced by the moving distance of the stage, and at the same time, it is possible to easily identify the displacement directions and angular directions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1番目の実施例の誤差測定装置の斜視
図、第2図は移動体の移動方向tこ対する他の5自由度
の方向関係を示す座標図、第3図は1番目の実施例にお
いて前記5自由度の運動が行なわれた場合の受光素子基
板上に入射しているす。 ング状し−ザ元の位置変化のパターン図、第4図は1番
目の実施例の制御系のブロック線図、第5図は本発明の
2番目の実施例の斜視図、第6図は2誉目の実施例にお
いて前記5自由度の運動が行なわれた場合の受光素子基
板上に入射しているリング状レーザ光の位置変化のパタ
ーン図、第7図は本発明の3番目の実施例の斜視図、第
8図は本発明の4番目の実施例の斜視図、第9図は4番
目の実施例において前記5自由度の運動が行なわnた場
合の受光素子基板上に入射しているリング状レーザ光の
位置変化のパターン図、第1O図は本発明の5番目の実
施例の斜視図、第11図は5番目の実施例において前記
5自由度の運動が行なわnた場曾の受光素子基板上に入
射しているリング状レーザ光の位置変化のパターン図、
第12図はレーザビームの断面強度分布の1例の説明図
であるO 図中; 1:レーザ発振器 2:ビームスプリツタ3:ビームペ
ンダ 4:平行プリズム 5ニアキシコン ロ、7,8,9,6・、T、8°、9I:受光素子基板
6a〜6d 、7a〜7d 、 8a〜8d 。 8 a’ 〜8 d’ 、 9 a’ 〜9 d’10
.10’:センサハウジング 11:リニアステージ本体 12:リニアモータ 13.13’:静圧軸受ガイド 13a :磁気軸受ガイド 14.14’:微動アクチュエータ 15:’rim石
16.17,18,19  :受光素子基板16a〜1
6d+17a〜17d+18a〜18d+19a〜19
d :元アレイセンサ である。
FIG. 1 is a perspective view of the error measuring device according to the first embodiment of the present invention, FIG. 2 is a coordinate diagram showing the directional relationship of the other five degrees of freedom with respect to the moving direction t of the moving body, and FIG. In the second embodiment, the light is incident on the light receiving element substrate when the movement with the five degrees of freedom is performed. FIG. 4 is a block diagram of the control system of the first embodiment, FIG. 5 is a perspective view of the second embodiment of the present invention, and FIG. FIG. 7 is a pattern diagram of the position change of the ring-shaped laser beam incident on the light receiving element substrate when the movement of the five degrees of freedom is performed in the second embodiment, and FIG. FIG. 8 is a perspective view of the fourth embodiment of the present invention, and FIG. 9 is a perspective view of the light incident on the light receiving element substrate when the movement of the five degrees of freedom is performed in the fourth embodiment. Fig. 1O is a perspective view of the fifth embodiment of the present invention, and Fig. 11 is a pattern diagram of the position change of the ring-shaped laser beam in the fifth embodiment. Pattern diagram of the position change of the ring-shaped laser beam incident on the photodetector substrate of Zeng,
FIG. 12 is an explanatory diagram of an example of the cross-sectional intensity distribution of a laser beam. T, 8°, 9I: Light receiving element substrates 6a to 6d, 7a to 7d, 8a to 8d. 8 a' to 8 d', 9 a' to 9 d'10
.. 10': Sensor housing 11: Linear stage main body 12: Linear motor 13.13': Hydrostatic bearing guide 13a: Magnetic bearing guide 14.14': Fine movement actuator 15:'Rim stones 16, 17, 18, 19: Light receiving element Substrates 16a-1
6d+17a~17d+18a~18d+19a~19
d: Original array sensor.

Claims (4)

【特許請求の範囲】[Claims] (1)ビーム基準型の変位・回転検出方法において、複
数の2次元状受光手段の出力の組合せにより少なくとも
前記ビームの出射方向に垂直な変位と前記ビームの出射
方向に垂直な軸まわりの回転の方向検出をする事を特徴
とする変位・回転検出方法。
(1) In a beam-based displacement/rotation detection method, by combining the outputs of a plurality of two-dimensional light receiving means, at least displacement perpendicular to the beam emission direction and rotation around an axis perpendicular to the beam emission direction are detected. A displacement/rotation detection method characterized by direction detection.
(2)前記2次元状受光手段が3つ以上あり、前記2次
元状受光手段の出力の組み合わせにより前記ビームに平
行な軸まわりの回転の方向検出をも行なう事を特徴とす
る特許請求の範囲第1項に記載の変位・回転検出方法。
(2) A claim characterized in that there are three or more of the two-dimensional light receiving means, and the direction of rotation about an axis parallel to the beam is also detected by combining the outputs of the two-dimensional light receiving means. The displacement/rotation detection method according to item 1.
(3)ビーム基準型の変位・回転検出方法において、光
の進行方向に離れて各々固定配置された複数の受光素子
群により、少なくとも前記光の進行方向に垂直な変位と
前記光の進行方向に垂直な軸まわりの回転とを区別して
検出する事を特徴とした変位・回転検出方法。
(3) In a beam-based displacement/rotation detection method, a plurality of light-receiving element groups fixedly arranged apart from each other in the direction of travel of the light are used to detect at least displacement perpendicular to the direction of travel of the light and the direction of travel of the light. A displacement/rotation detection method that distinguishes between detection and rotation around a vertical axis.
(4)前記光の進行方向に垂直な方向に離れて各々固定
配置された複数の受光素子群により、前記光の進行方向
まわりの回転を区別して検出する事を特徴とした特許請
求の範囲第3項に記載の変位・回転検出方法。
(4) A plurality of groups of light-receiving elements fixedly arranged apart from each other in a direction perpendicular to the direction of travel of the light are used to distinguish and detect rotation around the direction of travel of the light. Displacement/rotation detection method described in Section 3.
JP60230508A 1985-10-15 1985-10-15 Displacement / rotation detection method and attitude control device Expired - Fee Related JPH0715367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60230508A JPH0715367B2 (en) 1985-10-15 1985-10-15 Displacement / rotation detection method and attitude control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60230508A JPH0715367B2 (en) 1985-10-15 1985-10-15 Displacement / rotation detection method and attitude control device

Publications (2)

Publication Number Publication Date
JPS6288904A true JPS6288904A (en) 1987-04-23
JPH0715367B2 JPH0715367B2 (en) 1995-02-22

Family

ID=16908855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60230508A Expired - Fee Related JPH0715367B2 (en) 1985-10-15 1985-10-15 Displacement / rotation detection method and attitude control device

Country Status (1)

Country Link
JP (1) JPH0715367B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02504315A (en) * 1988-04-28 1990-12-06 プレフテヒニーク ディーテル ブッシュ ウント パルトネル ゲーエムベーハー ウント コムパニー Device for determining the relative position of the reference axis of an object with respect to reference light, especially laser light
US6337742B2 (en) 1988-04-28 2002-01-08 Pruftechnik Dieter Busch Ag Device for ascertaining the relative position of a reference axis of an object relative to a reference beam, in particular a laser beam
JP2011013095A (en) * 2009-07-02 2011-01-20 Waseda Univ Displacement measuring device and displacement measuring method
EP2343499A1 (en) * 2009-12-29 2011-07-13 PRÜFTECHNIK Dieter Busch AG Correction of imaging errors in alignment systems with several measurement planes located in succession in the beam path

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4526433Y1 (en) * 1966-10-27 1970-10-15
JPS57178101A (en) * 1981-04-03 1982-11-02 Philips Nv Detector for position of body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4526433Y1 (en) * 1966-10-27 1970-10-15
JPS57178101A (en) * 1981-04-03 1982-11-02 Philips Nv Detector for position of body

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02504315A (en) * 1988-04-28 1990-12-06 プレフテヒニーク ディーテル ブッシュ ウント パルトネル ゲーエムベーハー ウント コムパニー Device for determining the relative position of the reference axis of an object with respect to reference light, especially laser light
US6337742B2 (en) 1988-04-28 2002-01-08 Pruftechnik Dieter Busch Ag Device for ascertaining the relative position of a reference axis of an object relative to a reference beam, in particular a laser beam
US6356348B1 (en) 1988-04-28 2002-03-12 Prutechnik Dieter Busch Ag Device for ascertaining the relative position of a reference axis of an object relative to a reference beam, in particular a laser beam
JP2011013095A (en) * 2009-07-02 2011-01-20 Waseda Univ Displacement measuring device and displacement measuring method
EP2343499A1 (en) * 2009-12-29 2011-07-13 PRÜFTECHNIK Dieter Busch AG Correction of imaging errors in alignment systems with several measurement planes located in succession in the beam path
US8571826B2 (en) 2009-12-29 2013-10-29 Prüftechnik Dieter Busch AG Correction of imaging errors in alignment system with several measurement planes located in succession in the beam path

Also Published As

Publication number Publication date
JPH0715367B2 (en) 1995-02-22

Similar Documents

Publication Publication Date Title
CN1101713A (en) Device for measurement of strain
US5698843A (en) Apparatus for measuring motion errors of five degrees of freedom along guideway
WO2016031935A1 (en) Surface shape measuring device
EP0860684A2 (en) Tilt detecting device
JPS6288904A (en) Detecting method for displacement and rotation
US6043482A (en) Scanning unit with a printed circuit for an optical position-measuring apparatus
JPH06213683A (en) Optical fiber encoder for linear motor and other device
KR100295477B1 (en) Device for measuring the dimensions of objects
US6515754B2 (en) Object-displacement detector and object-displacement controller
JPH07332954A (en) Method and apparatus for measuring displacement and inclination
JPS5855813A (en) Optical distance measuring meter
JPS62287107A (en) Center position measuring instrument
JP3230789B2 (en) Optical position detector
JP3512440B2 (en) Displacement sensor
JPH0672769B2 (en) Photoelectric detection method
CN112902838B (en) Zero sensor and detection system
JP3176734B2 (en) Optical position measuring device
JPS60173837A (en) Controlling method of positioning of gap by combination diffraction grating
SU1241062A1 (en) Laser meter of linear shifts of surface
JPH05332719A (en) Noncontact positioning device of plate material
JPS60203804A (en) Measuring instrument of straightness
SU1260685A1 (en) Device for measuring parameters of object displacement
JPS63237830A (en) Horizontally correcting device for x-y table
JPH02276908A (en) Three-dimensional position recognizing device
JPH0445314B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees