JPH09241826A - Cemented carbide structural body, its production and cutting tool using the same - Google Patents

Cemented carbide structural body, its production and cutting tool using the same

Info

Publication number
JPH09241826A
JPH09241826A JP8078377A JP7837796A JPH09241826A JP H09241826 A JPH09241826 A JP H09241826A JP 8078377 A JP8078377 A JP 8078377A JP 7837796 A JP7837796 A JP 7837796A JP H09241826 A JPH09241826 A JP H09241826A
Authority
JP
Japan
Prior art keywords
cemented carbide
substrate
ceramic layer
layer
hard ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8078377A
Other languages
Japanese (ja)
Other versions
JP3643639B2 (en
Inventor
Hideki Kato
英喜 加藤
Masaru Matsubara
優 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP07837796A priority Critical patent/JP3643639B2/en
Publication of JPH09241826A publication Critical patent/JPH09241826A/en
Application granted granted Critical
Publication of JP3643639B2 publication Critical patent/JP3643639B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To show excellent cuttability in a cemented carbide structural body by directly coating the surface of a specified cemented carbide substrate with a hard ceramic layer composed of specified coating substance. SOLUTION: This cemented carbide structural body is the one in which the surface of WC base cemented carbide substrate contg. Co or bonding phase metal consisting essentially of Co with a hard ceramic layer without interposing an embrittled layer. This hard ceramic layer is formed of coating substance selected from one or more kinds of groups among the groups 4a, 5a and 6a elements in a periodic table of elements, the carbide, nitride, carbon nitride of Al and two or more kinds of solid solutions thereamong. The embrittled layer denotes the part in the substrate surface in which the amt. of the bonding metal phases is reduced to <=30% for some reason compared to that at the inside of the substrate. The hard ceramic layer is coated by a PVD method. In this way, excellent wear resistance can be obtd. without the peeling of the hard layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、超硬合金構造体、
その製造方法及びそれを用いた切削工具に属する。この
超硬合金構造体は、耐摩耗性と耐欠損性の要求される過
酷な条件で使用される切削工具に好適である。
TECHNICAL FIELD The present invention relates to a cemented carbide structure,
It belongs to a manufacturing method thereof and a cutting tool using the same. This cemented carbide structure is suitable for a cutting tool used under severe conditions that require wear resistance and fracture resistance.

【0002】[0002]

【従来の技術】炭化タングステン(WC)を主成分とす
る硬質相粒子をコバルト(Co)、(Ni)等の鉄族金
属からなる結合相金属と共に焼結したWC基超硬合金
は、セラミックに比べて高靱性ではある。しかし、これ
を現在実用化されている高速切削加工に要求される切削
工具としてそのまま用いるには、耐熱性、耐磨耗性、耐
腐食性が不十分であるので、基材表面に元素周期律表の
4a族金属又はAlの化合物、例えばアルミナ(Al2
3)、酸窒化アルミ(AlON)、窒化アルミ(Al
N)、窒化チタン(TiN)、炭窒化チタン(TiC
N)、炭化チタン(TiC)、窒化ジルコニウム(Zr
N)、窒化ハフニウム(HfN)等の硬質セラミック層
を一層又は複数層被覆して用いる場合が多い。
2. Description of the Related Art A WC-based cemented carbide obtained by sintering hard phase particles containing tungsten carbide (WC) as a main component together with a binder phase metal composed of an iron group metal such as cobalt (Co) and (Ni) is a ceramic material. It has high toughness as compared with the above. However, heat resistance, wear resistance, and corrosion resistance are insufficient to use this as it is as a cutting tool required for high-speed cutting currently in practical use. Table 4 Group 4a metal or Al compounds, such as alumina (Al 2
O 3 ), aluminum oxynitride (AlON), aluminum nitride (Al
N), titanium nitride (TiN), titanium carbonitride (TiC)
N), titanium carbide (TiC), zirconium nitride (Zr
N), hafnium nitride (HfN), and other hard ceramic layers are often used by coating one or more layers.

【0003】ところで、被覆される硬質セラミック層が
アルミナのような絶縁性を呈する物質の場合は気相化学
蒸着法(CVD法)によって形成するのが一般的であ
る。一方、被覆される硬質セラミック層がチタン化合物
例えば窒化チタンの様な導電性を呈する物質の場合は、
CVD法のほか、アーク蒸着、スパッタリング、イオン
プレーティング等のPVD法によっても形成できる。
When the hard ceramic layer to be coated is an insulating substance such as alumina, it is generally formed by a vapor phase chemical vapor deposition method (CVD method). On the other hand, when the hard ceramic layer to be coated is a titanium compound, for example, a substance exhibiting conductivity such as titanium nitride,
Besides the CVD method, it can be formed by a PVD method such as arc vapor deposition, sputtering, or ion plating.

【0004】しかし、CVD法の場合は、原料ガスを1
000℃程度の高温に加熱して基体表面に硬質セラミッ
ク層を膜状に析出させるので、冷却後の硬質セラミック
層表面には引っ張り応力が働く関係となり、基体自体の
抗折強度を弱め、切削工具においては刃先に欠損を生じ
やすくするという欠点がある。
However, in the case of the CVD method, the raw material gas is 1
Since the hard ceramic layer is deposited in a film form on the surface of the substrate by heating to a high temperature of about 000 ° C., tensile stress acts on the surface of the hard ceramic layer after cooling, weakening the bending strength of the substrate itself and cutting tool. However, there is a drawback that the cutting edge is likely to be damaged.

【0005】一方、PVD法は、硬質セラミック層を形
成する反応温度が400〜500℃程度と低く、また基
材加熱温度も低いのでかかる欠点がなく、切削工具の被
覆に好んで用いられてきている。しかも、冷却後の硬質
セラミック層には0.1〜1GPa程度の圧縮応力が残
留する。基体表面に形成された硬質セラミック層に圧縮
応力がかかっていると、硬質セラミック層のひび割れの
進行は低下し、耐欠損性に有利である。
On the other hand, the PVD method has a low reaction temperature for forming a hard ceramic layer of about 400 to 500 ° C. and a low base material heating temperature, and thus has no such drawbacks and has been favorably used for coating cutting tools. There is. Moreover, a compressive stress of about 0.1 to 1 GPa remains in the hard ceramic layer after cooling. When compressive stress is applied to the hard ceramic layer formed on the surface of the substrate, the progress of cracking of the hard ceramic layer is reduced, which is advantageous for fracture resistance.

【0006】ところで、上述のようにWC基超硬合金の
結合相金属としては主にCo,Niが用いられている。
このうち、Niを結合金属相として用いる場合には、耐
腐食性が高い点でCoを用いるものよりも優れる。しか
し、耐熱性や硬度の点で劣るので、切削工具用基材とし
てはCoまたはCoを主とした結合金属相を用いたWC
基超硬合金が好んで用いられる。
By the way, as described above, Co and Ni are mainly used as the binder phase metal of the WC-based cemented carbide.
Among these, when Ni is used as the binding metal phase, it is superior to the one using Co in that the corrosion resistance is high. However, since it is inferior in heat resistance and hardness, WC using Co or a bonded metal phase mainly containing Co as a base material for a cutting tool.
Base cemented carbide is preferably used.

【0007】[0007]

【発明が解決しようとする課題】ところが、このCoを
結合相金属として用いたWC基超硬合金においては、P
VD法にて硬質セラミック層を被覆すると、突発的に硬
質セラミック層が剥離することがある。特に、TiN、
TiCN等のTiの化合物からなる硬質セラミック層を
被覆した場合に突発的剥離が生じやすいことが判った。
However, in the WC-based cemented carbide using Co as a binder phase metal, P
When the hard ceramic layer is coated by the VD method, the hard ceramic layer may be suddenly peeled off. Especially TiN,
It has been found that when a hard ceramic layer made of a Ti compound such as TiCN is coated, sudden peeling is likely to occur.

【0008】そこで、硬質セラミック層に強い圧縮応力
が働くと、この層が剥離しやすくなると考えられたの
で、この層の残留圧縮応力を低くするため、この層の厚
みを1μm以下に薄く形成したが、かかる突発的剥離を
根絶することはできなかった。
Therefore, it was considered that when a strong compressive stress acts on the hard ceramic layer, this layer is likely to peel off. Therefore, in order to reduce the residual compressive stress of this layer, the thickness of this layer was made thin to 1 μm or less. However, such abrupt detachment could not be eradicated.

【0009】一方、Niを結合相金属として用いたWC
基超硬合金に同様に硬質セラミック層を被覆した場合に
は、このような突発的剥離は生じにくい。このことか
ら、Niに比してCoは腐食しやすいため、所定形状に
研削加工後PVD処理の前に行う酸またはアルカリ洗浄
処理において、表面部分の結合相からCoが除去されて
減少し、相対的にWC基超硬合金の粒子が多く、結合相
金属が少なくなった加工層(脆化層)が、発生したため
であると考えられた。
On the other hand, WC using Ni as a binder metal
When the base cemented carbide is similarly coated with a hard ceramic layer, such abrupt peeling is unlikely to occur. From this, Co is more likely to corrode than Ni, so Co is removed from the binder phase of the surface portion in the acid or alkali cleaning treatment that is performed after grinding into a predetermined shape and before PVD treatment. It is considered that this is because a processed layer (embrittlement layer) in which the amount of WC-based cemented carbide particles is large and the amount of binder phase metal is small is generated.

【0010】本発明はかかる不具合を解決するためにな
されたものであって、安定した耐剥離性を有する硬質セ
ラミック層を被覆したCoを結合相金属とするWC超硬
合金構造体を提供することにある。また、本発明の他の
目的は、かかるWC超硬合金構造体を製造する方法を提
供することにある。
The present invention has been made to solve the above problems, and provides a WC cemented carbide structure containing Co as a binder phase metal coated with a hard ceramic layer having stable delamination resistance. It is in. Another object of the present invention is to provide a method for producing such a WC cemented carbide structure.

【0011】[0011]

【課題を解決するための手段】本発明の目的は、Coま
たはCo主体とした結合相金属を有するWC基超硬合金
からなる基体の脆化層を除去した表面に、元素周期律表
の4a,5a,6a族元素及びAlの炭化物、窒化物、
炭窒化物、酸化物並びにそれら2種以上の固溶体の群か
ら選ばれる1種以上の被覆物質からなる硬質セラミック
層を、直接被覆してなる超硬合金構造体によって達成さ
れる。
The object of the present invention is to provide a substrate made of WC-based cemented carbide having Co or a Co-based binder phase metal on the surface from which the embrittlement layer has been removed, and to 4a of the periodic table of elements. , 5a, 6a group elements and Al carbides, nitrides,
This is achieved by a cemented carbide structure obtained by directly coating a hard ceramic layer composed of a carbonitride, an oxide, and one or more coating materials selected from the group of two or more solid solutions thereof.

【0012】すなわち、本発明の超硬合金構造体は、C
oまたはCo主体とした結合相金属を有するWC基超硬
合金からなる基体の表面に、元素周期律表の4a,5
a,6a族元素及びAlの炭化物、窒化物、炭窒化物、
酸化物並びにそれら2種以上の固溶体の群から選ばれる
1種以上の被覆物質からなる硬質セラミック層を、脆化
層を介することなく直接被覆してなるものである。ここ
で脆化層とは、基体表面のうちで基体内部に比べて結合
金属相量が何らかの事情により30%以下に減った部分
を言う。
That is, the cemented carbide structure of the present invention is C
On the surface of a substrate made of a WC-based cemented carbide having a binder phase metal mainly composed of o or Co, 4a, 5
carbides, nitrides, carbonitrides of a and 6a group elements and Al,
A hard ceramic layer composed of an oxide and at least one coating material selected from the group consisting of two or more solid solutions thereof is directly coated without interposing an embrittlement layer. Here, the embrittlement layer refers to a portion of the surface of the substrate where the amount of the bound metallic phase is reduced to 30% or less as compared with the inside of the substrate due to some circumstances.

【0013】本発明の超硬合金構造体を製造する適切な
方法は、CoまたはCo主体とした結合相金属を有する
WC基超硬合金からなる基体の表面に、元素周期律表の
4a,5a,6a族元素及びAlの炭化物、窒化物、炭
窒化物、酸化物並びにそれら2種以上の固溶体の群から
選ばれる1種以上の被覆物質からなる硬質セラミック層
を被覆する方法において、(1)切削工具基体を所望の
形状に研削加工し、(2)その基体表面を酸またはアル
カリで洗浄し、(3)かかる洗浄によって基体表面に生
じた脆化層を除去した後、(4)前記硬質セラミック層
をPVD法によって被覆することを特徴とする。
A suitable method for producing the cemented carbide structure of the present invention is to use a WC-based cemented carbide having a Co or Co-based binder phase metal on the surface of a substrate as 4a, 5a of the Periodic Table of Elements. , 6a group elements and Al carbides, nitrides, carbonitrides, oxides, and a hard ceramic layer comprising one or more coating materials selected from the group consisting of two or more solid solutions thereof. The cutting tool substrate is ground into a desired shape, (2) the substrate surface is washed with an acid or alkali, (3) the embrittlement layer formed on the substrate surface by such washing is removed, and (4) the hard It is characterized in that the ceramic layer is coated by the PVD method.

【0014】本発明の超硬合金構造体が安定して耐剥離
性に優れる理由を以下に説明する。先ず、耐剥離性が突
発的に低下した従来の工具を調査したところ、硬質相の
形成される基体表面に、内部に比べて著しく結合金属相
が減少した脆化層が生じていることが判った。そして、
PVD法によって形成された硬質層には、既述の通り圧
縮応力が残っているので、脆化層が応力に耐えきれずに
破壊し、硬質層の剥離を伴うものと推定された。さらに
究明したところ、上記の脆化層の大部分は、研削加工
後、PVD法による硬質層を形成するための洗浄作業の
際に、アルカリ、酸等の洗浄液で基体表面の結合金属相
が腐食されて生じることが判った。
The reason why the cemented carbide structure of the present invention is stable and has excellent peel resistance will be described below. First, when a conventional tool having a sudden reduction in peeling resistance was investigated, it was found that an embrittlement layer was formed on the surface of the substrate on which the hard phase was formed, in which the bonding metal phase was significantly reduced compared to the inside. It was And
Since the compressive stress remains in the hard layer formed by the PVD method as described above, it was presumed that the embrittlement layer failed to withstand the stress and was broken, and the hard layer was peeled off. Further investigation revealed that most of the above-mentioned embrittlement layers corroded the bonding metal phase on the substrate surface by a cleaning solution such as alkali or acid during the cleaning operation for forming the hard layer by the PVD method after grinding. It turned out that it was caused.

【0015】本発明ではブラスト法によって脆化層を除
去しているが、この方法によると脆化層を除いた後の基
体表面は基体内部組織と同等にすることが出来るだけで
なく、基体表面に極めて細かい傷を残し、この傷がPV
D法による硬質セラミック層の形成時の初期段階におい
て一種の活性核となり、またアンカー効果も発揮して相
乗的に硬質セラミック層の耐剥離性を更に向上させると
考えられる。
In the present invention, the embrittlement layer is removed by the blast method. According to this method, not only the surface of the substrate after removing the embrittlement layer can be made equal to the internal structure of the substrate, but also the surface of the substrate is Leaving very small scratches on the PV
It is considered that it becomes a kind of active nucleus in the initial stage of the formation of the hard ceramic layer by the D method, and it also exerts an anchoring effect to synergistically further improve the peel resistance of the hard ceramic layer.

【0016】[0016]

【発明の実施の形態】硬質セラミック層としては、Ti
N、TiCN又は(Ti,Al)Nのいずれかからなる
ものが挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION
Examples thereof include those made of N, TiCN or (Ti, Al) N.

【0017】脆化層を除く処理として典型的な方法は、
ブラスト処理である。ブラスト処理の場合、用いられる
砥粒の粒径、砥粒の材質、噴射圧力、噴射時間等の処理
条件として、基体である超硬合金の形状を損ねない範囲
で設定するべきである。特に、砥粒に関しては、粗いも
のを使用すると、基体の稜角にチッピングやカケを生じ
る可能性が高い。超硬合金構造体の用途が切削工具であ
る場合、基体の稜角が刃先となるので、その部分にブラ
スト処理段階でチッピングやカケを生じると製品不良に
つながる。従って、使用する砥粒の粒径は50μm以下
のものが望ましい。
A typical method for removing the embrittlement layer is as follows.
It is a blast process. In the case of blasting, the processing conditions such as the grain size of the abrasive grains used, the material of the abrasive grains, the injection pressure, and the injection time should be set within the range that does not impair the shape of the cemented carbide as the base. In particular, if coarse abrasive grains are used, there is a high possibility that chipping or chipping will occur at the ridge angle of the substrate. When the application of the cemented carbide structure is a cutting tool, the ridge angle of the substrate serves as the cutting edge, and chipping or chipping at that portion during the blasting process leads to product defects. Therefore, it is desirable that the abrasive grains used have a grain size of 50 μm or less.

【0018】[0018]

【実施例】WC−10重量%Co組成の焼結体(WC硬
質粒子径0.8〜1.8μm)を、研削加工して得られ
たISO規格SNGN432形状の超硬合金製スローア
ウエイチップを準備した。このスローアウエイチップの
断面は、図1に模式的に示される。また、その表面に
は、研削加工の痕跡が残っていることが電子顕微鏡(S
EM)にて確認された。このスローアウエイチップを基
体とし、これを2Nの塩酸水溶液に所定時間浸漬した。
再びSEMで基体の表面を観察したところ、図2に示す
ように、Coの溶出によって生じたと思われる凹凸の脆
化層が認められた。凹凸の程度は、酸に浸漬した時間の
長いものほど顕著であった。
EXAMPLE A cemented carbide throwaway tip of ISO standard SNGN432 shape obtained by grinding a sintered body of WC-10 wt% Co composition (WC hard particle diameter 0.8 to 1.8 μm). Got ready. The cross section of this throwaway tip is shown schematically in FIG. In addition, the surface of the surface is left with traces of the grinding process, and the electron microscope (S
EM). This throwaway chip was used as a substrate and immersed in a 2N hydrochloric acid aqueous solution for a predetermined time.
When the surface of the substrate was observed again by SEM, as shown in FIG. 2, an embrittlement layer having irregularities that was considered to be caused by elution of Co was recognized. The degree of unevenness was more remarkable as the time of immersion in acid was longer.

【0019】その後、基体の表面4箇所のCo量をED
Xにて測定し、各基体についてCo量の平均値を算出し
た。そして、硬質層がTiNからなるものについては、
その平均値が7.0〜10.0重量%、3.0〜7.0
重量%及び0〜3.0重量%の3グループに区分けし、
各グループ100個の基体を評価対象とした。また、硬
質層がTiCNもしくは(Ti,Al)Nからなるもの
については、Co平均値が0〜3.0重量%の範囲に属
する100個の基体を評価対象とした。
After that, the Co amount at four points on the surface of the substrate was measured by ED.
It was measured at X, and the average value of Co amount was calculated for each substrate. And for the hard layer made of TiN,
The average value is 7.0 to 10.0% by weight, 3.0 to 7.0.
It is divided into 3 groups of weight% and 0 to 3.0 weight%,
100 substrates in each group were evaluated. For the hard layer made of TiCN or (Ti, Al) N, 100 substrates having a Co average value in the range of 0 to 3.0 wt% were evaluated.

【0020】次に、表面のCo量測定後の基体を、それ
ぞれブラスト装置内にセットし、下記の条件でブラスト
処理した。ブラスト処理した基体の表面を再びSEMで
観察したところ、図3に示すように、いずれも凹凸が平
滑化しており、脆化層が除去されたものと認められた。
Next, each of the substrates after measuring the amount of Co on the surface was set in a blasting device and blasted under the following conditions. When the surface of the blast-treated substrate was observed again by SEM, as shown in FIG. 3, it was recognized that the unevenness was smoothed and the embrittlement layer was removed.

【0021】ブラスト条件:砥粒 #320アランダム 圧力0.2MPa 時間10秒 ブラスト処理した基体に、イオンプレーティング装置を
用いて、表1に示す各種の硬質層を4μmの膜厚で被覆
することによって、試料No.1〜5の本発明超硬合金
構造体を各100個製造した。
Blasting conditions: Abrasive grains # 320 Alundum Pressure 0.2 MPa Time 10 seconds The blasted substrate is coated with various hard layers shown in Table 1 to a thickness of 4 μm using an ion plating device. Sample No. 100 pieces of 1 to 5 cemented carbide structures of the present invention were manufactured.

【0022】比較のために、前記3グループの基体に対
してブラスト処理しない以外はNo.1〜5の合金と同
一条件にて試料No.R1〜R5の比較用超硬合金構造
体を各100個製造した。
For comparison, the samples No. 1 and No. 3 were treated except that the substrates of the three groups were not blasted. Sample No. 1 under the same conditions as the alloys 1 to 5. 100 cemented carbide structures for comparison of R1 to R5 were manufactured.

【0023】得られた超硬合金構造体No.1〜5及び
No.R1〜R5の表面に、ロックウェル硬度計(HR
A)を使用して、そのダイヤモンド圧子を打ち込み、硬
質層の剥離のないものを耐剥離性良好、硬質層が剥離し
たものを耐剥離性不良と評価し、良品率=(良品個数)
/(100個)を算出し、表1に併記した。
The obtained cemented carbide structure No. Nos. 1 to 5 and Nos. Rockwell hardness tester (HR
Using A), the diamond indenter was punched in, and those without peeling of the hard layer were evaluated as having good peeling resistance, and those with peeling of the hard layer were evaluated as having poor peeling resistance, and the rate of non-defective products = (number of non-defective products)
/ (100 pieces) was calculated and is also shown in Table 1.

【0024】[0024]

【表1】 表1にみられるように、本発明範囲内の超硬合金構造体
は、ブラスト処理前の表面のCo量に係わらず耐剥離性
が良好であった。これは、ブラスト処理によってCo量
の少ない脆化層が除去され、各試料とも表面のCo量が
脆化前と同程度に回復したためであると考えられる。こ
れに対して、比較用の超硬合金構造体は、表面が脆化し
ていないNo.R1については本発明の超硬合金構造体
とほぼ同等の耐剥離性を示したが、表面のCo量が減る
につれて耐剥離性が顕著に劣化した。
[Table 1] As shown in Table 1, the cemented carbide structures within the scope of the present invention had good peel resistance regardless of the amount of Co on the surface before blasting. It is considered that this is because the blast treatment removed the embrittlement layer having a small amount of Co, and the Co amount on the surface of each sample was recovered to the same level as before embrittlement. On the other hand, in the comparative cemented carbide structure, the surface was not embrittled. Although R1 exhibited almost the same peeling resistance as the cemented carbide structure of the present invention, the peeling resistance markedly deteriorated as the amount of Co on the surface decreased.

【0025】次に試料No.3及びNo.R3の超硬合
金構造体について下記の条件で湿式による切削テストを
行った。 被削材 FCD600 切削速度 300m/min 切り込み 1.0mm 送り 0.2mm/rev その結果、試料No.3の3分後のVB摩耗量は僅か
0.05mmであったが、試料No.R3の3分後のV
B摩耗量は0.3mmに達した。従って、脆化層を除く
処理が超硬合金構造体の耐摩耗性向上に寄与することも
明らかである。
Next, sample No. 3 and No. 3 A wet cutting test was performed on the cemented carbide structure of R3 under the following conditions. Work material FCD600 Cutting speed 300 m / min Depth of cut 1.0 mm Feed 0.2 mm / rev As a result, sample No. The amount of VB wear after 3 minutes for Sample No. 3 was only 0.05 mm. V 3 minutes after R3
The B wear amount reached 0.3 mm. Therefore, it is clear that the treatment for removing the embrittlement layer contributes to the improvement of the wear resistance of the cemented carbide structure.

【0026】[0026]

【発明の効果】以上のように、本発明超硬合金構造体
は、硬質層の耐剥離性が安定して優れているので、これ
を高送り切削や断続切削等の切削工具として用いた場合
に、硬質層が剥離することなく優れた耐摩耗性が得られ
る。基体が超微粒子超硬合金の場合には、高強度の基体
と優れた耐摩耗性を備えた硬質層との組み合わせによ
り、特に優れた切削性能を発揮する。
As described above, the cemented carbide structure of the present invention has a stable and excellent delamination resistance of the hard layer. Therefore, when it is used as a cutting tool for high-feed cutting or intermittent cutting, etc. In addition, excellent wear resistance can be obtained without the hard layer peeling off. When the substrate is an ultrafine particle cemented carbide, particularly excellent cutting performance is exhibited by the combination of the high-strength substrate and the hard layer having excellent wear resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】研削加工後且つ洗浄前の基体を示す模式的断面
図である。
FIG. 1 is a schematic cross-sectional view showing a substrate after grinding and before cleaning.

【図2】洗浄後且つブラスト処理前の基体を示す模式的
断面図である。
FIG. 2 is a schematic cross-sectional view showing a substrate after cleaning and before blasting.

【図3】ブラスト処理後の基体を示す模式的断面図であ
る。
FIG. 3 is a schematic cross-sectional view showing a substrate after a blast treatment.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】CoまたはCo主体とした結合相金属を有
するWC基超硬合金からなる基体の表面に、元素周期律
表の4a,5a,6a族元素及びAlの炭化物、窒化
物、炭窒化物、酸化物並びにそれら2種以上の固溶体の
群から選ばれる1種以上の被覆物質からなる硬質セラミ
ック層を、脆化層を介することなく直接被覆してなる超
硬合金構造体。
1. A carbide, nitride, or carbonitride of a 4a, 5a, or 6a group element of the periodic table of elements and Al on the surface of a substrate made of WC-based cemented carbide having a Co or Co-based binder phase metal. Cemented carbide structure formed by directly coating a hard ceramic layer composed of a coating material, an oxide, and one or more coating materials selected from the group of two or more solid solutions thereof without interposing an embrittlement layer.
【請求項2】前記硬質セラミック層が、TiN、TiC
N又は(Ti,Al)Nのいずれかからなる請求項1に
記載の超硬合金構造体。
2. The hard ceramic layer comprises TiN, TiC
The cemented carbide structure according to claim 1, comprising either N or (Ti, Al) N.
【請求項3】請求項1又は2に記載の超硬合金構造体か
らなる切削工具。
3. A cutting tool comprising the cemented carbide structure according to claim 1.
【請求項4】CoまたはCo主体とした結合相金属を有
するWC基超硬合金からなる基体の表面に、元素周期律
表の4a,5a,6a族元素及びAlの炭化物、窒化
物、炭窒化物、酸化物並びにそれら2種以上の固溶体の
群から選ばれる1種以上の被覆物質からなる硬質セラミ
ック層を被覆する方法において、 (1)切削工具基体を所望の形状に研削加工し、 (2)その基体表面を酸またはアルカリで洗浄し、 (3)かかる洗浄によって基体表面に生じた脆化層を除
去した後、 (4)前記硬質セラミック層をPVD法によって被覆す
ることを特徴とする超硬合金構造体の製造方法。
4. A carbide, nitride or carbonitride of 4a, 5a, 6a group elements of the periodic table of elements and Al on the surface of a substrate made of WC-based cemented carbide having a Co or Co-based binder phase metal. Object, an oxide, and a method for coating a hard ceramic layer made of one or more coating materials selected from the group of two or more solid solutions thereof, (1) grinding a cutting tool substrate into a desired shape, ) The surface of the substrate is washed with an acid or alkali, (3) the embrittlement layer generated on the substrate surface by such washing is removed, and (4) the hard ceramic layer is coated by a PVD method. Method for manufacturing hard alloy structure.
【請求項5】前記硬質セラミック層がTiN、TiCN
又は(Ti,Al)Nのいずれかからなる請求項4に記
載の超硬合金構造体の製造方法。
5. The hard ceramic layer is made of TiN, TiCN.
The method for manufacturing a cemented carbide structure according to claim 4, comprising either (Ti, Al) N.
【請求項6】前記脆化層をブラスト法によって除去する
ことを特徴とする請求項5に記載の超硬合金構造体の製
造方法。
6. The method for manufacturing a cemented carbide structure according to claim 5, wherein the embrittlement layer is removed by a blast method.
【請求項7】前記ブラスト法にて使用する砥粒の粒径が
50μm以下であることを特徴とする請求項6に記載の
超硬合金構造体の製造方法。
7. The method for producing a cemented carbide structure according to claim 6, wherein the grain size of the abrasive grains used in the blasting method is 50 μm or less.
【請求項8】請求項4〜7のいずれかに記載した超硬合
金構造体の製造方法において、前記基体として超硬工具
用基体を用いる超硬工具の製造方法。
8. A method for manufacturing a cemented carbide structure according to claim 4, wherein a cemented carbide tool substrate is used as the substrate.
JP07837796A 1996-03-05 1996-03-05 Cemented carbide structure, manufacturing method thereof and cutting tool using the same Expired - Fee Related JP3643639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07837796A JP3643639B2 (en) 1996-03-05 1996-03-05 Cemented carbide structure, manufacturing method thereof and cutting tool using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07837796A JP3643639B2 (en) 1996-03-05 1996-03-05 Cemented carbide structure, manufacturing method thereof and cutting tool using the same

Publications (2)

Publication Number Publication Date
JPH09241826A true JPH09241826A (en) 1997-09-16
JP3643639B2 JP3643639B2 (en) 2005-04-27

Family

ID=13660336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07837796A Expired - Fee Related JP3643639B2 (en) 1996-03-05 1996-03-05 Cemented carbide structure, manufacturing method thereof and cutting tool using the same

Country Status (1)

Country Link
JP (1) JP3643639B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002536194A (en) * 1999-02-11 2002-10-29 ケンナメタル インコーポレイテッド Method of making cutting tool and cutting tool
JP2007031779A (en) * 2005-07-27 2007-02-08 Tungaloy Corp Film-coated sintered alloy
WO2008105519A1 (en) * 2007-02-28 2008-09-04 Kyocera Corporation Cutting tool and process for manufacturing the same
WO2013136905A1 (en) 2012-03-14 2013-09-19 住友電工ハードメタル株式会社 Cutting tool
CN113373453A (en) * 2021-06-09 2021-09-10 江西江钨硬质合金有限公司 Cleaning method used before coating of hard alloy numerical control blade

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5129987A (en) * 1974-09-04 1976-03-13 Eishin Kagaku Kk JIKITAN SHOHOHO
JPS60100660A (en) * 1983-11-07 1985-06-04 Toshiba Tungaloy Co Ltd Surface-coated hard material
JPS62174380A (en) * 1986-01-27 1987-07-31 Mitsubishi Metal Corp Surface coated sintered hard alloy member for cutting tool
JPH0428854A (en) * 1990-05-24 1992-01-31 Toshiba Tungaloy Co Ltd Surface treatment for base material for coated tool
JPH06108253A (en) * 1992-09-29 1994-04-19 Kyocera Corp Coated sintered hard alloy
JPH0985507A (en) * 1995-09-22 1997-03-31 Mitsubishi Materials Corp Cutting tip made of surface coating tungsten carbide group cemented carbide alloy

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5129987A (en) * 1974-09-04 1976-03-13 Eishin Kagaku Kk JIKITAN SHOHOHO
JPS60100660A (en) * 1983-11-07 1985-06-04 Toshiba Tungaloy Co Ltd Surface-coated hard material
JPS62174380A (en) * 1986-01-27 1987-07-31 Mitsubishi Metal Corp Surface coated sintered hard alloy member for cutting tool
JPH0428854A (en) * 1990-05-24 1992-01-31 Toshiba Tungaloy Co Ltd Surface treatment for base material for coated tool
JPH06108253A (en) * 1992-09-29 1994-04-19 Kyocera Corp Coated sintered hard alloy
JPH0985507A (en) * 1995-09-22 1997-03-31 Mitsubishi Materials Corp Cutting tip made of surface coating tungsten carbide group cemented carbide alloy

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002536194A (en) * 1999-02-11 2002-10-29 ケンナメタル インコーポレイテッド Method of making cutting tool and cutting tool
JP4680392B2 (en) * 1999-02-11 2011-05-11 ケンナメタル インコーポレイテッド How to create a cutting tool
JP2007031779A (en) * 2005-07-27 2007-02-08 Tungaloy Corp Film-coated sintered alloy
WO2008105519A1 (en) * 2007-02-28 2008-09-04 Kyocera Corporation Cutting tool and process for manufacturing the same
WO2013136905A1 (en) 2012-03-14 2013-09-19 住友電工ハードメタル株式会社 Cutting tool
KR20140138676A (en) 2012-03-14 2014-12-04 스미또모 덴꼬오 하드메탈 가부시끼가이샤 Cutting tool
US9498828B2 (en) 2012-03-14 2016-11-22 Sumitomo Electric Hardmetal Corp. Cutting tool
CN113373453A (en) * 2021-06-09 2021-09-10 江西江钨硬质合金有限公司 Cleaning method used before coating of hard alloy numerical control blade

Also Published As

Publication number Publication date
JP3643639B2 (en) 2005-04-27

Similar Documents

Publication Publication Date Title
KR102033188B1 (en) Surface-coated cutting tool with hard coating that exhibits excellent chipping resistance and abrasion resistance
JP5363445B2 (en) Cutting tools
JP2018521862A (en) Tool with multilayer arc PVD coating
JP4786800B2 (en) Cutting tool coated with PVD-
JP5111379B2 (en) Cutting tool, manufacturing method thereof and cutting method
JP2007001007A (en) Composite coating film for finishing hardened steel
JPH06509789A (en) A tool having a wear-resistant blade made of cubic boron nitride or polycrystalline cubic boron nitride, its manufacturing method, and its use
KR100847715B1 (en) Cutting tool insert and method for use thereof
JP3658949B2 (en) Coated cemented carbide
JP5402507B2 (en) Surface coated cutting tool
KR101503128B1 (en) Surface-coated cutting tool
JPH11124672A (en) Coated cemented carbide
EP1253124A1 (en) Highly adhesive surface-coated cemented carbide and method for producing the same
JP4142955B2 (en) Surface coated cutting tool
JP4375691B2 (en) Composite high hardness material
JP3643639B2 (en) Cemented carbide structure, manufacturing method thereof and cutting tool using the same
JP2964669B2 (en) Boron nitride coated hard material
JP2926883B2 (en) Surface-coated hard member with excellent wear resistance
JP2000212743A (en) Surface coated sintered alloy excellent in peeling resistance and its production
JPH0569204A (en) Hard layer coated tungsten carbide group cemented carbide made cutting tool
JP2595203B2 (en) High adhesion diamond coated sintered alloy and method for producing the same
JP3360565B2 (en) Surface coated cemented carbide cutting tool with a hard coating layer exhibiting excellent wear resistance
JP2012066341A (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high-pressure sintered material
JP2002275571A (en) cBN-BASE SINTERED COMPACT, AND COATED TOOL CONSISTING THEREOF
JPH10130092A (en) Diamond coated sintered alloy

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050131

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130204

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130204

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130204

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees