JPS60100660A - Surface-coated hard material - Google Patents

Surface-coated hard material

Info

Publication number
JPS60100660A
JPS60100660A JP20750083A JP20750083A JPS60100660A JP S60100660 A JPS60100660 A JP S60100660A JP 20750083 A JP20750083 A JP 20750083A JP 20750083 A JP20750083 A JP 20750083A JP S60100660 A JPS60100660 A JP S60100660A
Authority
JP
Japan
Prior art keywords
hard
base material
coating layer
layer
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20750083A
Other languages
Japanese (ja)
Inventor
Koji Hayashi
宏爾 林
Kunio Shibuki
渋木 邦夫
Tetsuji Tsukamoto
塚本 哲治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Toshiba Tungaloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Tungaloy Co Ltd filed Critical Toshiba Tungaloy Co Ltd
Priority to JP20750083A priority Critical patent/JPS60100660A/en
Publication of JPS60100660A publication Critical patent/JPS60100660A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To form a hard coating layer having excellent adhesion strength to a base material by depositing physically a hard compd. of specific metals by evaporation on the surface of the base material for a cutting tool, etc. with Co, etc. as a binder. CONSTITUTION:A thin hard coating layer is formed on the surface of a base material consisting of a sintered hard alloy or ceramics in the manufacture of a cutting tool to extend the service life of the cutting tool. The surface of the base material is first cleaned then the hard layer is deposited to 0.1-0.5mum by a physical vapor deposition method such as an ion plating method, sputtering method or the like. Hard material such as WC, TaC, NbC, TiC or TiN is used for the hard layer and Co, Fe, Ni, Cr, W or Mo and above all Co is used as a binder at 1-30%. The hard coating layer which has high adhesion to the base material of the cutting tool and does not peel during use is formed and the service life of the cutting tool is extended.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、基材と該基材の表面全被覆する硬質被覆層と
の付着強度が大きく、従って、切削工具などに用いた場
合その使用寿命も長い表面被覆硬質材料に関し、更に詳
しくは、物理蒸着法(PVD法)全適用して製造した硬
質材料に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention has a high adhesion strength between a base material and a hard coating layer that covers the entire surface of the base material, so that when used in cutting tools etc., the service life thereof is shortened. The present invention relates to a long surface-coated hard material, and more specifically, to a hard material manufactured by applying a physical vapor deposition method (PVD method).

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来から、切削工具等の硬質材料の製造においては、各
種の超硬合金又はセラミックスの基材の表面を、薄い硬
質被覆層で被覆することが行なわれている。
Conventionally, in the manufacture of hard materials such as cutting tools, the surface of various cemented carbide or ceramic base materials has been coated with a thin hard coating layer.

最近、硬質被覆層の形成に関しては、化学蒸着法(CV
D法)による場合よりも、物理蒸着法(PVD法)によ
る場合の方が低温被覆処理が可能であり、しかもPVD
法により被覆層を形成した材料の機械的強度は比較的低
下しないという利点を有しているため、広く注目を集め
ている。
Recently, chemical vapor deposition (CV) methods have been used to form hard coating layers.
Low-temperature coating treatment is possible using the physical vapor deposition method (PVD method) than using the PVD method (method D).
This method has attracted wide attention because it has the advantage that the mechanical strength of the material on which the coating layer is formed does not decrease comparatively.

しかしながら、PVD法によると、基材と被覆層との間
の付着強度が極めて小す<、そのため、切削工具などに
あっては被覆層の一部が剥離することがある。したがっ
て、PVD法の適用は、目的とする材料の用途によって
制限されざるを得なかった。
However, according to the PVD method, the adhesion strength between the base material and the coating layer is extremely low, so that a part of the coating layer may peel off in cutting tools and the like. Therefore, the application of the PVD method has been limited by the intended use of the material.

PVD法の適用による上記した問題全解決するために、
基材の表面に活性なチタン金属の薄層を密着層として形
成し、該チタン層の上に硬質被覆層を形成する方法が提
案されている。
In order to solve all the above problems by applying the PVD method,
A method has been proposed in which a thin layer of active titanium metal is formed as an adhesive layer on the surface of a base material, and a hard coating layer is formed on the titanium layer.

しかしながら、この方法には、被覆処理工程が更に1つ
ふえること、また、チタン層は軟質層なので高温又は高
剪断力が加わる過酷な使用条件で用いられるような工具
に適用するには好適ではないこと、などの解決すべき課
題が含まれている。
However, this method requires one more coating process, and since the titanium layer is a soft layer, it is not suitable for application to tools that are used under harsh operating conditions where high temperatures or high shear forces are applied. It includes issues that need to be solved, such as:

〔発明の目的〕[Purpose of the invention]

本発明は、製造時にPVD法を適用するにもかかわらず
、基材と硬質被覆層間の接着強度が大きく、そのため、
過酷な使用条件下でも該被覆層の剥離現象を起すことの
ない表面被覆硬質材料の提供を目的とする。
Although the present invention applies the PVD method during manufacturing, the adhesive strength between the base material and the hard coating layer is high, and therefore,
The object of the present invention is to provide a surface-coated hard material that does not cause peeling of the coating layer even under severe usage conditions.

〔発明の概要〕[Summary of the invention]

本発明者らは、CVD法の場合の方がPVD法による場
合よりも被覆層の基材への接着強度が大きい原因につき
調査したところ、前者の場合、基材と被覆層との界面に
は1種の拡散層が生成し、この拡散層が基材と被覆層と
の結合層的な機能を果すという知見を得た。したがって
、たとえCVD法より低い温度で実施されるPVD法に
あっても、上記したような拡散層全生成できれば基材と
被覆層との接着強度は向上するであろうとの着想を得、
該着想に基づいて鋭意研究を重ねた結果、驚くべきこと
には、PVD法を適用するに当り基材の表面全充分に洗
浄すると、通常のPVD条件でもある種の基材と被覆層
の間に1種の拡散層が形成できるとの事実を見出し、本
発明を完成するに到った。
The present inventors investigated the reason why the adhesion strength of the coating layer to the base material is greater in the case of the CVD method than in the case of the PVD method, and found that in the former case, the interface between the base material and the coating layer is It was found that one type of diffusion layer is generated and this diffusion layer functions as a bonding layer between the base material and the coating layer. Therefore, even if the PVD method is carried out at a lower temperature than the CVD method, we got the idea that the adhesive strength between the base material and the coating layer would be improved if the entire diffusion layer as described above could be generated.
As a result of extensive research based on this idea, we surprisingly found that when applying the PVD method, if the entire surface of the base material is thoroughly cleaned, even under normal PVD conditions, the gap between the base material and the coating layer can be removed. The present invention was completed based on the discovery that one kind of diffusion layer can be formed in the following manner.

すなわち、本発明の表面被覆硬質材料は周期律表’−□
fl//a 、 Va 、 、M、、族に属する元素の
少なくとも1種の元素の炭化物、窒化物、酸化物、ホウ
化物、ケイ化物及びこれらの相互固溶体の群から選ばれ
る少なくとも1種の硬質相成分と、鉄(Fe)、ニッケ
ル(Ni)、コバルト(CO)、クロム(Cr ) 、
モリブデン(Mo ) 、タングステン(W)の群から
選ばれる少なくとも1種の結合相成分とから成る基材表
面2 pvp法により硬質被覆層で被覆した硬質材料で
あって、該硬質被覆層と該基材との界面の基材表面部に
拡散層を生成させたことを特徴とする。
That is, the surface-coated hard material of the present invention is
At least one hard substance selected from the group of carbides, nitrides, oxides, borides, silicides, and mutual solid solutions of at least one element belonging to the fl//a, Va, , M, groups. Phase components: iron (Fe), nickel (Ni), cobalt (CO), chromium (Cr),
A hard material coated with a hard coating layer by a PVP method, the hard material comprising at least one binder phase component selected from the group of molybdenum (Mo) and tungsten (W). It is characterized in that a diffusion layer is formed on the surface of the base material at the interface with the material.

本発明において硬質被覆層で被覆される基材は硬質相成
分と結合相成分とから成る焼結合金である。硬質層成分
としては、周期律表’pi;’a 、 Va 。
In the present invention, the substrate coated with the hard coating layer is a sintered alloy consisting of a hard phase component and a binder phase component. As hard layer components, 'pi;'a, Va' of the periodic table are used.

・、■a族に属する元素の炭化物、窒化物、酸化物、ホ
ウ化物、ケイ化物及びこれらの相互固溶体の1種又は2
種以上である。好ましくは、Tic、TIN 。
・, one or two of carbides, nitrides, oxides, borides, silicides, and mutual solid solutions of elements belonging to group a
More than a species. Preferably Tic, TIN.

ZrC、VCt TaCt NbC、Mo2C* Cr
3C2+ WC+TIB r TaSi r TiO、
Zr0zなどである。とくに2 2 TIClTIN、TaC2NbCIWCの少なくとも1
種が含有されている場合は、後述する拡散層を生成し易
すいので好都合である。
ZrC, VCt TaCt NbC, Mo2C* Cr
3C2+ WC+TIB r TaSi r TiO,
Zr0z, etc. In particular, at least one of 2 2 TIClTIN, TaC2NbCIWC
When seeds are contained, it is advantageous because it facilitates the formation of a diffusion layer, which will be described later.

結合相成分としては、 Fe 、 Ni e Co r
 Cr tMo 、 Hのいずれか1種又は2種以上で
あり、好ましくは、Coである。
Bonded phase components include Fe, Nie Cor
It is any one or more of Cr tMo and H, preferably Co.

基材は、上記した硬質相成分の粉と結合相成分の粉とを
所定の割合いで混合し、常法により成形、焼結して製造
することができる。このとき結合相成分の配合割合は、
通常1〜30重量%重量%上い。
The base material can be manufactured by mixing the above-mentioned hard phase component powder and binder phase component powder in a predetermined ratio, and molding and sintering the mixture by a conventional method. At this time, the blending ratio of the binder phase components is
Usually 1 to 30% by weight or more.

この基材の表面にはPVD法で硬質被覆層が形成される
。硬質被覆層を構成する材料は、周期律表N=a族に属
する元素の炭化物、窒化物、ホウ化物、及びそれらの相
互固溶体若しくはそれらの混合物又は酸化アルミニウム
(A1203)の少なくとも1種の層から成る。例えば
、Tic、 TIN 、 TlB2;ZrCe ZrN
 、 ZrB 、” HfC、HfN 、 HfB2 
;1吏五TiC0、TiN0 、TiCN0% (TI
Zr)(−p (TiHf)CpA1203等が基材に
官有1〜でいる侵入型元素の拡散奮起こさせて硬質被覆
層と基材との界面の基材表面部に拡散層全生成し易やす
くする。
A hard coating layer is formed on the surface of this base material by a PVD method. The material constituting the hard coating layer is at least one layer of carbides, nitrides, borides, and mutual solid solutions or mixtures thereof of elements belonging to group N=a of the periodic table, or aluminum oxide (A1203). Become. For example, Tic, TIN, TlB2; ZrCe ZrN
, ZrB,” HfC, HfN, HfB2
;1 5 TiC0, TiN0, TiCN0% (TI
Zr)(-p(TiHf)CpA1203 etc. stimulate the diffusion of interstitial elements that are naturally present in the base material, making it easy to form a complete diffusion layer on the surface of the base material at the interface between the hard coating layer and the base material. Make it easier.

被覆層は上記した各材料の単層であってもよいが、これ
ら金2層以上順次積層して成る複合層であってもよい。
The coating layer may be a single layer of each of the above-mentioned materials, but it may also be a composite layer formed by sequentially laminating two or more of these gold layers.

以上のような本発明の硬質材料は次のようにして製造さ
れる。その製造方法における最大の特徴は、基材の表面
を、基本的には後述する方法で、充分に洗浄して該表面
に付着している不純物又は基材の結合相成分の酸化物等
を完全に除去し、しかも清浄な雰囲気中でPVD法を適
用することにある。
The hard material of the present invention as described above is manufactured as follows. The most important feature of the manufacturing method is that the surface of the base material is thoroughly cleaned to completely remove impurities adhering to the surface or oxides of the binder phase component of the base material, basically by the method described below. The purpose of this method is to apply the PVD method in a clean atmosphere.

まず、基材の表面を非イオン系界面活性剤で充分に洗浄
し、表面のヨゴレ、油等全完全に除去する。洗浄時には
、表面を傷つけない程度にブラッシング処理を施すこと
が効果的である。用いる界面活性剤としては非イオン系
であることが必要で陽イオン系又は陰イオン系の場合に
は、基材表面にこれら各イオンが残留してしまう慮れか
あって避けるべきである。
First, the surface of the substrate is sufficiently washed with a nonionic surfactant to completely remove dirt, oil, etc. from the surface. When cleaning, it is effective to perform a brushing process to the extent that the surface is not damaged. The surfactant used must be nonionic; cationic or anionic surfactants should be avoided because these ions may remain on the surface of the substrate.

ついで、基材表面金酸液中で洗浄する。このとき、超音
波洗浄を適用することが有効である。酸液としては、塩
酸、希硫酸などが好ましく、またそのpHは基材成分及
び基材の表面状態、例えば焼結した状態の焼肌面並びに
研削又は研摩した加工面によって異なるが、約声5〜G
であることが好ましい。この基材表面の汚染状態によっ
ては酸液洗浄粂件である酸液の種類、洗浄時間、温度又
はpH値を更に違憲する必要がある。この過程で、基材
表面に存在する結合相成分が酸化汚染している場合には
それが溶解して除去される。
Then, the surface of the substrate is washed in an gold acid solution. At this time, it is effective to apply ultrasonic cleaning. As the acid solution, hydrochloric acid, dilute sulfuric acid, etc. are preferable, and the pH thereof varies depending on the base material components and the surface condition of the base material, such as a sintered surface and a ground or polished surface. ~G
It is preferable that Depending on the contamination state of the surface of the substrate, it may be necessary to further modify the type of acid solution, cleaning time, temperature, or pH value that are required for acid solution cleaning. During this process, if the binder phase component present on the surface of the substrate is oxidized and contaminated, it is dissolved and removed.

その後、純水中で超音波洗浄し、前記の2工程を経て基
材表面に残留する活性剤、酸液、等を完全に除去する。
Thereafter, ultrasonic cleaning is performed in pure water to completely remove the activator, acid solution, etc. remaining on the surface of the substrate through the two steps described above.

純水には、イオン交換樹脂で処理して水の中の微量な金
属成分金も完全に除去したものが用いられる。
The pure water used is one that has been treated with an ion exchange resin to completely remove trace amounts of gold, a metal component in the water.

かくして、基材の表面は、硬質相成分と結合相成分とか
らのみ構成てれた表面となる。
Thus, the surface of the substrate becomes a surface composed only of the hard phase component and the binder phase component.

ついで、基材全有機溶剤の中に入れて超音波洗浄し、水
金有機溶剤で置換する。有機溶剤としては、揮発性のも
のが用いられ、具体的には、メチルアルコール、エチル
アルコール、アセトン、エーテルなどが好捷しいものと
してあげられる。
Next, the base material is placed in an all-organic solvent, subjected to ultrasonic cleaning, and water is replaced with an organic solvent. As the organic solvent, a volatile one is used, and specifically, methyl alcohol, ethyl alcohol, acetone, ether, etc. are preferred.

最後に、乾燥処理音節(7、得られた清浄な基材表面に
PVD法全法用適用硬質被覆層を形成する。
Finally, a hard coating layer for all PVD methods is formed on the surface of the resulting clean substrate.

適用するPVD法は常用の方法でよく、格別、制限を受
けるものではなく、例えばイオンブレーティング法、ス
パッタリング法及びプラズマ中でのガス反応による被覆
方法等を適用できる。温度は被覆層材料の種類によって
異なるが、通常、200〜700℃程度が望ましい。
The PVD method to be applied may be a commonly used method and is not particularly limited, and for example, an ion blasting method, a sputtering method, a coating method using a gas reaction in plasma, etc. can be applied. Although the temperature varies depending on the type of coating layer material, it is usually desirably about 200 to 700°C.

このとき、表面が洗浄された基材i PVD装置にセッ
トするとき、又はPVD操作を行なうとき、いずれにお
いても、基材表面全汚染しないように注意すべきである
。例えば、基材を装置にセットするとき、その操作を湿
度の低い乾燥空気中で行なうことが好ましい。
At this time, care should be taken not to contaminate the entire surface of the substrate, either when setting the substrate in the PVD apparatus or performing the PVD operation. For example, when setting a substrate in an apparatus, it is preferable to perform the operation in dry air with low humidity.

このようにしてPVD法で硬質被覆層を形成すると基材
と被覆層との界面に1種の拡散層が生成する。具体的に
は、基材の表面がある深さに亘って基材を構成する硬質
相成分中の非金属成分(例えば、C,N、B)f減じた
化合物の層又は不定比化合物の層になる。逆にいえば、
基材表面部分の該非金属成分が被覆層の方に拡散して、
基材とは。
When a hard coating layer is formed by the PVD method in this manner, a type of diffusion layer is generated at the interface between the base material and the coating layer. Specifically, over a certain depth on the surface of the base material, a layer of a compound or a layer of a non-stoichiometric compound in which nonmetallic components (e.g., C, N, B) in the hard phase components constituting the base material are reduced. become. Conversely,
The non-metallic component on the surface of the base material diffuses toward the coating layer,
What is the base material?

異質であり厚み0,05〜1μmの拡散層が生成する。A heterogeneous diffusion layer with a thickness of 0.05 to 1 μm is produced.

詳細は不明であるが、この拡散層が介在することにより
、基材と被覆層との接着強度は向上するものと考えられ
、特にこの拡散層厚さが0.1〜0.5μmのときが好
ましい。
Although the details are unknown, it is thought that the presence of this diffusion layer improves the adhesive strength between the base material and the coating layer, especially when the thickness of this diffusion layer is 0.1 to 0.5 μm. preferable.

〔発明の実施例〕[Embodiments of the invention]

実施例1 硬質相成分WC90重′#チ、結合相成分Co10重量
%から成る材料の、フライス切削用5DCN4aZTN
型研削チツプの表面に、中性洗剤の5%水溶液のシャワ
ー内で自動ブラッシング処理全1施した。
Example 1 5DCN4aZTN for milling, made of a material consisting of 90% by weight of hard phase component WC and 10% by weight of binder phase component Co.
The surface of the mold grinding tip was subjected to one automatic brushing treatment in a shower of a 5% aqueous solution of neutral detergent.

ついでチップ全一16の塩酸水溶液中で超音波洗浄し、
オーバーフローしている純水の超音波洗浄器4檜に順次
通した。その後、エチルアルコールの超音波洗浄器3槽
に通し、更に、アセトンの超音波洗浄器3槽に通した。
The chips were then ultrasonically cleaned in a 16-ml hydrochloric acid aqueous solution.
The overflowing pure water was sequentially passed through four ultrasonic cleaners. Thereafter, it was passed through three baths of an ethyl alcohol ultrasonic cleaner, and further passed through three baths of an acetone ultrasonic cleaner.

ついで、フロンの超音波洗浄器2槽に通した後、最後に
60℃でフロン乾燥した。各槽内での基材の洗浄時間は
それぞれ7分であった。
Then, after passing through two tanks of an ultrasonic cleaner using fluorocarbons, it was finally dried using fluorocarbons at 60°C. The cleaning time for the substrate in each tank was 7 minutes.

チップを、湿度20%の乾燥空気中で、充分に洗浄した
ステンレス製冶具に取り付け、充分クリーニングしたイ
オンブレーティング装置内にセットした。
The chip was attached to a thoroughly cleaned stainless steel jig in dry air with a humidity of 20%, and set in a thoroughly cleaned ion blating device.

装置内f 10−5T、orrまで排気したのち、炉内
真空度f 10−’ Torrよりも高真空に保持して
チップを徐々に加熱して最終的には500℃とした。
After the inside of the apparatus was evacuated to f 10-5 T, orr, the chip was gradually heated to 500° C. while maintaining the vacuum in the furnace at a higher vacuum than f 10-’ Torr.

ついで、チップ表面を、純度99.999999%のア
ルゴンガスで40分間ボンバードし、その後、窒素ガス
全流入して装置内の窒素ガス分圧’!io、13Paと
して常法によりTiNをPVD した。このときの硬質
被覆層の析出速度は1.3 X 10””μm/sec
であり、その硬質被覆層の厚さは約2μmであった。
Next, the chip surface is bombarded with 99.999999% purity argon gas for 40 minutes, and then all nitrogen gas is introduced to reduce the nitrogen gas partial pressure in the device! TiN was PVDed using a conventional method at io and 13 Pa. The precipitation rate of the hard coating layer at this time was 1.3 x 10''μm/sec.
The thickness of the hard coating layer was approximately 2 μm.

チップの基材が、WC72重量%、Tic 10重量%
、TaC10重量%、Co 8重量%の焼結合金であっ
たこと、被覆層が、温度5oo℃、アセチレン分圧Q、
 10 P&で形成した厚み約1μmのTaC層と、温
度650℃、酸素ガス分圧4 X 10−2Pa。
The base material of the chip is 72% by weight of WC and 10% by weight of Tic.
, the coating layer was a sintered alloy containing 10% by weight of TaC and 8% by weight of Co, the temperature of the coating layer was 50°C, the acetylene partial pressure was Q,
A TaC layer with a thickness of about 1 μm formed with 10 P&, a temperature of 650° C., and an oxygen gas partial pressure of 4×10 −2 Pa.

AI!電子ビーム蒸着によって形成した厚み約1μmの
AI!203とをこの順序で積層した層であったこと、
全線いては実施例1と同様にして硬質材料を製造した。
AI! AI with a thickness of approximately 1 μm formed by electron beam evaporation! 203 were laminated in this order,
A hard material was produced in the same manner as in Example 1 for all wires.

比較例1 基材は、中性洗剤による超音波洗浄を施し、ついでpH
5の硫酸水溶液中で超音波洗浄した後オーバフローして
いる純水の超音波洗浄器2槽に順次通した。その後水切
りフロン槽を通してから最後に60℃でフロン乾燥した
。その他は、実施例1と同様にして硬質材料全製造した
Comparative Example 1 The substrate was subjected to ultrasonic cleaning using a neutral detergent, and then pH
After ultrasonic cleaning in the sulfuric acid aqueous solution of No. 5, the samples were sequentially passed through two overflowing ultrasonic cleaner tanks with pure water. Thereafter, it was passed through a water draining Freon tank and finally dried at 60°C. All other hard materials were manufactured in the same manner as in Example 1.

比較例2 比較例1において、アルゴンガスで基材表面をボンバー
ドしたのち、該表面にまずチタン層を0.1μm形成し
、ついでその表面に窒素ガス分圧Q、 13 Paの条
件で厚み1.9μmのTiN’i被覆した。被覆層の析
出速度は1.3 X 10−3μffl/ m@eであ
った。
Comparative Example 2 In Comparative Example 1, after bombarding the surface of the substrate with argon gas, a titanium layer of 0.1 μm was first formed on the surface, and then a titanium layer with a thickness of 1.1 μm was formed on the surface under conditions of a nitrogen gas partial pressure Q and 13 Pa. It was coated with 9 μm TiN'i. The deposition rate of the coating layer was 1.3 × 10−3 μffl/m@e.

以上4種類のチップで、ステンレススチール(5TJS
 304 )のブロック全フライス切削した。
With the above four types of tips, stainless steel (5TJS)
304) block was completely milled.

切削条件は、切削速度148 m/mln 、切り込み
量2m、送り速度0.3 mu /刃、切削時間30分
であった。
The cutting conditions were a cutting speed of 148 m/mln, a depth of cut of 2 m, a feed rate of 0.3 mu/tooth, and a cutting time of 30 minutes.

被剛材と接触したチップすくい面の面積中、表面被覆層
の剥離している割合を測定した。実施例1のもの3.2
%、実施例2のもの1.8チ、比較例1のもの78チ、
比較例2のもの49チであった。
The percentage of peeled surface coating layer in the area of the chip rake face in contact with the material to be stiffened was measured. Example 1 3.2
%, 1.8 inches for Example 2, 78 inches for Comparative Example 1,
The weight of Comparative Example 2 was 49.

なお、実施例1.実施例2のチップを切断してその断面
状態を顕微鏡観察したところ、いずれも基材と被覆層と
の界面において基材側に約0.15μm(実施例工)、
約0.25μm(実施例2)の深さで基材とは組織の異
なる層が認められた。
In addition, Example 1. When the chip of Example 2 was cut and its cross-sectional state was observed under a microscope, it was found that in both cases, at the interface between the base material and the coating layer, there was a thickness of about 0.15 μm on the base material side (example work);
A layer with a different structure from that of the base material was observed at a depth of about 0.25 μm (Example 2).

〔発明の効果〕〔Effect of the invention〕

以上の説明で明らかなように、本発明の硬質材料は、基
材と硬質被覆層との接着強度が大きく、したがって切削
工具に用いる場合も該被覆層が剥離することはなく、そ
のため使用寿命が長くなる。
As is clear from the above explanation, the hard material of the present invention has a high adhesive strength between the base material and the hard coating layer, and therefore the coating layer will not peel off even when used in cutting tools, and therefore the service life will be shortened. become longer.

ま罠、その製造方法においては、基材表面を清浄にし、
他は常用のPVD法を適用して上記の有用な材料を製造
することができ、その工業的な効果は犬である。
Matrap, in its manufacturing method, the surface of the base material is cleaned,
Others can apply conventional PVD methods to produce the above-mentioned useful materials, the industrial effectiveness of which is outstanding.

Claims (1)

【特許請求の範囲】 1、周期律表IVa ) −Va 、 Va族に属する
元素の少なくとも11事の元素の炭化物、窒化物、酸化
物、ホウ化物、ケイ化物及びこれら相互固溶体の群から
選ばnる少なくとも11・且の硬質相成分と、鉄、ニッ
ケル、コバルト、クロム、モリブデン、タングステ70
群から選ばれる少なくとも1種の結合相成分とから成る
基材の表面を物理蒸着法(PVD法)により硬質被俊層
で被覆した硬質材料であって、該硬質被覆層と該左利と
の界面の基材表面部に拡散層全生成させたことを特徴と
する表面被覆硬質材料。 2、該基材が、炭化タングステン、炭化タンタル、炭化
ニオブ、炭化チタン、窒化チタンの群から選ばれる少な
くとも1種の硬質相成分を含有する特許請求の範囲第1
項記載の表面被覆硬質材料。 3、該硬質被覆層が、周期律dlVa族に属する元素の
炭化物、窒化物、ホウ化物、及びそれらの相互固溶体若
しくはそれらの混合物又は酸化アルミニウムの群から選
ばれる少なくとも1種の層である特許請求の範囲第1項
記載の表面被覆硬質材料。 4 該拡散層が、厚さ01〜05μmの化合物又は不定
比化合物から成る特許請求の範囲第1項記載の表面被覆
硬質材料。
[Claims] 1. IVa) -Va selected from the group of carbides, nitrides, oxides, borides, silicides, and mutual solid solutions of at least 11 elements belonging to group Va of the periodic table. a hard phase component of at least 11 and iron, nickel, cobalt, chromium, molybdenum, and tungsten
A hard material in which the surface of a base material comprising at least one binder phase component selected from the group is coated with a hard coating layer by a physical vapor deposition method (PVD method), wherein the hard coating layer and the left-handed A surface-coated hard material characterized in that a diffusion layer is entirely formed on the surface of the base material at the interface. 2. Claim 1, wherein the base material contains at least one hard phase component selected from the group of tungsten carbide, tantalum carbide, niobium carbide, titanium carbide, and titanium nitride.
The surface-coated hard material described in Section 1. 3. A patent claim in which the hard coating layer is at least one layer selected from the group of carbides, nitrides, borides, and mutual solid solutions or mixtures thereof of elements belonging to the dlVa group of the periodic law, or aluminum oxide. The surface-coated hard material according to item 1. 4. The surface-coated hard material according to claim 1, wherein the diffusion layer is made of a compound or a non-stoichiometric compound with a thickness of 01 to 05 μm.
JP20750083A 1983-11-07 1983-11-07 Surface-coated hard material Pending JPS60100660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20750083A JPS60100660A (en) 1983-11-07 1983-11-07 Surface-coated hard material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20750083A JPS60100660A (en) 1983-11-07 1983-11-07 Surface-coated hard material

Publications (1)

Publication Number Publication Date
JPS60100660A true JPS60100660A (en) 1985-06-04

Family

ID=16540740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20750083A Pending JPS60100660A (en) 1983-11-07 1983-11-07 Surface-coated hard material

Country Status (1)

Country Link
JP (1) JPS60100660A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0222453A (en) * 1988-07-08 1990-01-25 Mitsubishi Metal Corp Surface-treated tungsten carbide-base sintered hard alloy for cutting tool
JPH09241826A (en) * 1996-03-05 1997-09-16 Ngk Spark Plug Co Ltd Cemented carbide structural body, its production and cutting tool using the same
KR100330785B1 (en) * 1999-12-31 2002-04-01 이계안 Manufacturing method of high-durability engine parts using PVD coating processing
CN105887083A (en) * 2016-04-14 2016-08-24 富耐克超硬材料股份有限公司 Hard coating used for tool, coating preparation method and tool
CN106894020A (en) * 2017-03-24 2017-06-27 纳狮新材料股份有限公司 Composite coating screw rod and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57171659A (en) * 1981-04-14 1982-10-22 Sumitomo Electric Ind Ltd Production of coated superhard alloy tool

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57171659A (en) * 1981-04-14 1982-10-22 Sumitomo Electric Ind Ltd Production of coated superhard alloy tool

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0222453A (en) * 1988-07-08 1990-01-25 Mitsubishi Metal Corp Surface-treated tungsten carbide-base sintered hard alloy for cutting tool
JPH09241826A (en) * 1996-03-05 1997-09-16 Ngk Spark Plug Co Ltd Cemented carbide structural body, its production and cutting tool using the same
KR100330785B1 (en) * 1999-12-31 2002-04-01 이계안 Manufacturing method of high-durability engine parts using PVD coating processing
CN105887083A (en) * 2016-04-14 2016-08-24 富耐克超硬材料股份有限公司 Hard coating used for tool, coating preparation method and tool
CN106894020A (en) * 2017-03-24 2017-06-27 纳狮新材料股份有限公司 Composite coating screw rod and preparation method thereof

Similar Documents

Publication Publication Date Title
US5618625A (en) CVD diamond coated cutting tools and method of manufacture
CN102534493B (en) V-Al-N hard coating with nano composite structure and preparation method thereof
CN113186493B (en) Preparation method of diamond/metal carbide composite wear-resistant coating
JPH0892742A (en) Matrix composite and method of performing surface preparation thereof
JPS60100660A (en) Surface-coated hard material
CN102443772A (en) Coated part and preparation method thereof
JPS61109628A (en) Diamond coated tool
EP0440384A1 (en) Method of bonding a diamond film to a substrate
JP4820508B2 (en) Sputtering target and manufacturing method thereof, sputtering apparatus, thin film manufacturing method, electronic component manufacturing method
JP3460594B2 (en) Seed diamond powder with excellent adhesion to artificial diamond film formation surface
JPH04157157A (en) Production of artificial diamond coated material
JP4824163B2 (en) Method for removing a hard material layer
JP2595203B2 (en) High adhesion diamond coated sintered alloy and method for producing the same
JPH0813148A (en) Peeling resistant diamond-coated member
JPH0613755B2 (en) Titanium substrate treatment method and titanium-based composite material
JPH04341582A (en) Carbon head film excellent in peeling property
JP3747949B2 (en) Coated tool and manufacturing method thereof
JPH09241826A (en) Cemented carbide structural body, its production and cutting tool using the same
JPS61106478A (en) Diamond coated part
JPH0558070B2 (en)
JPH0354180A (en) Production of diamond-coated sintered material
JPH05140729A (en) High adhesion coated member and its production
JPS6257802A (en) Parts coated with hard carbon
JPH0463604A (en) Manufacture of cutting tool made of rigid layer-covered tungusten carbide group cemented carbide alloy
JPS605673B2 (en) Surface-coated cemented carbide with good peeling resistance