KR100330785B1 - Manufacturing method of high-durability engine parts using PVD coating processing - Google Patents

Manufacturing method of high-durability engine parts using PVD coating processing Download PDF

Info

Publication number
KR100330785B1
KR100330785B1 KR1019990067676A KR19990067676A KR100330785B1 KR 100330785 B1 KR100330785 B1 KR 100330785B1 KR 1019990067676 A KR1019990067676 A KR 1019990067676A KR 19990067676 A KR19990067676 A KR 19990067676A KR 100330785 B1 KR100330785 B1 KR 100330785B1
Authority
KR
South Korea
Prior art keywords
layer
substrate
coating
coating process
chamber
Prior art date
Application number
KR1019990067676A
Other languages
Korean (ko)
Other versions
KR20010066094A (en
Inventor
윤호욱
Original Assignee
이계안
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이계안, 현대자동차주식회사 filed Critical 이계안
Priority to KR1019990067676A priority Critical patent/KR100330785B1/en
Publication of KR20010066094A publication Critical patent/KR20010066094A/en
Application granted granted Critical
Publication of KR100330785B1 publication Critical patent/KR100330785B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/027Graded interfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3435Applying energy to the substrate during sputtering
    • C23C14/345Applying energy to the substrate during sputtering using substrate bias
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/541Heating or cooling of the substrates

Abstract

본 발명은 피.브이.디 코팅 공정을 이용한 고 내구성 엔진 부품 제조방법에 관한 것으로서, 더욱 상세하게는 종래의 에어컨의 컴프레셔의 피스톤에 장착된 슈에 관한 것으로 피.브이.디 코팅 공정을 이용하여 히팅, 에칭 및 코팅의 공정을 수행하여 Cr층, WC층 및 WC/C층을 형성하고 또한, 상기 WC/C층에는 C가 풍부한 층과 WC가 풍부한 층이 연속되게 형성됨으로써, 낮은 온도에서 코팅이 가능하여 열변형이 없을 뿐만 아니라 마찰계수를 낮추어주어 스워쉬 플레이트 및 피스톤과의 마모를 줄일 수 있는 피. 브이. 디 코팅 공정을 이용한 고 내구성 엔진 부품 제조방법에 관한 것이다.The present invention relates to a method for manufacturing high durability engine parts using a P.D coating process, and more particularly, to a shoe mounted on a piston of a compressor of a conventional air conditioner. The process of heating, etching and coating is performed to form a Cr layer, a WC layer and a WC / C layer. In addition, the WC / C layer is formed of a layer rich in C and a layer rich in WC, thereby coating at a low temperature. This eliminates heat deformation and lowers the coefficient of friction, reducing wear on the swash plate and piston. V. It relates to a high durability engine parts manufacturing method using a de-coating process.

Description

피.브이.디 코팅 공정을 이용한 고 내구성 엔진 부품 제조방법{Manufacturing method of high-durability engine parts using PVD coating processing}Manufacturing method of high-durability engine parts using PVD coating processing}

본 발명은 피.브이.디 코팅 공정을 이용한 고 내구성 엔진 부품 제조방법에 관한 것으로서, 더욱 상세하게는 종래의 에어컨의 컴프레셔의 피스톤에 장착된 슈에 관한 것으로 피.브이.디 코팅 공정을 이용하여 히팅, 에칭 및 코팅의 공정을 수행하여 Cr층, WC층 및 WC/C층을 형성하고 또한, 상기 WC/C층에는 C가 풍부한 층과 WC가 풍부한 층이 연속되게 형성됨으로써, 낮은 온도에서 코팅이 가능하여 열변형이 없을 뿐만 아니라 마찰계수를 낮추어주어 스워쉬 플레이트 및 피스톤과의 마모를 줄일 수 있는 피. 브이. 디 코팅 공정을 이용한 고 내구성 엔진 부품 제조방법에 관한 것이다.The present invention relates to a method for manufacturing high durability engine parts using a P.D coating process, and more particularly, to a shoe mounted on a piston of a compressor of a conventional air conditioner. The process of heating, etching and coating is performed to form a Cr layer, a WC layer and a WC / C layer. In addition, the WC / C layer is formed of a layer rich in C and a layer rich in WC, thereby coating at a low temperature. This eliminates heat deformation and lowers the coefficient of friction, reducing wear on the swash plate and piston. V. It relates to a high durability engine parts manufacturing method using a de-coating process.

일반적으로 에어컨의 컴프레셔는 도 2에 도시된 바와 같이, 샤프트(200)가 회전함에 따라 상기 샤프트(200)에 연결된 사판(Swash Plate)(300) 동일방향으로 회전하면서 피스톤(400)에 부착된 슈(Shoe)(500)을 밀어주어 상기 피스톤(400)이 직선방향으로 이동하면서 냉매를 압축시켜준다.In general, the compressor of the air conditioner is a shoe attached to the piston 400 while rotating in the same direction as the swash plate 300 connected to the shaft 200 as the shaft 200 rotates, as shown in FIG. 2. By pushing the shoe 500, the piston 400 moves in a linear direction to compress the refrigerant.

여기서, 미설명 부호 100은 컴프레셔 몸체를 나타낸다.Here, reference numeral 100 denotes a compressor body.

통상 컴프레셔의 슈(500)는 SUJ2(Cr-베어링 강) 재질이고 사판(300)과 피스톤(400)은 알루미늄 재질로 되어 있다.Typically, the shoe 500 of the compressor is made of SUJ2 (Cr-bearing steel) and the swash plate 300 and the piston 400 are made of aluminum.

그러나, 상기 슈(500)와 사판(300) 및 피스톤(400)의 경도차가 다르므로 마찰계수에 차이가 커 마모되기가 쉽고, 또한 마찰로 인해 윤활유의 역할이 미비하여 실제 무윤활 상태에서 마찰 및 마모가 발생되어 컴프레서의 작동을 중단시키는 문제가 있어, 이를 개선하는 고 내구성 부품의 개발이 요구되고 있다.However, since the hardness difference between the shoe 500, the swash plate 300, and the piston 400 is different, the friction coefficient is large, so that it is easy to be worn, and due to the friction, the role of the lubricating oil is insufficient. There is a problem that wear occurs to stop the operation of the compressor, there is a demand for the development of high-durability parts to improve it.

따라서, 본 발명은 상기와 같은 문제점을 해결하기 위해 안출한 것으로서, 더욱 상세하게는 종래의 에어컨의 컴프레셔의 피스톤에 장착된 슈에 관한 것으로 피.브이.디 코팅 공정을 이용하여 히팅, 에칭 및 코팅의 공정을 수행하여 Cr층, WC층 및 WC/C층을 형성하고 또한, 상기 WC/C층에는 C가 풍부한 층과 WC가 풍부한 층이 연속되게 형성됨으로써, 낮은 온도에서 코팅이 가능하여 열변형이 없을 뿐만 아니라 마찰계수를 낮추어주어 스워쉬 플레이트 및 피스톤과의 마모를 줄이는데 그 목적이 있다.Accordingly, the present invention has been made to solve the above problems, and more particularly relates to a shoe mounted on the piston of the compressor of the conventional air conditioner, heating, etching and coating using a P. V coating process The Cr layer, the WC layer, and the WC / C layer are formed by performing the process, and the C-rich layer and the WC-rich layer are continuously formed in the WC / C layer, so that the coating can be performed at a low temperature, thereby thermally deforming. Not only that, but also to lower the coefficient of friction to reduce wear with the swash plate and the piston.

도 1은 본 발명에 따른 피.브이.디 코딩 공정 장비의 개략도.1 is a schematic diagram of a P. Decoding process equipment according to the present invention.

도 2는 본 발명된 컴프레셔의 슈의 장착을 도시한 단면도.Figure 2 is a cross-sectional view showing the mounting of the shoe of the compressor of the present invention.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for main parts of the drawings>

1 : 공정 챔버 2, 7 : 주입구1: process chamber 2, 7: injection hole

3 : 진공펌프 4 : 평판 마그네트론 스퍼터링 소오스3: vacuum pump 4: flat plate magnetron sputtering source

5 : SUJ2 기판 6 : WC 타겟5: SUJ2 substrate 6: WC target

이하, 본 발명을 설명하면 다음과 같다.Hereinafter, the present invention will be described.

본 발명은 히팅, 에칭 및 코팅 공정으로 이루어져 고 내구성 컴프레셔 슈를 제조하는 피.브이.디 코팅 공정을 이용한 고 내구성 엔진 부품 제조방법에 있어서, 상기 코팅 공정의 코팅 구조가 Cr층, WC층 및 WC/C층으로 이루어지는 것을 특징으로 한다.The present invention is a method for manufacturing a high durability engine component using a P. V coating process consisting of a heating, etching and coating process to produce a high durability compressor shoe, the coating structure of the coating process is Cr layer, WC layer and WC It is characterized by consisting of / C layer.

특히, 상기 WC/C 혼합층은 WC가 풍부한 층과 C가 풍부한 층이 연속되게 형성되는 것을 특징으로 한다.In particular, the WC / C mixed layer is characterized in that the WC-rich layer and the C-rich layer is formed continuously.

또한, 상기 코팅 공정 진행시 챔버 내부 온도는 150 ~ 250℃의 범위에 있는 것을 특징으로 한다.In addition, the chamber internal temperature during the coating process is characterized in that in the range of 150 ~ 250 ℃.

이하, 본 발명의 공정방법을 더욱 상세히 설명하면 다음과 같다.Hereinafter, the process method of the present invention in more detail as follows.

본 발명은 물리적 기상 증착(PVD : Physical Vapour Deposition) 코팅 공정을 이용하여 고 내구성을 가지는 엔진 부품을 제조하는 것으로서, 더욱 상세하게는 에어컨의 컴프레셔의 슈(Shoe)를 히팅, 에칭 및 코딩 공정을 통해 제조하여 고 내구성을 가지면서 마찰계수가 적은 고 내구성 엔진 부품 제조방법에 관한 것이다.The present invention manufactures an engine component having high durability by using a physical vapor deposition (PVD) coating process, and more particularly, by heating, etching and coding a shoe of a compressor of an air conditioner. The present invention relates to a high durability engine component manufacturing method having high durability and low coefficient of friction.

좀 더 상세히 설명하면 다음과 같다.A more detailed description is as follows.

본 발명은 크게 3단계 공정 즉, 히팅, 에칭 및 코팅 공정으로 이루어진다.The present invention largely consists of a three step process, that is, heating, etching and coating process.

상기 히팅 공정은 기판(여기서는 코팅되지 않은 SUJ2)을 양극으로 하여 음극인 필라멘트에 전압을 인가하면 전자가 튀어나와 양극인 기판으로 입사되어 기판과의 충돌로 히팅이 된다.In the heating process, when a voltage is applied to a filament, which is a cathode, using a substrate (here, uncoated SUJ2) as an anode, electrons are blown out and incident on the substrate, which is an anode, and is heated by collision with the substrate.

이때, 챔버 내부의 온도는 240 ~ 250℃이고 공정시간은 10 ~ 15분이 적합하다.At this time, the temperature inside the chamber is 240 ~ 250 ℃ and the process time is suitable 10 ~ 15 minutes.

히팅 공정 다음에는 에칭 공정으로서 기판에 코팅의 금속결합을 발생시키기 위한 공정이다.The heating process is followed by an etching process to generate metal bonds of the coating to the substrate.

따라서, 상기 에칭 공정은 대기 중이나 고 진공에서 만들어진 얇은 산화층을 제거시킨다.Thus, the etching process removes the thin oxide layer made in air or at high vacuum.

챔버 내의 보조 양극에서 아크가 발생하고 이 때 기판은 네거티브로 바이어스되어 있다.An arc occurs at the auxiliary anode in the chamber, with the substrate negatively biased.

또한, 상기 기판이 플라즈마로부터 양이온을 끌어오게 되어, 상기 양이온이 가속되어 기판을 때리게 되어 얇은 산화층이나 잔여 오염물질을 제거한다.In addition, the substrate draws positive ions from the plasma, and the positive ions accelerate to strike the substrate to remove thin oxide layers or residual contaminants.

이 때, 공정 압력은 10-5Torr이고 에칭시간은 20분 정도이다.At this time, the process pressure is 10 -5 Torr and the etching time is about 20 minutes.

마지막으로 코팅 공정은 본 발명의 핵심 공정으로 이를 집중적으로 설명하면 다음과 같다.Finally, the coating process is the core process of the present invention.

상기 코팅 공정은 스퍼터링 공정으로 수행된다.The coating process is performed by a sputtering process.

공정 장비의 구조를 간략히 살펴보면도 1에 도시된 바와 같이, 공정 챔버(1) 내의 주입구(2)를 통해 아르곤 가스가 주입되고 소정의 공정을 수행하고 잔류가스 또는 공정 중 오염 물질은 진공펌프(3)를 경유하여 배출구로 빠져나가게 된다.Referring to the structure of the process equipment, as shown in FIG. 1, argon gas is injected through an injection port 2 in the process chamber 1, a predetermined process is performed, and residual gas or contaminants in the process are vacuum pumps 3. Exit to the outlet via).

상기 공정 챔버(1) 내에는 코팅되지 않은 SUJ2 기판(5)과 WC 타겟(Target)(6)이 소정의 위치에 설치되고, 공정 챔버(1)의 외주면에는 평판 마그네트론 스퍼터링 소오스(Planar Magnetron Sputtering Source)(4)가 장착된다.In the process chamber 1, an uncoated SUJ2 substrate 5 and a WC target 6 are installed at predetermined positions, and a planar magnetron sputtering source is formed on an outer circumferential surface of the process chamber 1. (4) is mounted.

여기서, 상기 평판 마그네트론 스퍼터링 소오스(4)는 전면에 Cr타겟을 부착하여 공정에 이용할 수 있게 하였다.Here, the flat plate magnetron sputtering source 4 is attached to the Cr target on the front surface to be used in the process.

통상 스퍼터링 공정은 공정 챔버(1) 내부로 아르곤가스를 주입하고 저 진공상태에서 고전압을 인가하면 평판 마그네트론 스퍼터링 소오스(4)에 의해 플라즈마가 발생하여 상기 아르곤가스가 이온화되고, 이 때 상기 양의 성질을 띠는 이온은 음극인 기판에 의해 끌어당겨지어 기판에 주입되어 층이 형성되게 하는 공정이다.In general, in the sputtering process, when argon gas is injected into the process chamber 1 and a high voltage is applied in a low vacuum state, plasma is generated by a flat plate magnetron sputtering source 4 to ionize the argon gas. The ion is attracted by the substrate, which is the cathode, and injected into the substrate to form a layer.

본 발명의 공정 챔버는 상기 평판 마그네트론 스퍼터링 소오스가 캐소드로 작용하고 이와 별도로 몇 mm 거리에 아노드가 있에 되어 플라즈마가 발생하여 가스가 이온화되고, 상기 이온이 평판 마그네트론 스퍼터링 소오스(4)로 입사 및 충돌을 하여 평판 마그네트론 스퍼터링 소오스(4) 전면에 있는 Cr 타겟의 Cr원자가 튀어나가게 되여 이것이 SUS2 기판(5)에 증착되는 것이다.In the process chamber of the present invention, the plate magnetron sputtering source acts as a cathode and the anode is several mm apart, so that plasma is generated to ionize the gas, and the ions enter and exit the plate magnetron sputtering source 4. The collision causes the Cr atoms of the Cr target on the front surface of the plate magnetron sputtering source 4 to protrude, which is deposited on the SUS2 substrate 5.

여기서, 평판 마그네트론 스퍼터링 소오스(4)에는 -600V의 직류전압이 인가된다.Here, a DC voltage of -600 V is applied to the flat plate magnetron sputtering source 4.

본 발명에서는 공정 챔버(1)의 내부 온도는 150 ~ 250℃로 유지하면서 공정을 수행하였다.In the present invention, the process was performed while maintaining the internal temperature of the process chamber 1 at 150 to 250 ° C.

코팅 공정의 첫번째는 2개의 Cr가 스퍼트되어 0.2 ~ 0.5㎛의 얇은 층이 형성되었고, 다음에 WC의 스퍼트에 의해 WC층이 형성되었다.In the first of the coating process, two Cr were sputtered to form a thin layer of 0.2 to 0.5 mu m, and then a WC layer was formed by the sputter of WC.

몇분 뒤에 반응 가스인 아세틸렌이 주입구(7)를 통해 공정챔버(1)에 주입시켰다.After a few minutes, acetylene, a reaction gas, was injected into the process chamber 1 through the inlet 7.

그 때, 아세틸렌은 이온화되었고 C 이온은 기판에 가속되어 주입되었다.At that time, acetylene was ionized and C ions were accelerated and implanted into the substrate.

여기서, 기판은 공정 중에 회전을 시켜주어 WC가 풍부한 층과 C가 풍부한 층이 연속하여 형성되었다.Here, the substrate was rotated during the process to form a WC-rich layer and a C-rich layer in succession.

또한, 본 발명의 코팅 공정에 이용된 공정 장비는 상기 히팅 및 에칭 공정에도 똑같이 적용되고 있음을 밝혀둔다.It is also noted that the process equipment used in the coating process of the present invention is equally applicable to the heating and etching processes.

아래의 참고도 1은 본 발명에 따른 증착된 코팅층의 구조를 나타내고, 참고도 2는 참고도 1에서 WC/C 코팅층의 확대된 것을 나타낸 것이다.Reference Figure 1 below shows the structure of the deposited coating layer according to the present invention, Reference Figure 2 shows an enlarged view of the WC / C coating layer in Reference Figure 1.

상기와 같은 공정에 의해 제조된 것을 다른 것과 비교를 하면 다음과 같다.Comparing the one prepared by the above process with another is as follows.

참고도 1Reference diagram 1

참고도 2Reference diagram 2

참고도 1에 도시된 바와 같이, 본 발명에 따라 SUJ2 기판을 물리적 기상 증착을 이용하여 공정을 수행하여 3개의 코팅층, 즉 Cr층, WC층 및 WC/C층이 형성되었다.As shown in FIG. 1, according to the present invention, the SUJ2 substrate was subjected to a process using physical vapor deposition to form three coating layers, that is, a Cr layer, a WC layer, and a WC / C layer.

특히, 참고도 2에 도시된 바와 같이, WC/C층은 C가 풍부한 층과 WC가 풍부한 층이 연속하여 형성되는 구조로 이루어져 있다.In particular, as shown in FIG. 2, the WC / C layer has a structure in which a layer rich in C and a layer rich in WC are continuously formed.

여기서, C가 풍부한 층은 무윤활 상태에서의 마찰을 적게 하고, WC가 풍부한 층은 마모성능을 뛰어나게 하여 준다.Here, the layer rich in C reduces friction in the non-lubricated state, and the layer rich in WC provides excellent wear performance.

비교예 1Comparative Example 1

표 1은 본 발명의 WC/C 코팅된 부품과 다른 재료로 코팅 또는 코팅되지 않은 부품을 비교한 것이다.Table 1 compares the WC / C coated parts of the present invention with parts coated or uncoated with other materials.

표 1은 핀온 디스크 테스팅 결과로서, 무윤활 상태이고, 디스크의 회전속도는 1000rpm이고 10,000번 정도 회전시켜 주었다. 또한, 핀과 시편의 접촉 압력은 50F/cm2이다.Table 1 shows the results of the pin-on disk testing, in the state of no lubrication, and the rotation speed of the disk was 1000 rpm and rotated about 10,000 times. In addition, the contact pressure between the pin and the specimen is 50 F / cm 2 .

실시예WC/C 코팅된 재료EXAMPLE WC / C Coated Material 비교예(1)코팅되지 않은 재료(SUJ2,SCM)Comparative Example (1) Uncoated Material (SUJ2, SCM) 비교예(2)TiN 코팅된 재료Comparative Example (2) TiN Coated Material 비교예(3)CrN코팅된 재료Comparative Example (3) CrN coated material 마찰계수(μ)Coefficient of friction (μ) 0.130.13 1.231.23 0.610.61 0.700.70 마찰온도(℃)Friction temperature (℃) 40 ~ 4540 to 45 134134 90 ~ 11090 to 110 80 ~ 10080-100 소음 유무Presence of noise radish U U U

상기 표 1에 도시된 바와 같이, 본 발명이 마찰계수가 다른 비교예에 비해 5 ~ 10배정도 적을 뿐만 아니라 마찰 온도에 있어서도 2 ~ 3배 적을 뿐만 아니라 마찰시 소음도 없는 것으로 나타났다.As shown in Table 1, the present invention is not only less than 5 to 10 times less than the friction coefficient of the other comparative example as well as 2 to 3 times less in the friction temperature as well as no noise during friction.

따라서, WC/C 코팅된 재료는 고 내구성을 가질 수 있다.Thus, the WC / C coated material can have high durability.

상기와 같이 제조된 피스톤에 장착된 슈(Shoe)는 고 내구성을 가지면서 컴프레셔 내에 무윤활 상태에서도 작동이 가능하게 된다.The shoe mounted on the piston manufactured as described above has a high durability and can be operated even in a non-lubricated state in the compressor.

상기와 같은 본 발명에 따른 피.브이.디 코팅 공정을 이용한 고 내구성 엔진 부품 제조방법은 종래의 에어컨의 컴프레셔의 피스톤에 장착된 슈에 관한 것으로 피.브이.디 코팅 공정을 이용하여 히팅, 에칭 및 코팅의 공정을 수행하여 Cr층, WC층 및 WC/C층을 형성하고 또한, 상기 WC/C층에는 C가 풍부한 층과 WC가 풍부한 층이 연속되게 형성됨으로써, 낮은 온도에서 코팅이 가능하여 열변형이 없을 뿐만 아니라 마찰계수를 낮추어주어 스워쉬 플레이트 및 피스톤과의 마모를 줄일 수 있고, 사판에 주석도금을 할 필요가 없어 원가절감을 기할 수 있는 효과가 있다.The high durability engine parts manufacturing method using the P. V coating process according to the present invention as described above relates to a shoe mounted on the piston of the compressor of a conventional air conditioner, which is heated and etched using the P. D coating process. And forming a Cr layer, a WC layer, and a WC / C layer by performing a coating process, and the C-rich layer and the WC-rich layer are continuously formed on the WC / C layer, thereby allowing coating at a low temperature. Not only is there no heat deformation, but also the friction coefficient can be lowered to reduce wear to the swash plate and the piston, and there is no need to tin plate the swash plate, thereby reducing the cost.

Claims (3)

히팅 공정, 에칭 공정, 코팅 공정을 포함하는 피.브이.디 코팅 공정을 이용한 고 내구성 엔진 부품 제조방법에 있어서,In the manufacturing method of high durability engine parts using P. V. coating process including heating process, etching process, coating process, 기판을 양극으로 하고 음극인 필라멘트에 전압을 인가하여 기판에 대한 히팅처리를 수행하는 히팅 공정;A heating step of heating the substrate by using a substrate as an anode and applying a voltage to the filament as the cathode; 기판을 네거티브로 바이어스하고 챔버 내의 보조전극으로 아크를 발생시켜 기판상의 얇은 산화층이나 잔여 오염물질을 제거하는 에칭 공정;An etching process of negatively biasing the substrate and generating an arc to the auxiliary electrode in the chamber to remove the thin oxide layer or residual contaminants on the substrate; 챔버의 내부에는 기판과 WC 타겟을 배치하는 동시에 외부에는 전면에 Cr 타겟을 갖는 평판 마그네트론 스퍼터링 소오스를 배치하는 한편, 챔버 내의 아르곤가스 분위기 하에서 저진공 및 고전압을 인가하여 Cr의 스퍼트에 의해 기판에 Cr층을 증착시키는 동시에 WC의 스퍼트에 의해 WC층을 증착시키고, 계속해서 챔버 내에 아세틸렌 반응가스를 주입하는 동시에 이온화된 C이온을 기판에 증착시켜서 기판의 코팅구조가 Cr층, WC층 및 WC/C층으로 이루어지게 하는 코팅 공정;A substrate and a WC target are placed inside the chamber, and a flat plate magnetron sputtering source having a Cr target on the front is placed on the outside, while a low vacuum and a high voltage are applied under an argon gas atmosphere in the chamber, whereby Cr While depositing the layer, the WC layer is deposited by the sputter of the WC, followed by injecting an acetylene reactant gas into the chamber, and simultaneously depositing ionized C ions onto the substrate so that the coating structure of the substrate is Cr, WC and WC / C A coating process for layering; 을 포함하여 이루어지는 것을 특징으로 하는 피.브이.디 코팅 공정을 이용한 고 내구성 엔진 부품 제조방법.A high durability engine component manufacturing method using a P. V. coating process, characterized in that comprises a. 제 1 항에 있어서, 상기 WC/C층은 WC가 풍부한 층과 C가 풍부한 층이 연속되게 형성되는 것을 특징으로 하는 피.브이.디 코팅 공정을 이용한 고 내구성 엔진 부품 제조방법.The method of claim 1, wherein the WC / C layer is formed of a WC-rich layer and a C-rich layer continuously. 제 1항에 있어서, 상기 코팅 공정 진행시 챔버 내부 온도는 150 ~ 250℃의 범위에 있는 것을 특징으로 하는 피.브이.디 코팅 공정을 이용한 고 내구성 엔진 부품 제조방법.The method of claim 1, wherein the chamber internal temperature is in a range of 150 to 250 ° C. during the coating process.
KR1019990067676A 1999-12-31 1999-12-31 Manufacturing method of high-durability engine parts using PVD coating processing KR100330785B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990067676A KR100330785B1 (en) 1999-12-31 1999-12-31 Manufacturing method of high-durability engine parts using PVD coating processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990067676A KR100330785B1 (en) 1999-12-31 1999-12-31 Manufacturing method of high-durability engine parts using PVD coating processing

Publications (2)

Publication Number Publication Date
KR20010066094A KR20010066094A (en) 2001-07-11
KR100330785B1 true KR100330785B1 (en) 2002-04-01

Family

ID=19634778

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990067676A KR100330785B1 (en) 1999-12-31 1999-12-31 Manufacturing method of high-durability engine parts using PVD coating processing

Country Status (1)

Country Link
KR (1) KR100330785B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101306224B1 (en) * 2011-04-13 2013-09-09 바코스 주식회사 High Speed Film Forming Apparatus, And Film Forming Method Using The Same
WO2013165036A1 (en) * 2012-05-02 2013-11-07 바코스 주식회사 High-speed film-forming device and film-forming method using same
KR101421605B1 (en) * 2012-03-06 2014-07-22 (주)국민진공 Plasma Cleaning Method of PVD Coating Device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100643617B1 (en) * 2004-11-15 2006-11-10 현대자동차주식회사 Method for Tungsten Carbide Carbon coating of tappet in engine
KR102427732B1 (en) * 2022-01-25 2022-08-01 한국진공주식회사 Wc/c coating film structure for extending lifetime of press roll for producing facility of secondary battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60100660A (en) * 1983-11-07 1985-06-04 Toshiba Tungaloy Co Ltd Surface-coated hard material
JPH0657409A (en) * 1992-08-11 1994-03-01 Mitsubishi Materials Corp Production of hard layer composite coated cutting tool excellent in strength and wear resistance
JPH06220608A (en) * 1993-01-28 1994-08-09 Sumitomo Electric Ind Ltd Surface-coated hard member and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60100660A (en) * 1983-11-07 1985-06-04 Toshiba Tungaloy Co Ltd Surface-coated hard material
JPH0657409A (en) * 1992-08-11 1994-03-01 Mitsubishi Materials Corp Production of hard layer composite coated cutting tool excellent in strength and wear resistance
JPH06220608A (en) * 1993-01-28 1994-08-09 Sumitomo Electric Ind Ltd Surface-coated hard member and its production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101306224B1 (en) * 2011-04-13 2013-09-09 바코스 주식회사 High Speed Film Forming Apparatus, And Film Forming Method Using The Same
KR101421605B1 (en) * 2012-03-06 2014-07-22 (주)국민진공 Plasma Cleaning Method of PVD Coating Device
WO2013165036A1 (en) * 2012-05-02 2013-11-07 바코스 주식회사 High-speed film-forming device and film-forming method using same

Also Published As

Publication number Publication date
KR20010066094A (en) 2001-07-11

Similar Documents

Publication Publication Date Title
US20060017011A1 (en) Ion source with particular grid assembly
US6503373B2 (en) Method of applying a coating by physical vapor deposition
CN110408889B (en) Wear-resistant antifriction carbon-doped TiAlN nano multilayer hard film and preparation method thereof
EP2578725B1 (en) Process for production of a covered member
US20140199561A1 (en) Coated article and method for manufacturing same
KR100330785B1 (en) Manufacturing method of high-durability engine parts using PVD coating processing
US7910217B2 (en) Wear resistant coatings for race land regions of bearing materials
CN111235532A (en) Coating device combining ion coating and electron beam evaporation coating and coating method thereof
CN113215525B (en) Rubber surface ultra-low friction multilayer composite carbon-based lubricating coating and construction method thereof
JP4720052B2 (en) Apparatus and method for forming amorphous carbon film
CN101880876B (en) Compressor sliding blade and surface coating layer treatment method thereof
CN1113168C (en) Rotary compressor
CN114672777B (en) Antioxidant Cr/CrAl nano multilayer coating and preparation method thereof
JP2001152319A (en) Surface treated metallic member having surface treatment layer excellent in adhesion, surface treatment method therefor, and rotary equipment member using the surface treatment method
US20120164356A1 (en) Process for surface treating aluminum or aluminum alloy and article made with same
CN201771772U (en) Sliding vane of compressor
US6500264B2 (en) Continuous thermal evaporation system
JP2001107220A (en) Machine parts coated with hard carbon film and its production method
KR20020028767A (en) Method of coating a substrate and vane for vane-type compressor
CN112708859A (en) Tool with anti-friction and anti-wear CrAlVN coating and preparation method thereof
CN106967977B (en) Tool and mould surface recombination nitride coatings preparation process
JP2685389B2 (en) Rotary compressor
JP3602270B2 (en) Rotary compressor
CN108866490A (en) The method and device and coating of amorphous tetrahedral carbon coating are thickeied using electron beam
KR100342904B1 (en) Steel having coating layer and method for producing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20060302

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee