JPH02266702A - Detector for azimuth and elevation angle of parabolic antenna - Google Patents

Detector for azimuth and elevation angle of parabolic antenna

Info

Publication number
JPH02266702A
JPH02266702A JP8846989A JP8846989A JPH02266702A JP H02266702 A JPH02266702 A JP H02266702A JP 8846989 A JP8846989 A JP 8846989A JP 8846989 A JP8846989 A JP 8846989A JP H02266702 A JPH02266702 A JP H02266702A
Authority
JP
Japan
Prior art keywords
angle
rotation
parabolic antenna
azimuth
attack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8846989A
Other languages
Japanese (ja)
Other versions
JPH0812968B2 (en
Inventor
Kazuhito Endo
和仁 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP8846989A priority Critical patent/JPH0812968B2/en
Publication of JPH02266702A publication Critical patent/JPH02266702A/en
Publication of JPH0812968B2 publication Critical patent/JPH0812968B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

PURPOSE:To attain the improvement of the display accuracy of an azimuth angle and the reduction of a cost regardless of the height of the axis of an elevation angle by using the deflection of light in the measurement of the azimuth angle. CONSTITUTION:The light from a laser oscillator 6 housed in a rotational mechanism part 2 directly becomes a deflecting beam after passing a deflector 7, and is controlled so as to irradiate the intermediate part between two diodes of an optical detector 9 by a motor 15. In order words, control such that a half mirror 10 fixed on the ground can be always irradiated at right angles with an optical beam is applied even when the axis of the elevation angle of an antenna is moved, and an angle detector 17 directly connected to a movable bearing for attack angle detects the attacked angle of the main reflecting mirror 1 of the antenna. Namely, linearly deflected light passing the half mirror 10 is separated to two linearly deflected light by a deflection prism 11, and projects an optical detector 12, respectively, and a rotational mechanism part 3 is turned by a motor 16 following in the deflecting direction of the optical beam, and an angle detector 18 detects the azimuth angle of the main reflecting mittor 1. In such a way, it is possible to improve the display accuracy of the azimuth angle regardless of the height of the axis of the attack angle.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、パラボラアンテナの方位及び迎角を高精度に
検出するためのパラボラアンテナの方位及び迎角検出装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a parabolic antenna azimuth and attack angle detection device for detecting the azimuth and attack angle of a parabolic antenna with high precision.

(従来の技術) ところで、電波天文学やVLBI(超長基線電波干渉計
)の分野では、電波源の観測周波数が上っており、さら
に微弱な電波源を観測する要請等により、パラボラアン
テナの大口径化が進行している。
(Prior art) By the way, in the fields of radio astronomy and VLBI (Very Long Baseline Interferometer), the observation frequency of radio sources is increasing, and the need to observe even weaker radio sources has led to the increase in the size of parabolic antennas. Caliberization is progressing.

このようなパラボラアンテナでは、アンテナのビーム軸
を高精度に電波源へ指向させる必要があり、従来の衛星
通信で使用されていた角度検出方式より1桁以上も精密
な角度検出法を必要としている。
Such parabolic antennas require the beam axis of the antenna to be directed toward the radio wave source with high precision, requiring an angle detection method that is more than an order of magnitude more precise than the angle detection method used in conventional satellite communications. .

この要請を満すパラボラアンテナの方位及び迎角検出装
置としては、三菱電機枝幹第56巻第7号第15頁に示
すようないわゆるコリメータータワ一方式の装置がある
。すなわち、この装置は、パラボラアンテナの中央部に
コリメータータワーを立設して、該コリメータータワー
の最上部に方位−迎角マウントのオートコリメータ装置
を設け、該オートコリメータ装置によりパラボラアンテ
ナの主反射鏡の背面に取り付けられた平面反射鏡の位置
を検出するようにしている。この位置検出により、パラ
ボラアンテナの方位及び迎角を検出するようにしている
As a parabolic antenna azimuth and angle of attack detection device that satisfies this requirement, there is a so-called collimator tower one-type device as shown in Mitsubishi Electric Ekakan Vol. 56, No. 7, Page 15. That is, in this device, a collimator tower is erected in the center of a parabolic antenna, an autocollimator device with an azimuth-angle-of-attack mount is provided on the top of the collimator tower, and the autocollimator device allows the main body of the parabolic antenna to be The position of the plane reflector attached to the back of the reflector is detected. Through this position detection, the azimuth and angle of attack of the parabolic antenna are detected.

また、従来のパラボラアンテナの方位及び迎角検出装置
の他の例を第4図に示す、すなわち、こものでは方位角
度検出器19及び迎角角度検出器20が、それぞれ方位
角度及び迎角角度を変更する回動軸に直接取り付けられ
ており、回動軸の回動によるパラボラアンテナの回動角
度を直接検出するようにしている。
Another example of the conventional parabolic antenna azimuth and angle of attack detection device is shown in FIG. It is directly attached to the rotation axis that changes the rotation axis, and the rotation angle of the parabolic antenna due to the rotation of the rotation axis is directly detected.

(発明が解決しようとする課題) しかしながら、上述したコリメータータワ一方式ではパ
ラボラアンテナの迎角軸が高くなった時、方位角の表示
精度が劣化するという欠点がある。
(Problems to be Solved by the Invention) However, the above-mentioned one-type collimator tower has a drawback in that when the angle of attack axis of the parabolic antenna becomes high, the display accuracy of the azimuth angle deteriorates.

また、さらに、パラボラアンテナのコリメータータワー
を立設しなければならずこの立設のための費用のコスト
に占める割合が大となる欠点もある。
In addition, there is a further drawback that the collimator tower of the parabolic antenna must be erected, and the cost for this erecting takes up a large proportion of the cost.

また、方位角度検出器19及び迎角角度検出器20を回
動軸に直接取り付けたものでは、主反射鏡と各角度検出
器19.20の間に多くの構造物が介在しており、構造
物の熱変形や自重、風圧等による弾性変形により、実際
に検出したい主反射鏡の指向角度と角度検出器の間に誤
差が生ずるという欠点がある。特にパラボラアンテナの
口径が大きくなると、梢逍体も大型になって誤差も大き
くなる傾向にある。
In addition, in the case where the azimuth angle detector 19 and the angle of attack detector 20 are directly attached to the rotation axis, many structures are interposed between the main reflecting mirror and each angle detector 19, 20, and the structure There is a drawback that an error occurs between the directivity angle of the main reflecting mirror to be actually detected and the angle detector due to thermal deformation of the object, its own weight, elastic deformation due to wind pressure, etc. In particular, as the diameter of the parabolic antenna becomes larger, the treetop body also becomes larger and the error tends to increase.

本発明は、上記欠点を解消することを課題とするもので
あって、迎角軸の高さに関係なく方位角の表示精度を向
上させることができ、かつ、コストを低減することがで
きる一方、構造物の熱変形や自重等による弾性変形等に
よる測定誤差の発生を抑制することができるパラボラア
ンテナの方位及び迎角検出装置を提供することを目的と
する。
An object of the present invention is to solve the above-mentioned drawbacks, and it is possible to improve the display accuracy of the azimuth angle regardless of the height of the angle of attack axis, and to reduce the cost. An object of the present invention is to provide a parabolic antenna azimuth and angle of attack detection device that can suppress the occurrence of measurement errors due to thermal deformation of a structure, elastic deformation due to its own weight, etc.

(課題を解決するための手段) 上記課題は、パラボラアンテナの方位及び迎角を調整す
る際に前記パラボラアンテナを各方向に回動させその回
動角を検出してパラボラアンテナの方位及び迎角を検出
するようになしたパラボラアンテナの方位及び迎角検出
装置において、反射体と、第1及び第2の回動機構部と
、第1及び第2の回動駆動手段と、第1及び第2の回動
角度検出器とを備えてなり、 前記反射体は地上に固定されレーザ光の反射及び透過を
し、 前記第1の回動ffi楕部は、前記パラボラアンテナの
背面に設けられた第1の軸受に、迎角角度方向に回動自
由に支持され、この第1の回動機構部にはレーザ光を発
振するレーザ発振器と、該レーザ光を特定の方向に偏光
させる偏光手段と、前記レーザ発振器からのレーザ光が
前記反射体を介して入力される第1の受光素子とが取付
けられており、 前記第1の回動駆動手段は、前記第1の受光素子に入力
されるレーザ光の光量に基づいて前記パラボラアンテナ
の前記第1の軸受まわりの回動角度を演算して前記第1
の回動機構部を当該回動角度だけ前記パラボラアンテナ
の回動方向と逆方向に回動駆動させ、 前記第1の回動角度検出器は前記第1の回動駆動手段に
付設されてその回動駆動角度を検出し、前記第2の回動
61#1部は、前記パラボラアンテナの背面に設けられ
た第2の軸受に、方位角度方向に回動自由に支持され、
この第2の回動機構部、には前記レーザ発振器からのレ
ーザ光が前記反射体を介して入力される偏光プリズムと
、該偏光プリズムから出力されるレーザ光が入力される
第2の受光素子とが取付けてあり、 前記第2の回動駆動手段は、前記第2の受光素子に入力
されるレーザ光の光量に基づいて前記パラボラアンテナ
の前記第2の軸受まわりの回動角度を演算して前記第2
の回動機構部を当該回動角度だけ前記パラボラアンテナ
の回動力向と逆方向に回動駆動させ、 前記第2の回動角度検出器は前記第2の回動駆動手段に
付設されてその回動駆動角度を検出することにより解決
することができる。
(Means for Solving the Problem) The above problem is achieved by rotating the parabolic antenna in each direction and detecting the rotation angle when adjusting the azimuth and angle of attack of the parabolic antenna. A parabolic antenna azimuth and angle of attack detection device configured to detect a parabolic antenna, which includes a reflector, first and second rotation mechanism parts, first and second rotation drive means, and first and second rotation drive means. 2 rotation angle detector, the reflector is fixed on the ground and reflects and transmits the laser beam, and the first rotation FFI ellipse is provided on the back of the parabolic antenna. It is supported by a first bearing so as to be freely rotatable in the direction of the angle of attack, and this first rotating mechanism includes a laser oscillator that oscillates a laser beam, and a polarizing means that polarizes the laser beam in a specific direction. , a first light-receiving element into which the laser light from the laser oscillator is input via the reflector is attached, and the first rotation driving means is attached with a first light-receiving element through which the laser light from the laser oscillator is input into the first light-receiving element. The rotation angle of the parabolic antenna around the first bearing is calculated based on the amount of laser light, and
The rotation mechanism is rotated by the rotation angle in a direction opposite to the rotation direction of the parabolic antenna, and the first rotation angle detector is attached to the first rotation drive means and A rotation drive angle is detected, and the second rotation 61#1 portion is supported by a second bearing provided on the back surface of the parabolic antenna to freely rotate in the azimuth angle direction,
The second rotating mechanism includes a polarizing prism into which the laser beam from the laser oscillator is input via the reflector, and a second light receiving element into which the laser beam output from the polarizing prism is input. is attached, and the second rotation driving means calculates a rotation angle of the parabolic antenna around the second bearing based on the amount of laser light input to the second light receiving element. The second
The rotation mechanism is rotated by the rotation angle in a direction opposite to the rotation direction of the parabolic antenna, and the second rotation angle detector is attached to the second rotation drive means and This problem can be solved by detecting the rotational drive angle.

(実施例) 以下に図面を参照して本発明の一実施例について説明す
る。
(Example) An example of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例の全体構成を示す図である。FIG. 1 is a diagram showing the overall configuration of an embodiment of the present invention.

全体はアンテナ1の背面に迎角角度方向に可動する本発
明の第1の軸受としての軸受4を介して取付けられた第
1の回転機構部2と、大地に対して方位軸方向に回転す
る本発明の第2の軸受としての軸受5を介して取付けら
れた第2の回転機構部3と、これらを目的方向に回転さ
せるための信号を発生する差動増幅器13および14、
本発明の第1及び第2の回動駆動手段としての駆動モー
タ15および16と上下の回転機構部の回転角度を検出
するための本発明の第1及び第2の回動角度検出器とし
ての高精度角度検出器17および18から構成されてい
る。
The entire structure includes a first rotation mechanism section 2 attached to the back surface of the antenna 1 via a bearing 4 as a first bearing of the present invention that is movable in the direction of the angle of attack, and a first rotation mechanism section 2 that rotates in the direction of the azimuth axis with respect to the ground. A second rotation mechanism unit 3 attached via a bearing 5 as a second bearing of the present invention, and differential amplifiers 13 and 14 that generate signals for rotating them in the desired direction.
The drive motors 15 and 16 as the first and second rotation drive means of the present invention and the first and second rotation angle detectors of the present invention for detecting the rotation angle of the upper and lower rotation mechanism parts. It consists of high-precision angle detectors 17 and 18.

第1の回転機構部2に収容されたレーザ発振器6からの
光は本発明の偏光手段としての偏光子7を通って完全な
直線偏光ビームとなる。このビームは半透鏡8を通った
後、大地に固定された本発明の反射体としての半透Sf
i 10に達し、約半分のパワーが元の方向へ反射して
もどる。この反射光は再び第1の回転機構部2へもどり
半透鏡8で直角に曲げられ、光検出器9を照射する。
Light from a laser oscillator 6 housed in the first rotation mechanism section 2 passes through a polarizer 7 as a polarizing means of the present invention and becomes a completely linearly polarized beam. After passing through the semi-transparent mirror 8, this beam passes through the semi-transparent Sf as a reflector of the present invention fixed to the ground.
i 10, and about half of the power is reflected back in the original direction. This reflected light returns to the first rotating mechanism section 2 again, is bent at a right angle by a semi-transparent mirror 8, and illuminates a photodetector 9.

この光検出器9は2分割光ダイオード出力1゜P、2で
構成されている。今、光ビームの強度分布が釣鐘形(通
常はガラス形)であれば、それぞれの光ダイオードp 
ell p、2の出力は第2図に示すようになる。すな
わち光ビームの中心と光ダイオードp el+ p、2
の中心が一致した時にそのダイオード出力は最大となる
。2つのダイオードP、1゜Pe2の位置はわずかにず
れているから、それぞれの最大出力が得られる光ビーム
の位置がずれている。そして、2つの光ダイオードの出
力を差動増幅器13で引算すると、その出力は光ビーム
が2つのダイオードp 、、、 p、2の中間を照射し
ている時に出力はOVとなり、中間点からのずれに比例
した電圧となる。
This photodetector 9 consists of a two-split photodiode with outputs 1°P and 2. Now, if the intensity distribution of the light beam is bell-shaped (usually glass-shaped), each photodiode p
The output of ell p,2 is as shown in FIG. That is, the center of the light beam and the photodiode p el+ p,2
When the centers of the diode coincide with each other, the diode output becomes maximum. Since the positions of the two diodes P and 1° Pe2 are slightly shifted, the positions of the respective light beams that produce the maximum output are shifted. Then, when the outputs of the two photodiodes are subtracted by the differential amplifier 13, the output becomes OV when the light beam is irradiating the middle of the two diodes p,,,p,2, and the output is OV from the middle point. The voltage is proportional to the deviation.

この電圧を適当な制御フィルタを介して、駆動モータ1
5に供給すると、光ビームはいつでも2つのダイオード
の中間を照射するように制御される。すなわちアンテナ
の迎角軸が動いても、光ビームが大地に固定されな半透
鏡10をいつでも直角に照射するように制御される。従
って迎角用可動軸受に直結された高精度角度検出器17
の示す角度はアンテナの主反射鏡が大地に対して回動し
た角度に一致する。
This voltage is applied to the drive motor 1 through an appropriate control filter.
5, the light beam is controlled to illuminate the middle of the two diodes at any time. That is, even if the angle of attack axis of the antenna moves, the light beam is controlled so that it always irradiates the semi-transparent mirror 10, which is not fixed to the ground, at right angles. Therefore, the high-precision angle detector 17 is directly connected to the movable bearing for the angle of attack.
The angle indicated by corresponds to the angle at which the main reflector of the antenna rotates with respect to the ground.

一方、方位軸の角度を測定するには光の偏光を利用する
On the other hand, the polarization of light is used to measure the angle of the azimuth axis.

すなわち、半透鏡10を通過した直線偏向光は偏光プリ
ズム11で2つの直線偏向光に分離されて、それぞれ光
検出器12を照射する。ここで、偏光プリズム11を固
定しておき、入射する光ビームの偏向方向を回転させた
時の光検出器12を構成する2つのダイオードP al
+ P a2の出力を第3図に示す、偏光プリズム11
の基準軸に対する入力光ビームの偏光方向をθとすれば
、2つのダイオードの出力V、、、V、2は、 V、l=K (1+CO32θ)又は、V、2=K (
I  CO32θ)となる。
That is, the linearly polarized light that has passed through the semi-transparent mirror 10 is separated into two linearly polarized lights by the polarizing prism 11, and each of them illuminates the photodetector 12. Here, when the polarizing prism 11 is fixed and the polarization direction of the incident light beam is rotated, the two diodes P al constituting the photodetector 12
+ P a2 output is shown in FIG. 3, polarizing prism 11
If the polarization direction of the input optical beam with respect to the reference axis is θ, the outputs of the two diodes, V, , V,2, are:
I CO32θ).

なお、Kは光ダイオードの検出感度によって定まる定数
である。そして、これらの出力を■、1゜■、2を差動
増幅器14で引算するとその出力Vは、V=2KCO3
2θなる。
Note that K is a constant determined by the detection sensitivity of the photodiode. Then, when these outputs are subtracted by ■, 1°■, and 2 by the differential amplifier 14, the output V is V=2KCO3
It becomes 2θ.

すなわち、θが45°、135°、225°および31
5°で出力VはOVとなる。
That is, when θ is 45°, 135°, 225° and 31
At 5°, the output V becomes OV.

この電圧Vを適当な制御増幅器を通して駆動モータ16
へ供給すると第2の回転機構部3は、光ビームの偏向の
方向に追従して回動する。すなわち、パラボラアンテナ
の方位軸が回転して第1の回転機構部2が回転すると第
2の回転機構部3も追従して回転する。従って、第2の
回転機構部3に取付けられた高精度角度検出器18の表
す角度は、アンテナの主反射鏡が大地に対してなす角度
に一致する。
This voltage V is passed through a suitable control amplifier to the drive motor 16.
When the light beam is supplied to the light beam, the second rotation mechanism section 3 rotates following the direction of the deflection of the light beam. That is, when the azimuth axis of the parabolic antenna rotates and the first rotation mechanism section 2 rotates, the second rotation mechanism section 3 also rotates to follow. Therefore, the angle represented by the high-precision angle detector 18 attached to the second rotation mechanism 3 corresponds to the angle that the main reflecting mirror of the antenna makes with respect to the ground.

ここで、第3図に示すように、方位系の追従ループには
安定点が2箇所存在するが、第1の回転機構部2に粗角
度検出器等を付けて、あらかじめ決められた一方の安定
点のみに追従させるようにしている。この処理はマイク
ロ・プロセッサ等を用いた角度表示回路の処理ルーチン
で実行するようにしである。
Here, as shown in Fig. 3, there are two stable points in the tracking loop of the azimuth system. It is made to follow only stable points. This processing is executed by a processing routine of an angle display circuit using a microprocessor or the like.

また、本実施例では、方位角度の測定には光の偏光を用
いている。ここで、一般に光が大気中に伝搬する時、光
ビームの偏光面は屈折率変動や大気中の塵による散乱に
よって変動する。本実施例では、伝搬距離が数10mの
程度となり、屈折率変動より散乱の影響が大きくなる。
Furthermore, in this embodiment, polarized light is used to measure the azimuth angle. Generally, when light propagates through the atmosphere, the plane of polarization of the light beam changes due to changes in the refractive index and scattering by dust in the atmosphere. In this example, the propagation distance is on the order of several tens of meters, and the influence of scattering is greater than that of refractive index fluctuation.

したがって、光ビームの伝搬路に塵よけの簡単なダクト
を設けて、散乱変動の抑制を図っている。
Therefore, a simple duct for dust protection is provided in the propagation path of the light beam to suppress scattering fluctuations.

(発明の効果) 以上に説明したように、本発明によれば、迎角軸の高さ
に関係なく方位角の表示精度を向上させることができ、
かつ、コストを低減することができる一方、横遺物の熱
変形や自重等による弾性変形等による測定誤差の発生を
抑制することができるという効果がある。
(Effects of the Invention) As explained above, according to the present invention, the display accuracy of the azimuth angle can be improved regardless of the height of the angle of attack axis.
In addition, it is possible to reduce costs, and at the same time, it is possible to suppress the occurrence of measurement errors due to thermal deformation of the horizontal object, elastic deformation due to its own weight, etc.

発振器、7・・・偏光子、8・・・半透鏡、9・・・光
検出器、10・・・半透鏡、11・・・偏光プリズム、
12・・・光検出器、13.14・・・差動増幅器、1
5.16・・・駆動モータ、17.18・・・高精度角
度検出器。
Oscillator, 7... Polarizer, 8... Semi-transparent mirror, 9... Photodetector, 10... Semi-transparent mirror, 11... Polarizing prism,
12... Photodetector, 13.14... Differential amplifier, 1
5.16... Drive motor, 17.18... High precision angle detector.

Claims (1)

【特許請求の範囲】 パラボラアンテナの方位及び迎角を調整する際に前記パ
ラボラアンテナを各方向に回動させその回動角を検出し
てパラボラアンテナの方位及び迎角を検出するようにな
したパラボラアンテナの方位及び迎角検出装置において
、 反射体と、第1及び第2の回動機構部と、第1及び第2
の回動駆動手段と、第1及び第2の回動角度検出器とを
備えてなり、 前記反射体は地上に固定されレーザ光の反射及び透過を
し、 前記第1の回動機構部は、前記パラボラアンテナの背面
に設けられた第1の軸受に、迎角角度方向に回動自由に
支持され、この第1の回動機構部にはレーザ光を発振す
るレーザ発振器と、該レーザ光を特定の方向に偏光させ
る偏光手段と、前記レーザ発振器からのレーザ光が前記
反射体を介して入力される第1の受光素子とが取付けら
れており、 前記第1の回動駆動手段は、前記第1の受光素子に入力
されるレーザ光の光量に基づいて前記パラボラアンテナ
の前記第1の軸受まわりの回動角度を演算して前記第1
の回動機構部を当該回動角度だけ前記パラボラアンテナ
の回動方向と逆方向に回動駆動させ、 前記第1の回動角度検出器は前記第1の回動駆動手段に
付設されてその回動駆動角度を検出し、前記第2の回動
機構部は、前記パラボラアンテナの背面に設けられた第
2の軸受に、方位角度方向に回動自由に支持され、この
第2の回動機構部には前記レーザ発振器からのレーザ光
が前記反射体を介して入力される偏光プリズムと、該偏
光プリズムから出力されるレーザ光が入力される第2の
受光素子とが取付けてあり、 前記第2の回動駆動手段は、前記第2の受光素子に入力
されるレーザ光の光量に基づいて前記パラボラアンテナ
の前記第2の軸受まわりの回動角度を演算して前記第2
の回動機構部を当該回動角度だけ前記パラボラアンテナ
の回動方向と逆方向に回動駆動させ、 前記第2の回動角度検出器は前記第2の回動駆動手段に
付設されてその回動駆動角度を検出することを特徴とす
るパラボラアンテナの方位及び迎角検出装置。
[Claims] When adjusting the azimuth and angle of attack of the parabolic antenna, the parabolic antenna is rotated in each direction and the angle of rotation is detected to detect the azimuth and angle of attack of the parabolic antenna. In the azimuth and angle of attack detection device for a parabolic antenna, a reflector, first and second rotation mechanisms, and first and second rotation mechanisms are provided.
and a first and second rotation angle detector, the reflector is fixed on the ground and reflects and transmits laser light, and the first rotation mechanism section includes: , is supported by a first bearing provided on the back surface of the parabolic antenna so as to be rotatable in the direction of the angle of attack, and the first rotation mechanism includes a laser oscillator that oscillates a laser beam, and a laser oscillator that oscillates the laser beam. A polarizing means for polarizing the laser light in a specific direction, and a first light receiving element into which the laser light from the laser oscillator is input via the reflector are attached, and the first rotation driving means: The rotation angle of the parabolic antenna around the first bearing is calculated based on the amount of laser light input to the first light receiving element, and the first
The rotation mechanism is rotated by the rotation angle in a direction opposite to the rotation direction of the parabolic antenna, and the first rotation angle detector is attached to the first rotation drive means and The rotation drive angle is detected, and the second rotation mechanism is supported by a second bearing provided on the back surface of the parabolic antenna to freely rotate in the azimuth angle direction. A polarizing prism into which the laser beam from the laser oscillator is input via the reflector, and a second light receiving element into which the laser beam output from the polarizing prism is input are attached to the mechanism part, The second rotation driving means calculates the rotation angle of the parabolic antenna around the second bearing based on the amount of laser light input to the second light receiving element, and calculates the rotation angle of the parabolic antenna around the second bearing.
The rotation mechanism section is rotated by the rotation angle in a direction opposite to the rotation direction of the parabolic antenna, and the second rotation angle detector is attached to the second rotation drive means and is connected to the second rotation drive means. A parabolic antenna azimuth and angle of attack detection device characterized by detecting a rotational drive angle.
JP8846989A 1989-04-07 1989-04-07 Parabolic antenna azimuth and angle of attack detector Expired - Lifetime JPH0812968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8846989A JPH0812968B2 (en) 1989-04-07 1989-04-07 Parabolic antenna azimuth and angle of attack detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8846989A JPH0812968B2 (en) 1989-04-07 1989-04-07 Parabolic antenna azimuth and angle of attack detector

Publications (2)

Publication Number Publication Date
JPH02266702A true JPH02266702A (en) 1990-10-31
JPH0812968B2 JPH0812968B2 (en) 1996-02-07

Family

ID=13943632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8846989A Expired - Lifetime JPH0812968B2 (en) 1989-04-07 1989-04-07 Parabolic antenna azimuth and angle of attack detector

Country Status (1)

Country Link
JP (1) JPH0812968B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101634861A (en) * 2008-07-21 2010-01-27 富士康(昆山)电脑接插件有限公司 Antenna regulating equipment
JP2018023063A (en) * 2016-08-05 2018-02-08 三菱電機株式会社 Antenna orientation direction control device and system, antenna system, and control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101634861A (en) * 2008-07-21 2010-01-27 富士康(昆山)电脑接插件有限公司 Antenna regulating equipment
JP2018023063A (en) * 2016-08-05 2018-02-08 三菱電機株式会社 Antenna orientation direction control device and system, antenna system, and control device

Also Published As

Publication number Publication date
JPH0812968B2 (en) 1996-02-07

Similar Documents

Publication Publication Date Title
JP2510457B2 (en) Michelson interferometer
US8724108B2 (en) Photoelectric autocollimation method and apparatus based on beam drift compensation
US8804131B2 (en) Optical angle-measuring device with combined radial-circular grating
US20230032319A1 (en) Two-dimensional Photoelectric Autocollimation Method and Device Based on Wavefront Measurement and Correction
US5838430A (en) Dual beam laser device for linear and planar alignment
CN114812392B (en) Laser six-degree-of-freedom motion error synchronous measurement system
EP2722705B1 (en) Optical assembly and laser alignment apparatus
JP2603429B2 (en) Tracking laser interferometer
US3994588A (en) Detection of angular deflection
JPH02266702A (en) Detector for azimuth and elevation angle of parabolic antenna
US3002419A (en) Alignment theodolite
CN113483726B (en) Method and system for measuring three-dimensional angle motion error in miniaturized and high-precision manner
JP2505794B2 (en) Centering error detector
ES2264814T3 (en) PROCEDURE FOR THE MEASUREMENT OF ROTATION ANGLES BETWEEN TWO REFERENCE SYSTEMS.
CN113639665B (en) High-stability nanoradian magnitude angle measurement method and device based on drift amount feedback
JP2795612B2 (en) High-speed tracking laser interferometer
CN114739509B (en) Quadrilateral common-path time modulation interference spectrum imaging device and method
CN113686265B (en) High-stability nanoradian magnitude angle measurement method and device based on deformable mirror compensation
SU862096A2 (en) Optical polarization device for probing atmosphere
US3508062A (en) Electro-optical tracking systems
RU1658708C (en) Device for keeping standard direction
CN117629112A (en) High-precision measuring device and method for relative angular vibration of X-ray double-mirror system
SU505220A1 (en) Autocollimating device
JPS61130816A (en) Linear encoder
SU1543308A1 (en) Device for measuring absolute coefficients of mirror reflection