JPS6010169A - Ultrasonic flaw detection of thin material - Google Patents

Ultrasonic flaw detection of thin material

Info

Publication number
JPS6010169A
JPS6010169A JP58118980A JP11898083A JPS6010169A JP S6010169 A JPS6010169 A JP S6010169A JP 58118980 A JP58118980 A JP 58118980A JP 11898083 A JP11898083 A JP 11898083A JP S6010169 A JPS6010169 A JP S6010169A
Authority
JP
Japan
Prior art keywords
ultrasonic
incident
ultrasonic wave
flaw detection
transducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58118980A
Other languages
Japanese (ja)
Inventor
Minoru Yashima
八島 実
Makoto Shintani
誠 新谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP58118980A priority Critical patent/JPS6010169A/en
Publication of JPS6010169A publication Critical patent/JPS6010169A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/34Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
    • G01N29/341Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with time characteristics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/01Indexing codes associated with the measuring variable
    • G01N2291/012Phase angle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0237Thin materials, e.g. paper, membranes, thin films
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Abstract

PURPOSE:To elevate the defect detection sensitivity of a thin inner cylinder or the like by making an ultrasonic wave radiated with an adjacent vibrator incident upon the position where an ultrasonic wave reflected on the inner surface of work reflects on the outer surface thereof again. CONSTITUTION:A flaw detection element 13 is made up of five small vibrators 141-145, for example, 1mm. wide and 10mm. deep. The interval between the vibrators 141-145 is so set that an ultrasonic wave radiated with an adjacent vibrator is incident upon the position where an ultrasonic wave reflected on the inner surface 12a of work 12 reflects on the outer surface 12b again. Therefore, according to the method of the present invention, an ultrasonic wave of a large amplitude can be propagated to the work by adding incident ultrasonic waves in the same phase without cancelling each other as in the past thereby enabling a high defect detection sensitivity in a thin cylinder or the like.

Description

【発明の詳細な説明】 本発明は薄肉円筒などの薄肉材(被検体)の超音波探傷
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultrasonic flaw detection method for thin-walled materials (objects) such as thin-walled cylinders.

従来、肉厚1mt程度の薄肉円筒を超音波探傷するには
、第1図に示す如く直径10動程度の径の振動子1を有
する水浸探触子2を用いて、水3中の薄肉円筒4に超音
波を入射させることにより行なっている。しかしながら
、こうした方法では同第1図に示す如く薄肉円筒4に直
接入射する超音波5と薄肉円筒4の内表面で反射した超
音波6とが重なるため、第2図の波形図に示す如くそれ
ら2つの波の打ち消し合い(干渉)が起こり、欠陥検出
感度が著しく低下する欠点があった。
Conventionally, in order to perform ultrasonic flaw detection on a thin-walled cylinder with a wall thickness of about 1 mt, a water immersion probe 2 having a transducer 1 with a diameter of about 10 mm is used to detect thin-walled cylinders in water 3, as shown in Fig. 1. This is done by injecting ultrasonic waves into the cylinder 4. However, in this method, as shown in FIG. 1, the ultrasonic waves 5 directly incident on the thin-walled cylinder 4 and the ultrasonic waves 6 reflected on the inner surface of the thin-walled cylinder 4 overlap; This has the disadvantage that the two waves cancel each other out (interference), resulting in a significant decrease in defect detection sensitivity.

本発明は複数個の小形の振動子を並列的に被検体に対し
て配置した探触子を用いること、各振動子の間隔を設定
して被検体の内表面で反射した超音波が再び外表面で反
射する位置に隣りの振動子で放射された超音波が入射さ
れるようにすること、各振動子からの超音波の被検体へ
の入射角及び各振動子と被検体表面の距離を選定して各
振動子から放射された超音波が被検体中で同一位相とな
るようにすること、に工って欠陥検出感度の向上を達成
した薄肉材の超音波探傷方法を提供しようとするもので
ある。
The present invention uses a probe in which a plurality of small transducers are arranged in parallel with respect to the subject, and the intervals between each transducer are set so that the ultrasonic waves reflected from the inner surface of the subject are reflected back to the outside. The ultrasonic wave emitted by the adjacent transducer should be made incident to the position where it is reflected by the surface, and the angle of incidence of the ultrasonic wave from each transducer to the subject should be determined, as well as the distance between each transducer and the subject surface. An attempt is made to provide an ultrasonic flaw detection method for thin-walled materials that achieves improved defect detection sensitivity by selecting selected transducers so that the ultrasonic waves emitted from each vibrator have the same phase in the test object. It is something.

以下、本発明の実施例を第3図及び第4図を# J!u
 して匹見明する。
Embodiments of the present invention will be described below with reference to FIGS. 3 and 4. u
and spot them.

第3図は本発明の超音波探傷方法を説明するための概略
図であり、図中の11は水、12は例えば直径10Qz
vi、肉厚Q、 7 wrπの薄肉円筒(被検体)であ
、も。図中の13は探触子であり、この探触子13は例
えば幅1 run 、奥行き101mの寸法の5つの小
形振動子14.〜14.から構成されている。これら振
動子14.〜14.の相互の間隔は被検体12の内表面
12aで反射したjlE音波が再び外表面12bで反射
する位置に、止りの振動子で放射された超音波が入射す
、るように設定されている。な」6、図中の151〜1
5.は各振動子14.〜14.から放射された超音波ビ
ーム、16.〜16.は被検体12中を進行する超音波
、17は欠陥、18は欠陥J7からの反射波、である。
FIG. 3 is a schematic diagram for explaining the ultrasonic flaw detection method of the present invention, in which 11 is water and 12 is, for example, a diameter of 10Qz.
vi, a thin cylinder (subject) with wall thickness Q, 7 wrπ, and also. 13 in the figure is a probe, and this probe 13 consists of five small transducers 14. ~14. It consists of These oscillators 14. ~14. The mutual spacing is set such that the ultrasonic wave emitted by the stop transducer is incident on the position where the JlE sound wave reflected from the inner surface 12a of the subject 12 is reflected again from the outer surface 12b. 6, 151-1 in the figure
5. is each vibrator 14. ~14. an ultrasonic beam emitted from 16. ~16. is an ultrasonic wave traveling through the object 12, 17 is a defect, and 18 is a reflected wave from the defect J7.

次に、本発明の超音波探傷方法を前述した第3図を参照
して説明する。
Next, the ultrasonic flaw detection method of the present invention will be explained with reference to FIG. 3 mentioned above.

まず、振動子14.より超音波15.を放射することに
よシ、その超音波151は水11の中全伝播し−〔4点
で被検体12に入射し、そこで屈折して被検体12中を
進行する超音波16゜となる。超音波16.は被検体1
2の内表面12aで反射し、更に外表面12bのB点で
反射して被検体12中を進行するが、B点には振動子1
41と隣接する振動子142から放射された超音波15
.が入射されるように各振動子を配置しているため、B
点以降は2つの波が重なって進行すること(=なる0こ
こで、振動子142の超音波152の入射角θ及び振動
子142と被検体12表面との距離を適切に選定するこ
と(ニエリ、振動子14.による超音波と振動子142
による超音波を同一位相にでき、第4図に示す如く振動
子14.による被検体12中を進行する超音波16.に
比べて振幅の大きい超音波162を得ることができる。
First, the vibrator 14. Ultrasonic 15. By emitting , the ultrasonic wave 151 propagates throughout the water 11 and enters the subject 12 at four points, where it is refracted and becomes an ultrasonic wave 16° that travels through the subject 12. Ultrasound 16. is subject 1
The transducer 1 is reflected at the inner surface 12a of the transducer 2, further reflected at the point B of the outer surface 12b, and travels through the object 12.
41 and the ultrasonic wave 15 emitted from the adjacent transducer 142
.. Since each vibrator is arranged so that B
After this point, the two waves overlap and proceed (=0).Here, the incident angle θ of the ultrasonic wave 152 of the transducer 142 and the distance between the transducer 142 and the surface of the object 12 must be appropriately selected (Nieri , ultrasonic waves by the transducer 14. and the transducer 142
As shown in FIG. 4, the ultrasonic waves caused by the transducer 14. Ultrasonic waves 16 traveling through the subject 12 due to It is possible to obtain an ultrasonic wave 162 with a larger amplitude compared to the above.

同様な条件を振動子14.〜14.を用いて被検体12
の0点、D点、E点で満せば、各振動子から放射された
超音波は同一位相で加え合されることになシ、同第4図
の16!l 、16..16゜と次第に大きな振幅の超
音波が得られる。超音波16.は被検体12の肉厚間を
ジグザグに進行し、第3図に示す欠陥17があれば欠陥
エコー(反射波)18を生じる。このエコー18を振動
子14.で検出することにニジ探触子14で欠陥検出が
なされる。したがって、本発明方法では従来のように入
射した超音波と被検体中の超音波が打ち消し合うことな
く、同一位相で加え合されて大きな振幅の超音波を被検
体に伝播できるため、薄肉円筒等の欠陥検出感度を向上
できる。
Similar conditions were applied to the oscillator 14. ~14. Subject 12 using
If the points 0, D, and E are filled, the ultrasonic waves emitted from each transducer will be added together with the same phase, as shown in 16! in Figure 4. l, 16. .. Ultrasonic waves with a gradually larger amplitude of 16° can be obtained. Ultrasound 16. The beam propagates in a zigzag pattern through the thickness of the object 12, and if there is a defect 17 shown in FIG. 3, a defect echo (reflected wave) 18 is generated. This echo 18 is transmitted to the oscillator 14. Defects are detected using the rainbow probe 14. Therefore, in the method of the present invention, the incident ultrasonic waves and the ultrasonic waves in the object do not cancel each other out as in the conventional method, but are added in the same phase and can propagate large amplitude ultrasonic waves to the object. Defect detection sensitivity can be improved.

なお、上記実施例では振動子と被検体表面の間に水を介
在させたが、水に代って油やグリセリン等の液体、或い
はアクリル樹脂や有機ガラス等の固体を介在させても同
様な効果を期待できる。
In the above example, water was interposed between the vibrator and the surface of the subject, but the same effect can be obtained by interposing a liquid such as oil or glycerin, or a solid such as acrylic resin or organic glass instead of water. You can expect good results.

以上詳述した如く、本発明によれば簡単な手段により欠
陥検出感度の向上を達成した薄肉材の超音波探傷方法を
提供できる。
As described in detail above, according to the present invention, it is possible to provide an ultrasonic flaw detection method for thin-walled materials that achieves improved defect detection sensitivity using simple means.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の超音波探傷方法を説明するための概略図
、第2図は従来法による入射超音波と反射超音波の関係
を示す波形図、第3図1・よ本発明の一実施例の超音波
探1易方法を説明するための概略図、第4図は本発明の
実、捲・例(−s617)る被検体中を進行する超音波
を示す波形図で26、る011・・・水、12・・・被
検体、13・・・探触子、14、□−14a・・・振動
子、161〜16.・・・被検体中全進行する超音波、
17・・・欠陥、18・・反射波(欠陥エコー)。
Fig. 1 is a schematic diagram for explaining the conventional ultrasonic flaw detection method, Fig. 2 is a waveform diagram showing the relationship between incident ultrasonic waves and reflected ultrasonic waves according to the conventional method, and Fig. 3 is an implementation of the present invention. FIG. 4 is a schematic diagram for explaining the ultrasonic detection method of the present invention. ... Water, 12 ... Subject, 13 ... Probe, 14, □-14a ... Vibrator, 161-16. ...Ultrasound that travels throughout the object,
17... Defect, 18... Reflected wave (defect echo).

Claims (1)

【特許請求の範囲】[Claims] 薄肉材からなる被検体に対し、複数の小形振動子を並列
的に配置した探触子を用い、これら振動子から被検体に
超音波を入射させて超音波探傷を行なうにあたシ、前記
被検体に入射した超音波が外表面で反射する位置に隣接
する振動子の超音波が入射されるように各振動子の間隔
を設定すると共に、各振動子から放射された超音波が被
検体中で同一位相となるように超音波の被検体への入射
角並びに各振動子と被検体の距離を選定することを特徴
とする薄肉材の超音波探傷方法。
When performing ultrasonic flaw detection on a test object made of a thin material using a probe in which a plurality of small transducers are arranged in parallel, ultrasonic waves are incident on the test object from these transducers. The spacing between each transducer is set so that the ultrasound waves from adjacent transducers are incident at the position where the ultrasound waves incident on the object are reflected on the outer surface, and the ultrasound waves emitted from each transducer are reflected on the object's outer surface. An ultrasonic flaw detection method for thin materials characterized by selecting the incident angle of ultrasonic waves to a test object and the distance between each vibrator and the test object so that they are in the same phase.
JP58118980A 1983-06-30 1983-06-30 Ultrasonic flaw detection of thin material Pending JPS6010169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58118980A JPS6010169A (en) 1983-06-30 1983-06-30 Ultrasonic flaw detection of thin material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58118980A JPS6010169A (en) 1983-06-30 1983-06-30 Ultrasonic flaw detection of thin material

Publications (1)

Publication Number Publication Date
JPS6010169A true JPS6010169A (en) 1985-01-19

Family

ID=14750034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58118980A Pending JPS6010169A (en) 1983-06-30 1983-06-30 Ultrasonic flaw detection of thin material

Country Status (1)

Country Link
JP (1) JPS6010169A (en)

Similar Documents

Publication Publication Date Title
Scruby Some applications of laser ultrasound
US6105431A (en) Ultrasonic inspection
JPH0525045B2 (en)
US3616682A (en) Ultrasonic nondestructive thickness gauge
Royer et al. Quantitative imaging of transient acoustic fields by optical heterodyne interferometry
Nagata et al. Lamb wave tomography using laser-based ultrasonics
JPS6010169A (en) Ultrasonic flaw detection of thin material
JP2005017089A (en) Method and device for inspecting tank
US3218845A (en) Ultrasonic inspection method for inaccessible pipe and tubing
JPS63186143A (en) Ultrasonic wave probe
Klieber et al. Mapping of ultrasonic Lamb-wave field in elastic layered structures using laser probes
SU1516958A1 (en) Method of determining configuration of defect in articles
JPS637846Y2 (en)
JPS58178252A (en) Ultrasonic probe
Goueygou et al. Non destructive evaluation of degraded concrete cover using high-frequency ultrasound
SU834499A1 (en) Method of ultrasonic pulse mirror-transmission testing
Ing et al. Surface and sub-surface flaws detection using Rayleigh wave time reversal mirrors
JPS5826379Y2 (en) ultrasonic probe
SU763775A1 (en) Method of ultrasonic flaw detection of products
JPH0545973Y2 (en)
SU1000901A1 (en) Article ultrasonic quality control method
JPS6319795Y2 (en)
JPS6070351A (en) Ultrasonic flaw detection of columnar matter
JPH044220Y2 (en)
SU662857A1 (en) Method of ultrasonic flaw detection of articles