JPH0715367B2 - Displacement / rotation detection method and attitude control device - Google Patents

Displacement / rotation detection method and attitude control device

Info

Publication number
JPH0715367B2
JPH0715367B2 JP60230508A JP23050885A JPH0715367B2 JP H0715367 B2 JPH0715367 B2 JP H0715367B2 JP 60230508 A JP60230508 A JP 60230508A JP 23050885 A JP23050885 A JP 23050885A JP H0715367 B2 JPH0715367 B2 JP H0715367B2
Authority
JP
Japan
Prior art keywords
beams
light receiving
displacement
receiving means
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60230508A
Other languages
Japanese (ja)
Other versions
JPS6288904A (en
Inventor
勝 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP60230508A priority Critical patent/JPH0715367B2/en
Publication of JPS6288904A publication Critical patent/JPS6288904A/en
Publication of JPH0715367B2 publication Critical patent/JPH0715367B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Control Of Position Or Direction (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、半導体製造のリソグラフイ行程における高精
度な位置決めステージ装置をはじめ、超精密工作機械の
送りテーブル装置,各種計測装置用高精度ステージ等あ
らゆる高精度運動ステージ装置に応用可能な変位・回転
検出方法及び姿勢制御装置に関するものである。
The present invention relates to a highly accurate positioning stage device in a lithographic process of semiconductor manufacturing, a feed table device for an ultra-precision machine tool, a highly accurate stage for various measuring devices, and the like. The present invention relates to a displacement / rotation detection method and an attitude control device applicable to any high-precision motion stage device.

〔従来技術〕[Prior art]

従来リニアステージ装置等で高精度な直進運動を実現す
るためには、例えば静圧軸受案内機構や磁気軸受案内機
構にレーザ干渉計と制御機構を組み合わせ、レーザ干渉
計で誤差を測定し、軸受部を制御機構で制御して誤差を
補正する方法が用いられてきた。しかし、ステージ等の
進行方向以外の誤差方向成分をレーザ干渉計で測定する
ためにはその成分方向にレーザ干渉計を必要とし、又進
行方向に垂直な誤差成分を測定する為のレーザビームが
照射される点はステージの運動と共に移動するので、基
準面をステージの長さ一杯までとらねばならず、更に高
精度な直進運動がこの基準面の長さに制限されるという
欠点があつた。
In order to realize highly accurate linear motion with a conventional linear stage device, for example, a static pressure bearing guide mechanism or a magnetic bearing guide mechanism is combined with a laser interferometer and a control mechanism, the error is measured by the laser interferometer, and the bearing unit is measured. The method of controlling the error with a control mechanism to correct the error has been used. However, in order to measure an error direction component other than the traveling direction of the stage with a laser interferometer, a laser interferometer is required in the component direction, and a laser beam for measuring the error component perpendicular to the traveling direction is emitted. Since the point to be moved moves along with the movement of the stage, the reference plane must be filled to the full length of the stage, and there is a drawback in that the highly precise linear movement is limited to the length of the reference plane.

〔発明の目的〕[Object of the Invention]

本発明の目的は前述従来例の欠点を解消し、ステージの
位置に照射点が影響されないステージの進行方向に平行
なビームのみを用いてステージの進行方向以外の誤差方
行成分すべてを測定でき、同時にその誤差方向を容易識
別できる変位・回転検出方法を及びそれを用いた姿勢制
御装置提供する事にある。
The object of the present invention is to eliminate the drawbacks of the above-mentioned conventional example, and to measure all error direction components other than the traveling direction of the stage by using only a beam parallel to the traveling direction of the stage in which the irradiation point is not affected by the position of the stage, At the same time, another object of the present invention is to provide a displacement / rotation detecting method capable of easily identifying the error direction and an attitude control device using the same.

〔実施例〕〔Example〕

第1図と第4図に本発明の実施例の前提となる例を示
す。第1図は誤差測定部の斜視図で1は光源であるとこ
ろのレーザ発振器、4はレーザビームを2本の平行ビー
ムにする平行プリズム、5はレーザビームの断面形状を
リング状に変換する光学素子(アキシコン)、6と7は
受光素子基板、6a〜6d及び7a〜7dはそれぞれ受光素子基
板6,7上に配置された光アレイセンサ、10はセンサー部
を保持するセンサハウジングである。図には示していな
いがハウジング10はステージ上に、レーザ発振器1と平
行プリズム4とアキシコン5は固定基板上に設置されて
いる。ステージは矢印方向に移動可能である。
FIG. 1 and FIG. 4 show an example which is a premise of the embodiment of the present invention. FIG. 1 is a perspective view of an error measuring unit. 1 is a laser oscillator which is a light source, 4 is a parallel prism for converting a laser beam into two parallel beams, and 5 is an optical for converting the cross-sectional shape of the laser beam into a ring shape. Elements (axicons), 6 and 7 are light receiving element substrates, 6a to 6d and 7a to 7d are optical array sensors arranged on the light receiving element substrates 6 and 7, respectively, and 10 is a sensor housing holding a sensor portion. Although not shown in the drawing, the housing 10 is installed on the stage, and the laser oscillator 1, the parallel prism 4, and the axicon 5 are installed on the fixed substrate. The stage can move in the direction of the arrow.

上記構成において、レーザ光源1より発振されたレーザ
ビームは、平行プリズム4によつて、2本のレーザビー
ムに分けられ、さらにアキシコン5によつて断面がリン
グ状となつた2本のレーザビームに変換され、センサハ
ウジング10内でそれぞれ受光素子基板6,7上に入射し十
字に並んだ光アレイセンサ、6a〜6d,7a〜7dによつてそ
れぞれの長さ方向リング片位置が検出され、結果的に基
板上のビーム位置が検出される。
In the above configuration, the laser beam oscillated by the laser light source 1 is divided into two laser beams by the parallel prism 4, and further divided into two laser beams having a ring-shaped cross section by the axicon 5. The optical array sensors 6a to 6d and 7a to 7d, which have been converted and are incident on the light receiving element substrates 6 and 7 respectively in the sensor housing 10 and arranged in a cross, detect the positions of the respective ring members in the longitudinal direction. The beam position on the substrate is detected.

一般にステージに第2図に示す様な座標を設定し、ステ
ージを同図矢印の方向、即ちx軸方向へ送ると他の5自
由度の運動、即ちy軸,z軸方向の並進運動、x軸,y軸,z
軸まわりの回軸運動が発生する。第2図にx軸,y軸,z軸
まわりの回転方向をそれぞれωX,ωY,ωzで表わす。
Generally, if the stage is set to the coordinates as shown in FIG. 2 and the stage is moved in the direction of the arrow in the figure, that is, in the x-axis direction, the motion has another five degrees of freedom, that is, translational motion in the y-axis and z-axis directions, Axis, y-axis, z
A rotational movement about the axis occurs. In FIG. 2, the rotation directions around the x-axis, y-axis, and z-axis are represented by ω X , ω Y , and ω z , respectively.

第1図の構成に於てステージが上記5自由度の運動を行
つた場合の、受光基板上に入射しているリング状レーザ
光の位置の変化を第3図に示す。図中破線は運動前のリ
ング位置、実線は運動後のリング位置を表わしている。
図からわかる様にy方向とz方向の変位ωY方向ωZの回
転それぞれについて受光素子基板6,7におけるリング位
置の変化パターンが異なる。従つて光アレイセンサでリ
ング位置の変化と同時にこの変化パターンを検出する事
でどの運動成分方向にどれだけ変化したかを測定する事
ができる。
FIG. 3 shows the change in the position of the ring-shaped laser light incident on the light receiving substrate when the stage moves in the above-mentioned five degrees of freedom in the configuration of FIG. In the figure, the broken line represents the ring position before the exercise, and the solid line represents the ring position after the exercise.
As can be seen from the figure, the change patterns of the ring positions on the light receiving element substrates 6 and 7 are different for each of the displacement ω Y and ω Z in the y direction and the z direction. Therefore, by detecting the change pattern at the same time as the change of the ring position with the optical array sensor, it is possible to measure the change in which motion component direction and how much.

第4図に本例の制御系のブロツク線図を示す。図中、11
はステージ本体、13はガイド、14はアクチユエータ、A
はセンサから送られてきた信号を変換、増幅等処理する
エラー信号検出部Bはエラー信号を一定の指令に従つて
演算処理する演算部と指令部、Cは送られてきた信号に
よりアクチユエータ14を操作するアクチユエータドライ
バ部である。ステージが移動し、姿勢が変化すると基準
となるレーザ光からのずれが光センサ上に生じ、この信
号を検出し、適当な演算処理を行ない、姿勢を補正すべ
く指令を出し、ドライバを介してステージに属するアク
チユエータを動かすことによりステージは高精度な運動
を行なう事が可能になる。
FIG. 4 shows a block diagram of the control system of this example. 11 in the figure
Is the stage body, 13 is the guide, 14 is the actuator, A
Is an error signal detecting section B for converting and amplifying the signal sent from the sensor, and an operation section and an instruction section for processing the error signal in accordance with a constant instruction, and C is an actuator 14 based on the sent signal. It is an actuator driver section to be operated. When the stage moves and the posture changes, a deviation from the reference laser light is generated on the optical sensor, this signal is detected, appropriate arithmetic processing is performed, a command is issued to correct the posture, and it is sent via the driver. By moving the actuators that belong to the stage, the stage can move with high precision.

ビームがステージの進行方向に平行なので、ステージの
前記5自由度運動が発生しない限り、ステージがどこに
移動してもビームは基板6,7上の同じ位置に入射する。
従つてステージの長ストロークの高精度直進運動が可能
である。又ビームの方向は1方向でよいので誤差測定装
置が簡単である。アキシコンでリング状にしたビームを
十字に並べたアレイ状センサーで検出しているので単に
出射レーザビームをそのまま光電板等に入射する場合よ
りも少ない光電素子数でビーム位置検出ができ、光アレ
イセンサの並び方向に略一致するリングの厚みは充分小
さくできるので光アレイセンサによる位置検出精度を充
分上げる事ができる。
Since the beam is parallel to the traveling direction of the stage, the beam is incident on the same position on the substrates 6 and 7 regardless of where the stage moves unless the movement of the stage of 5 degrees of freedom occurs.
Therefore, it is possible to perform a long stroke highly precise linear movement of the stage. Further, since the direction of the beam may be one direction, the error measuring device is simple. Since the array-shaped sensor in which the axicon-shaped beam is arranged in a cross is detected, the beam position can be detected with a smaller number of photoelectric elements than when the emitted laser beam is directly incident on the photoelectric plate, etc. Since the thickness of the ring that substantially coincides with the arrangement direction can be made sufficiently small, the position detection accuracy by the optical array sensor can be sufficiently improved.

第1図の例の誤差測定装置の構成にするとx軸まわりの
回転方向ωXの変化は検出しにくく、検出器の位置や回
転中心位置によつては他の運動成分変化のパターンと同
様のパターンが出る場合も考えうる。第5図に示す1番
目の実施例ではこの問題も解消できる。
With the configuration of the error measuring device in the example of FIG. 1, it is difficult to detect a change in the rotation direction ω X about the x-axis, and similar to other motion component change patterns depending on the position of the detector and the rotation center position. It is possible that a pattern appears. This problem can be solved in the first embodiment shown in FIG.

第5図において第1図の部材と同じ部材には同じ表示記
号を記載した。2はレーザ光を2方向に分割するビーム
スプリツタ、3はレーザ光の進行方向を折り曲げるビー
ムベンダでビームスプリツタ2とビームベンダ3は2本
の平行レーザ光を作るように配置されている。4′は4
と同じ平行プリズム、5′は5と同じアキシコン、8a〜
8d,9a〜9dはそれぞれ6a〜6d,7a〜7dに対応する光アレイ
センサ、10′は10と同じセンサーハウジングである。ハ
ウジング10,10′は静圧案内型のリニアステージ本体11
に設置されている。12はステージ駆動用リニアモータで
ある。
In FIG. 5, the same members as those in FIG. 1 have the same reference symbols. Reference numeral 2 is a beam splitter for splitting the laser light into two directions. Reference numeral 3 is a beam bender for bending the traveling direction of the laser light. The beam splitter 2 and the beam bender 3 are arranged so as to produce two parallel laser lights. 4'is 4
Same parallel prism, 5'is the same axicon as 5, 8a ~
8d and 9a to 9d are optical array sensors corresponding to 6a to 6d and 7a to 7d, respectively, and 10 'is the same sensor housing as 10. Housing 10,10 'is a static pressure guide type linear stage body 11
It is installed in. Reference numeral 12 is a stage driving linear motor.

前記構成において、レーザ光源1より発振されたレーザ
光はビームスプリツタ2によつて2方向に分割され、透
過光は平行プリズム4を経てアキシコン5に入り断面を
リング状に変換されてセンサハウジング10内の受光素子
基板6,7上に入射し、光アレイセンサ6a〜6d,7a〜7dで検
出される。同様に反射光もビームベンダ3で反射し、平
行プリズム4′、アキシコン5′を経て、光アレイセン
サ8a〜8d,9a,9dで検出される。
In the above configuration, the laser light oscillated from the laser light source 1 is split into two directions by the beam splitter 2, and the transmitted light enters the axicon 5 through the parallel prism 4 and the cross section is converted into a ring shape, so that the sensor housing 10 The light is incident on the light receiving element substrates 6 and 7 inside and is detected by the optical array sensors 6a to 6d and 7a to 7d. Similarly, the reflected light is also reflected by the beam bender 3, passes through the parallel prism 4'and the axicon 5 ', and is detected by the optical array sensors 8a to 8d, 9a, 9d.

センサハウジング10,10′はリニアステージの駆動方向
にむかつて左右対称に位置してステージ本体上に設置さ
れている。この場合の、駆動方向以外の5自由度運動に
伴う基板6,7,8,9上のリングの変化例を第6図に示す。
この図からわかるように、y方向とz方向の変位、x,y,
z軸まわりの回転それぞれの場合で4枚の基板上のリン
グ位置の変化パターンが異なる。従つて変化量と変化パ
ターンを同時検出してどの方向にどれだけ変化したかを
一度に測定可能である。
The sensor housings 10 and 10 'are installed on the stage main body so that they are symmetrically located in the driving direction of the linear stage. FIG. 6 shows an example of changes in the rings on the substrates 6, 7, 8 and 9 associated with movements in five degrees of freedom other than the driving direction in this case.
As you can see from this figure, the displacements in the y and z directions, x, y,
The pattern of changes in the ring positions on the four substrates is different for each rotation around the z-axis. Therefore, it is possible to detect the amount of change and the change pattern at the same time, and measure in one direction how much and how much the change has occurred.

第7図に2番目の実施例を示す。同図において第1図,
第5図の部材と同じ部材については同じ表示記号を記載
してある。センサハウジング10,10′は直動式磁気軸受
案内の軸受本体11′に設置されている。15は電磁石、13
aはガイドである。
FIG. 7 shows a second embodiment. In FIG. 1, FIG.
The same symbols are given to the same members as those in FIG. The sensor housings 10 and 10 'are installed in a bearing body 11' of a direct acting magnetic bearing guide. 15 is an electromagnet, 13
a is a guide.

センサハウジング10,10′は軸受本体11′上の上下対称
な位置に設置されており前記5自由度運動に伴なう4つ
の基板上のリング変化は1番目の実施例の時と同様第6
図のようなパターンになる。従つて同様に変化方向変化
量同時測定が可能である。直動式の磁気軸受なので電磁
石の電流を制御する事によりアクチユエータなしの補正
操作ができる。
The sensor housings 10 and 10 'are installed at vertically symmetrical positions on the bearing main body 11', and the ring changes on the four substrates due to the movement of five degrees of freedom are the same as those in the first embodiment.
The pattern is as shown. Therefore, the change direction change amount simultaneous measurement can be similarly performed. Since it is a direct-acting type magnetic bearing, correction operation without an actuator is possible by controlling the current of the electromagnet.

第8図に3番目の実施例を示す。同図において第1図,
第5図,第7図の部材と同じ部材については同じ表示記
号を記載してある。7′,9′は透明な部材より成る光電
素子基板、6a′〜6d′と8a′〜8d′はそれぞれ光アレイ
センサ7a′〜7d′,9a′〜9d′と45°の角度を成すよう
に基板6′,8′上に並べられた光アレイセンサである。
FIG. 8 shows a third embodiment. In FIG. 1, FIG.
The same symbols are given to the same members as those in FIGS. 5 and 7. 7'and 9'are optoelectronic element substrates made of transparent material, and 6a 'to 6d' and 8a 'to 8d' form an angle of 45 ° with the optical array sensors 7a 'to 7d' and 9a 'to 9d', respectively. The optical array sensors are arranged on the substrates 6'and 8 '.

レーザ発振器1より出射したビームはビームスプリツタ
2で2本に分けられ、透過光はそのまま、反射光はビー
ムベンダ3で透過光に平行にされてアキシコン5,5′を
通過し、断面をリング状に変換されてそれぞれ基板
7′,9′に入射する。入射ビームリングのうち、光アレ
イセンサ7a′〜7d′,9a′〜9d′に当たつた部分は遮ら
れるが、その他の部分は透明な基板7′,9′を通過し、
それぞれ基板6′,8′に入射する。
The beam emitted from the laser oscillator 1 is split into two beams by the beam splitter 2, the transmitted light is unchanged, and the reflected light is made parallel to the transmitted light by the beam bender 3 and passes through the axicons 5 and 5 ', and the cross section is ringed. It is converted into a shape and enters the substrates 7'and 9 ', respectively. The part of the incident beam ring which hits the optical array sensors 7a'-7d ', 9a'-9d' is blocked, while the other parts pass through the transparent substrates 7 ', 9',
It is incident on the substrates 6'and 8 ', respectively.

基板6′,8′上の光アレイセンサ6a′〜6d′,8a′〜9
d′はそれぞれ光アレイセンサ7a′〜7d′,9a′〜9d′と
45°ずらして並べてある。基板7′,9′上の光アレイセ
ンサで影になつたリング部分が考えうるステージ11の運
動の範囲内で光アレイセンサ6a′〜6d′,8a′〜8d′上
には来ず、常に基板7′,9′を通過したリング部分が検
知されるよう対向する光アレイセンサの間隔は十分とつ
てある。従つて1本のリング状ビームを2組の十字状光
アレイセンサで検出する事が可能になり、1〜3番目の
実施例に比較して構造が簡単かつ小型になる。又2〜3
番目の実施例では1つのハウジング内に2枚の基板をy
方向ないしz方向にずらして設置する為、ωX方向の回
転が行なわれた場合この2枚の基板上のリングの変化量
が互いに異なる値をとり、これに他の方向の運動が加わ
つた場合の変化パターンが複雑だつた。この3番目の実
施例では1つのハウジング内の2枚の基板はy方向,z方
向にずれがなくωX方向の回転が行なわれた場合も2枚
の基板上のリングの変化量は等しく、他の方向の運動が
加わつた場合の変化パターンも複雑にはならない。3番
目の実施例における、駆動方向以外の5自由度運動に伴
う基板6′,7′,8′,9′上のリングの変化例を第9図に
示す。基板6′,8′の光アレイセンサの位置は異なるが
リングの変化パターンは第6図と変わらない。
Optical array sensors 6a'-6d ', 8a'-9 on substrates 6', 8 '
d ′ are the optical array sensors 7a ′ to 7d ′, 9a ′ to 9d ′, respectively.
They are arranged at a 45 ° offset. The ring portions shaded by the optical array sensors on the substrates 7'and 9'do not come on the optical array sensors 6a 'to 6d', 8a 'to 8d' within the range of possible movement of the stage 11 and always The optical array sensors facing each other are sufficiently spaced so that the ring portion passing through the substrates 7'and 9'can be detected. Therefore, one ring-shaped beam can be detected by the two sets of cross-shaped optical array sensors, and the structure is simple and compact as compared with the first to third embodiments. Again 2-3
In the second embodiment, two boards are placed in one housing.
If they are rotated in the ω X direction because they are displaced from each other in the z-direction or in the z-direction, the amount of change in the rings on the two substrates will be different from each other, and if the motion in the other direction is added to this. The change pattern of was complicated. In the third embodiment, the two substrates in one housing are not displaced in the y direction and the z direction, and even if they are rotated in the ω X direction, the change amounts of the rings on the two substrates are equal, The change pattern when a motion in another direction is added is not complicated. FIG. 9 shows an example of changes in the rings on the substrates 6 ', 7', 8 ', 9'according to the movement of five degrees of freedom other than the driving direction in the third embodiment. The positions of the optical array sensors on the substrates 6'and 8'are different, but the change pattern of the ring is the same as in FIG.

第10図に4番目の実施例を示す。同図において第1図,
第5図,第7図,第8図の部材と同じ部材については同
じ表示記号を記載してある。17,19はステージ11の進行
方向に45°傾向してハウジングに設置されている受光素
子基板、16,18はそれぞれ受光素子基板17,19に入射した
図中のビームが略反射する位置に受光素子基板17,19と4
5°の角度を成すようハウジングに設置されている受光
素子基板である。
FIG. 10 shows a fourth embodiment. In FIG. 1, FIG.
The same symbols are given to the same members as those in FIGS. 5, 7, and 8. 17, 19 are light receiving element substrates installed in the housing with a tendency of 45 ° in the traveling direction of the stage 11, 16 and 18 are received at positions where the beams incident on the light receiving element substrates 17 and 19 in the figure are substantially reflected. Element boards 17, 19 and 4
It is a light receiving element substrate installed in the housing to form an angle of 5 °.

基板17,19の表面には基板に密着してハーフミラーが設
置してある。ハーフミラーは入射光か透過時になるべく
屈折しないよう十分厚さを小さくしている。基板17,19
上のハーフミラーにそれぞれ入射したビームは2本に分
けられ透過光はそのまま密着した基板上の光アレイセン
サ17a〜17d,19a〜19dに検知される。一方反射光はハー
フミラーに45°傾斜した基板16,18にそれぞれ入射し光
アレイセンサ16a〜16d,18a〜18dに受光される。この場
合の駆動方向以外の5自由度運動に伴う基板16,17,18,1
9上のリングの変化例を第11図に示す。第6図と異な
り、ωY方向及びωZ方向回転時に基板17,19上のリング
の位置は変化しない。しかし、各運動ごとの4板の基板
上のリングの位置の変化パターンはそれぞれ異なるので
1〜3番目の実施例同様変化方向変化量同時測定が可能
である。またωX方向回転時のパターン複雑化もなく、
3番目の実施例よりもさらに装置を小型化でき、ステー
ジ上の小区域のみの変位・角度測定が可能である。
Half mirrors are installed on the surfaces of the substrates 17 and 19 in close contact with the substrates. The thickness of the half mirror is made small enough to prevent refraction when incident light is transmitted. Boards 17, 19
The beams respectively incident on the upper half mirrors are divided into two beams, and the transmitted light is detected as it is by the optical array sensors 17a to 17d and 19a to 19d on the substrate which are in close contact with each other. On the other hand, the reflected light is incident on the substrates 16 and 18 which are inclined by 45 ° on the half mirror, and is received by the optical array sensors 16a to 16d and 18a to 18d. Substrates 16,17,18,1 associated with movement in five degrees of freedom other than the driving direction in this case
Fig. 11 shows an example of changes in the upper ring. Unlike FIG. 6, the positions of the rings on the substrates 17 and 19 do not change during rotation in the ω Y and ω Z directions. However, since the change patterns of the positions of the rings on the four plates are different for each movement, the change direction change amounts can be simultaneously measured as in the first to third embodiments. Also, there is no pattern complication when rotating in the ω X direction,
The apparatus can be made smaller than in the third embodiment, and the displacement and angle can be measured only in a small area on the stage.

1〜2番目の実施例において図ではハウジング内の2枚
の基板はz方向にずらしてあるか、y方向にずらす構成
にしてもかまわない。3番目の実施例においてレーザ発
振器側から見て手前の基板上の光アレイセンサと奥の基
板上の光アレイセンサとのずれ方は手前の光アレイセン
サの影が考えうるステージの運動の範囲内で奥の光アレ
イセンサ上に来ないようなものであればどのような形で
もかまわない。4番目の実施例において進行方向に対し
て45°傾斜しているハーフミラーの反射光を受ける基板
がハウジング側面側や底面側にある構成であつてもよ
い。またハーフミラーをつけずに傾斜基板を全反射ミラ
ーで形成し、反射光を受ける基板の光アレイセンサの並
び方を3番目の実施例のように傾斜基板の光アレイセン
サの並び方とずらす構成にしてもかまわない。全実施例
でアキシコンを用いてビームの断面形状をリング状にし
ているが本発明の範囲内であればビームの断面形状はど
のようなものでもよい。例えば、レーザ光の断面強度分
布は第12図のごとくガウス分布をしているので、ある強
度の点を光アレイセンサで検出するようにすれば記載の
実施例と同様の効果が考られる。基板上の光電素子の配
列は実施例の効果を損なわない範囲で十字以外にもあら
ゆる形が可能である。レーザ発振器等と受光部を逆に設
置してもよい。
In the first and second embodiments, in the drawing, the two substrates in the housing may be displaced in the z direction or may be displaced in the y direction. In the third embodiment, the deviation between the optical array sensor on the front substrate and the optical array sensor on the rear substrate as seen from the laser oscillator side is within the range of stage movement in which the shadow of the front optical array sensor can be considered. Any shape may be used as long as it does not come on the optical array sensor in the back. In the fourth embodiment, the substrate for receiving the reflected light of the half mirror inclined by 45 ° with respect to the traveling direction may be on the side surface side or the bottom surface side of the housing. Further, the inclined substrate is formed by a total reflection mirror without attaching a half mirror, and the arrangement of the optical array sensors on the substrate that receives the reflected light is shifted from the arrangement of the optical array sensors on the inclined substrate as in the third embodiment. I don't care. In all the examples, the cross-sectional shape of the beam is ring-shaped using an axicon, but any cross-sectional shape of the beam may be used within the scope of the present invention. For example, since the cross-sectional intensity distribution of the laser light has a Gaussian distribution as shown in FIG. 12, if the optical array sensor is used to detect a certain intensity point, the same effect as that of the described embodiment can be considered. The arrangement of the photoelectric elements on the substrate can be any shape other than the cross shape as long as the effect of the embodiment is not impaired. You may install a laser oscillator etc. and a light-receiving part in reverse.

〔発明の効果〕〔The invention's effect〕

本発明により、検出対象が基準となる複数ビームに沿っ
てあればどの位置にあっても、複数ビームの出射方向に
垂直な2方向の変位と複数ビームの出射方向に垂直な2
軸と平行な1軸のまわりの回転のすべてを、それぞれ区
別して正確に検出することが、簡易な構成で可能になっ
た。
According to the present invention, even if the detection target is located at any position along a plurality of reference beams, displacements in two directions perpendicular to the emission direction of the plurality of beams and two directions perpendicular to the emission direction of the plurality of beams are performed.
With a simple configuration, it is possible to accurately detect all the rotations about one axis parallel to the axis by distinguishing them from each other.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例の前提となる例の誤差測定装置
の斜視図、第2図は移動体の移動方向に対する他の5自
由度の方向関係を示す座標図、第3図は実施例の前提と
なる例において前記5自由度の運動が行なわれた場合の
受光素子基板上に入射しているリング状レーザ光の位置
変化のパターン図、第4図は実施例の前提となる例の制
御系のブロツク線図、第5図は本発明の1番目の実施例
の斜視図、第6図は1番目の実施例において前記5自由
度の運動が行なわれた場合の受光素子基板上に入射して
いるリング状レーザ光の位置変化のパターン図、第7図
は本発明の2番目の実施例の斜視図、第8図は本発明の
3番目の実施例の斜視図、第9図は3番目の実施例にお
いて前記5自由度の運動が行なわれた場合の受光素子基
板上に入射しているリング状レーザ光の位置変化のパタ
ーン図、第10図は本発明の4番目の実施例の斜視図、第
11図は4番目の実施例において前記5自由度の運動が行
なわれた場合の受光素子基板上に入射しているリング状
レーザ光の位置変化のパターン図、第12図はレーザビー
ムの断面強度分布の1例の説明図である。 図中; 1:レーザ発振器、2:ビームスプリツタ 3:ビームベンダ、4:平行プリズム 5:アキシコン 6,7,8,9,6′,7′,8′,9′:受光素子基板 6a〜6d,7a〜7d,8a〜8d,9a〜9d,6a′〜6d′,7a′〜7d′,
8a′〜8d′,9a′〜9d′:光アレイセンサ 10,10′:センサハウジング 11:リニアステージ本体 12:リニアモータ 13,13′:静圧軸受ガイド 13a:磁気軸受ガイド 14,14′:微動アクチユエータ、15:電磁石 16,17,18,19:受光素子基板 16a〜16d,17a〜17d,18a〜18d,19a〜19d:光アレイセンサ である。
FIG. 1 is a perspective view of an error measuring device as an example which is a premise of an embodiment of the present invention, FIG. 2 is a coordinate diagram showing a directional relationship of other 5 degrees of freedom with respect to a moving direction of a moving body, and FIG. In the example which is a premise of the example, a pattern diagram of the position change of the ring-shaped laser light incident on the light receiving element substrate when the movement of 5 degrees of freedom is performed, and FIG. 4 is a premise example of the embodiment FIG. 5 is a block diagram of the control system of FIG. 5, FIG. 5 is a perspective view of the first embodiment of the present invention, and FIG. 6 is a light receiving element substrate in the case where the movement of 5 degrees of freedom is performed in the first embodiment. FIG. 7 is a perspective view of the second embodiment of the present invention, FIG. 8 is a perspective view of the third embodiment of the present invention, and FIG. 9 is a perspective view of the third embodiment of the present invention. The figure shows that the light is incident on the light receiving element substrate in the case where the movement of 5 degrees of freedom is performed in the third embodiment. Position pattern diagram of changes of the ring-shaped laser beam, FIG. 10 is a perspective view of a fourth embodiment of the present invention, the
FIG. 11 is a pattern diagram of the position change of the ring-shaped laser light incident on the light-receiving element substrate when the movement of 5 degrees of freedom is performed in the fourth embodiment, and FIG. 12 is the sectional intensity of the laser beam. It is an explanatory view of an example of distribution. In the figure; 1: laser oscillator, 2: beam splitter 3: beam bender, 4: parallel prism 5: axicon 6,7,8,9,6 ', 7', 8 ', 9': light receiving element substrate 6a ~ 6d, 7a to 7d, 8a to 8d, 9a to 9d, 6a 'to 6d', 7a 'to 7d',
8a 'to 8d', 9a 'to 9d': Optical array sensor 10,10 ': Sensor housing 11: Linear stage body 12: Linear motor 13,13': Hydrostatic bearing guide 13a: Magnetic bearing guide 14,14 ': Micro-actuator, 15: electromagnet 16,17,18,19: light-receiving element substrate 16a to 16d, 17a to 17d, 18a to 18d, 19a to 19d: optical array sensor.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】ビーム基準型の変位・回転検出方法におい
て、基準となる互いに平行な複数のビームを形成し、該
複数ビームの対応するいずれかを異なる位置にて受光す
る複数の受光手段を配置し、該複数の受光手段の出力の
組合せにより少なくとも前記複数ビームの出射方向に垂
直な2方向の変位と前記複数ビームの出射方向に垂直な
2軸と該出射方向に平行な1軸のまわりの回転をそれぞ
れ区別して検出をする事を特徴とする変位・回転検出方
法。
1. A beam reference type displacement / rotation detection method, wherein a plurality of parallel reference beams are formed, and a plurality of light receiving means for receiving corresponding ones of the plurality of beams at different positions are arranged. However, due to the combination of the outputs of the plurality of light receiving means, at least two displacements perpendicular to the emission direction of the plurality of beams and two axes perpendicular to the emission direction of the plurality of beams and one axis parallel to the emission direction are generated. Displacement / rotation detection method characterized by detecting rotations separately.
【請求項2】前記受光手段は2次元状に受光素子が配列
されている2次元状受光手段であることを特徴とする特
許請求の範囲第1項に記載の変位・回転検出方法。
2. The displacement / rotation detecting method according to claim 1, wherein the light receiving means is a two-dimensional light receiving means in which light receiving elements are arranged two-dimensionally.
【請求項3】前記複数のビームは4本存在し、前記複数
の受光手段は光の進行方向に垂直な方向と平行な方向に
離れて前記4本のビーム夫々を受光するように各々固定
配置されていることを特徴とする特許請求の範囲第1項
に記載の変位・回転検出方法。
3. A plurality of the plurality of beams are present, and the plurality of light receiving means are respectively fixedly arranged so as to receive the respective four beams apart from each other in a direction parallel to a direction perpendicular to a traveling direction of light. The displacement / rotation detection method according to claim 1, wherein the displacement / rotation detection method is performed.
【請求項4】前記複数のビームは2本存在し、前記複数
の受光手段は各ビームを分離して2つの受光手段が受光
するように配置されていることを特徴とする特許請求の
範囲第1項に記載の変位・回転検出方法。
4. The plurality of beams are present, and the plurality of light receiving means are arranged so that the respective light beams are separated by the two light receiving means. The displacement / rotation detection method according to item 1.
【請求項5】ビーム基準型の変位・回転検出方法を用い
て物体の姿勢制御を行なう装置において、基準となる互
いに平行な複数のビームを形成する光源手段と、該複数
ビームの対応するいずれかを異なる位置にて受光する複
数の受光手段を有し、前記複数の受光手段と光源手段の
一方を前記物体上に配置し、更に前記ビームを照射され
た前記複数の受光手段からの出力の組合せにより少なく
とも前記複数ビームの出射方向に垂直な2方向の変位と
前記複数ビームの出射方向に垂直な2軸と該出射方向に
平行な1軸のまわりの回転をそれぞれ区別して検出をす
る手段と、該検出の結果に基づいて前記物体の姿勢を制
御する手段とを有する事を特徴とする姿勢制御装置。
5. An apparatus for controlling an attitude of an object using a beam reference type displacement / rotation detection method, and light source means for forming a plurality of parallel reference beams, and any one of the plurality of beams. A plurality of light receiving means for receiving light at different positions, one of the plurality of light receiving means and the light source means is arranged on the object, and a combination of outputs from the plurality of light receiving means irradiated with the beam Means for detecting at least two displacements perpendicular to the emission direction of the plurality of beams, rotation about two axes perpendicular to the emission direction of the plurality of beams, and rotation about one axis parallel to the emission direction, respectively. A posture control device, comprising means for controlling the posture of the object based on the result of the detection.
JP60230508A 1985-10-15 1985-10-15 Displacement / rotation detection method and attitude control device Expired - Fee Related JPH0715367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60230508A JPH0715367B2 (en) 1985-10-15 1985-10-15 Displacement / rotation detection method and attitude control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60230508A JPH0715367B2 (en) 1985-10-15 1985-10-15 Displacement / rotation detection method and attitude control device

Publications (2)

Publication Number Publication Date
JPS6288904A JPS6288904A (en) 1987-04-23
JPH0715367B2 true JPH0715367B2 (en) 1995-02-22

Family

ID=16908855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60230508A Expired - Fee Related JPH0715367B2 (en) 1985-10-15 1985-10-15 Displacement / rotation detection method and attitude control device

Country Status (1)

Country Link
JP (1) JPH0715367B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3814466A1 (en) 1988-04-28 1989-11-09 Busch Dieter & Co Prueftech METHOD AND DEVICE FOR DETERMINING THE RELATIVE POSITION OF A REFERENCE AXIS OF AN OBJECT WITH REGARD TO A REFERENCE BEAM, ESPECIALLY A LASER BEAM
US6337742B2 (en) 1988-04-28 2002-01-08 Pruftechnik Dieter Busch Ag Device for ascertaining the relative position of a reference axis of an object relative to a reference beam, in particular a laser beam
JP2011013095A (en) * 2009-07-02 2011-01-20 Waseda Univ Displacement measuring device and displacement measuring method
DE102009060843A1 (en) 2009-12-29 2011-06-30 Prüftechnik Dieter Busch AG, 85737 Correction of aberrations in alignment systems with several measurement planes arranged one behind the other in the beam path

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4526433Y1 (en) * 1966-10-27 1970-10-15
JPS57178101A (en) * 1981-04-03 1982-11-02 Philips Nv Detector for position of body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4526433Y1 (en) * 1966-10-27 1970-10-15
JPS57178101A (en) * 1981-04-03 1982-11-02 Philips Nv Detector for position of body

Also Published As

Publication number Publication date
JPS6288904A (en) 1987-04-23

Similar Documents

Publication Publication Date Title
JP3203719B2 (en) Exposure apparatus, device manufactured by the exposure apparatus, exposure method, and device manufacturing method using the exposure method
US7502127B2 (en) Sensor device and stage device
Gao et al. Precision measurement of two-axis positions and tilt motions using a surface encoder
KR20000070669A (en) Interferometer system and lithographic apparatus comprising such a system
US4977361A (en) X-Y addressable workpiece positioner and mask aligner using same
JPS5916202B2 (en) Measuring and positioning device using interference fringes
JP4050459B2 (en) Device for detecting the position of two objects
EP0983481A2 (en) Two piece mirror arrangement for interferometrically controlled stage
US5698843A (en) Apparatus for measuring motion errors of five degrees of freedom along guideway
US4425537A (en) X-Y Addressable workpiece positioner and mask aligner using same
US6351313B1 (en) Device for detecting the position of two bodies
JPH0715367B2 (en) Displacement / rotation detection method and attitude control device
GB2170005A (en) Interferometric multicoordinate measuring device
JPH11344305A (en) Position detecting apparatus
JPS62150106A (en) Apparatus for detecting position
JPS63100303A (en) Method and device for positioning 1st body and 2nd body
JPH085767A (en) Drive table
JPH0672769B2 (en) Photoelectric detection method
JP3204253B2 (en) Exposure apparatus, device manufactured by the exposure apparatus, exposure method, and method of manufacturing device using the exposure method
JP2698446B2 (en) Interval measuring device
JPH07332954A (en) Method and apparatus for measuring displacement and inclination
JPS60173837A (en) Controlling method of positioning of gap by combination diffraction grating
JP2000106345A (en) Aligner, device manufactured by the same, exposure method, and device manufacturing method using the same
JPS60203804A (en) Measuring instrument of straightness
JP2005345329A (en) Length-measuring laser interferometer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees