JPS60100032A - Automatic quantitative measurement for microscope image of sintered ore or the like - Google Patents

Automatic quantitative measurement for microscope image of sintered ore or the like

Info

Publication number
JPS60100032A
JPS60100032A JP20722183A JP20722183A JPS60100032A JP S60100032 A JPS60100032 A JP S60100032A JP 20722183 A JP20722183 A JP 20722183A JP 20722183 A JP20722183 A JP 20722183A JP S60100032 A JPS60100032 A JP S60100032A
Authority
JP
Japan
Prior art keywords
image
histogram
section
concentration
binary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20722183A
Other languages
Japanese (ja)
Inventor
Katsuyasu Aikawa
相川 勝保
Hideo Nakamura
秀雄 中村
Kaoru Ito
薫 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIREKO KK
Nippon Steel Corp
Original Assignee
NIREKO KK
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIREKO KK, Nippon Steel Corp filed Critical NIREKO KK
Priority to JP20722183A priority Critical patent/JPS60100032A/en
Publication of JPS60100032A publication Critical patent/JPS60100032A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1468Optical investigation techniques, e.g. flow cytometry with spatial resolution of the texture or inner structure of the particle

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To enable an automatic quantitative measurement easily at a high accuracy with an image analysis high in the reproducibility by setting threshold for determining the concentration range of a composition to be measured based on a histogram depending on the concentration graduation of an image pickup signal of a microscope. CONSTITUTION:An image pickup signal of a sample through a microscope 2 and a TV camera 3 is processed with a binary-coding section 5 according to a number of thresholds from a threshold level generator 7 controlled with a synchronous separation part 6 via a amplifier 5. A binary-coded output according to the concentration graduation from the binary-coding section 5 is counted with a binary data counting section 9 via a gate responding to a mask area generating section 8 while the number of pixels constituting a screen area is counted with the generating section 8 and a mask area counting section 10. Then, the area ratio is calculated pertaining to graduations of concentration with a histogram data computing section 11 to automatically determine a reproducible histogram instantaneously with ease at a high accuracy. Referring he histogram thus obtained allows the setting of thresholds for classifying compositions different in the concentration thereby enabling an automatic quantitative measurement with an image analysis high in the reproducibility easily and at a high accuracy.

Description

【発明の詳細な説明】 本発明は顕微鏡画像において焼結鉱等の組成を自動的に
定量測定する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for automatically quantitatively measuring the composition of sintered ore in microscopic images.

このような解析方法として従来は、被検組織に関する顕
微鏡使用によるITV画像を得た後、検査員が組成分別
のために適当にスレッシュホールドを設定し、対象とす
る画像を前記スレッシュホールドにより二値化して所望
の組織に関する二値画像を抽出し、その面積を適当な方
法でめて行っている。しかしながらこのように各組織に
関する二値画像を抽出して解析する方法によれば、測定
視野毎に適切な二値画像を抽出するためにはその都度ス
レッシュホールドを設定し且つ確認することが省けず、
しかも再現性の点で問題が大きい。
Conventionally, as such an analysis method, after obtaining an ITV image of the tissue to be examined using a microscope, the examiner sets an appropriate threshold for compositional classification, and converts the target image into binary values using the threshold. A binary image of the desired tissue is extracted, and its area is calculated using an appropriate method. However, with this method of extracting and analyzing binary images related to each tissue, it is necessary to set and check the threshold each time in order to extract an appropriate binary image for each measurement field of view. ,
Moreover, there is a big problem in terms of reproducibility.

従って測定の再現性換言すれば正確度で劣り、検査員に
は熟練が要求され、また自動化できないという多くの欠
点があった。
Therefore, there are many drawbacks such as poor measurement reproducibility, in other words poor accuracy, high skill required for the inspector, and inability to automate.

本発明の目的はこのような欠点を排除し、熟練を必要と
せずに高精度で再現性の高い画像解析を可能にし、しか
も容易に自動化を達成できる焼結鉱等の顕微鏡画像にお
ける自動定量測定方法を提供することである。
The purpose of the present invention is to eliminate such drawbacks, to enable highly accurate and highly reproducible image analysis without requiring any skill, and to provide automatic quantitative measurement of microscopic images of sintered ore, etc., which can be easily automated. The purpose is to provide a method.

このために本発明では、画像における濃淡程度を多数の
段階に分別するための複数のスレッシュホールドレベル
を予め設定しておき、影像信号振幅を基に画像を構成す
る単位面積部分即ち画素の各々に関して逐次に前記スレ
ッシュホールドレベルによって濃淡段階を示すデータに
変換し、更にこれらのデータを基にして画像に含まれる
各濃度段階に関してのヒストグラムをハードウェアによ
って瞬時にめ、このようにして得られたヒストグラムを
基に測定すべき各対象組成の濃度範囲を定めるスレッシ
ュホールドを設定することにより、面積比等を任意のソ
フトウェアにより演算して測定することを特徴とする。
To this end, in the present invention, a plurality of threshold levels are set in advance for classifying the degree of shading in an image into a large number of stages, and each of the unit area portions, that is, the pixels constituting the image is determined based on the image signal amplitude. The threshold level is sequentially converted into data indicating the density level, and based on these data, a histogram for each density level included in the image is instantaneously created by hardware, and the histogram thus obtained is The method is characterized in that by setting a threshold that determines the concentration range of each target composition to be measured based on , the area ratio and the like are calculated and measured using arbitrary software.

以下に本発明の実施例につき添付図面を参照して説明す
る。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図は本発明の方法を概略的に示すブロック図である
。試料lとしては例えば焼結鉱が使用され、これは顕微
鏡2による組織検査に必要とされる適当な表面検査を施
される。試料1の被検表面は顕微鏡2により拡大された
視野毎にITV3によって撮像され、その影像信号が処
理回路に与えられる。ここでは影像信号は先ず増幅部4
に与えられて適当に増幅処理された後、本発明の方法で
特徴とする処理のために備えた二値化部5に与えられる
。影像信号はまた同期分離部6により同期信号としてス
レッシュホールドレベル発生部7に与えられ、このスレ
ッシュホールドレベル発生部7が上述の二値化部5にお
ける影像信号の二値化のためにスレッシュホールドレベ
ルを与えるようになっている。スレッシュホールドレベ
ル発生部7には画像における濃淡をできるだけ多くの段
階に分別するための多数のスレッシュホールドレベルが
予め設定されている。従ってこのような多数のスレッシ
ュホールドレベルにより、二値化部5は入力する影像信
号を同期して逐次にその振幅に基づいて何れかの濃度段
階を示す二値データに変換するのである。例えば二値化
部5が集積回路を含んで構成され7ビツトで変換処理す
るようにした場合には、128段階の二値化分別が可能
であるから、影像信号をその振幅に基づいてスレッシュ
ホールドレベルにより128段階の濃度段階の何れかを
示す二値データとして得るようになすことができる。こ
のようにして得た二値データはマスク領域発生部8によ
るタイミングを得て画面を構成する微少面積部分即ち各
画素に関する二値データとして二値データ計数部9に与
えらる。この二値データ計数部9は各濃度段階毎の入力
数即ち同じ濃度の画素数をそれぞれ計数する。一方マス
ク領域発生部8からの信号を入力するマスク面積計数部
10は画面の面積即ち全画素数を計数する。
FIG. 1 is a block diagram schematically illustrating the method of the invention. For example, sintered ore is used as the sample 1, which is subjected to the appropriate surface inspection required for microstructural inspection using the microscope 2. The surface of the sample 1 to be inspected is imaged by the ITV 3 for each field of view enlarged by the microscope 2, and the image signal is given to the processing circuit. Here, the image signal is first transmitted to the amplifying section 4.
After being appropriately amplified, the signal is supplied to a binarization unit 5 provided for the processing featured in the method of the present invention. The image signal is also given by the synchronization separation section 6 as a synchronization signal to the threshold level generation section 7, and this threshold level generation section 7 sets the threshold level for binarization of the image signal in the binarization section 5 described above. It is designed to give A large number of threshold levels are preset in the threshold level generating section 7 to classify the light and shade in the image into as many stages as possible. Therefore, by using such a large number of threshold levels, the binarization section 5 synchronizes and sequentially converts the input image signal into binary data indicating one of the density levels based on its amplitude. For example, if the binarization unit 5 is configured to include an integrated circuit and performs conversion processing in 7 bits, 128 levels of binarization classification are possible, so the image signal can be thresholded based on its amplitude. Depending on the level, it can be obtained as binary data indicating any of 128 concentration levels. The binary data thus obtained is given to the binary data counting section 9 as binary data regarding a small area portion, that is, each pixel, forming the screen at a timing provided by the mask area generating section 8. This binary data counting section 9 counts the number of inputs for each density level, that is, the number of pixels of the same density. On the other hand, a mask area counting section 10 which receives the signal from the mask area generating section 8 counts the area of the screen, that is, the total number of pixels.

これらの計数値を入力する濃度ヒストデータ演算部11
が各濃度段階例えば128段階のそれぞれに関して面積
比即ち視野全面積に対する各濃度の画素の加算面積の比
率を演算し、第2図に示すようなグレーヒストグラムを
めるのである。特にこれら全ての演算は図示したように
回路構成即ちハードウェアによって行われるのであり、
これにより瞬時に所要のグレーヒストグラムがまるので
ある。このような演算処理技術は周知であるので説明を
省略する。上述したようなグレーヒストグラムの演算は
顕微鏡2の移動制御による視野の移動毎に同様に行われ
る。またこのようなグレーヒストグラムのデータは例え
ば各視野毎のデータとしてプリンタ12により印字出力
し、或いは全視野の平均データとして同様に印字出力す
るように任意にできる。
Concentration hist data calculation unit 11 into which these counted values are input.
For each density level, for example, 128 levels, the area ratio, that is, the ratio of the summed area of each density pixel to the total area of the visual field is calculated, and a gray histogram as shown in FIG. 2 is drawn. In particular, all these operations are performed by the circuit configuration, ie, hardware, as shown in the figure.
This instantly completes the required gray histogram. Since such arithmetic processing technology is well known, its explanation will be omitted. The calculation of the gray histogram as described above is similarly performed every time the field of view is moved by controlling the movement of the microscope 2. Further, such gray histogram data can be arbitrarily printed out by the printer 12, for example, as data for each visual field, or similarly printed out as average data for the entire visual field.

このように本発明の特徴とするグレーヒストグラムをめ
、これに基づいて組成の定量測定を行うことにつき更に
説明する。先ず最初の視野画像に関して上述したような
ハードウェアによる処理によって第3図に示すようなグ
レーヒストグラムが瞬時に得られ、これがプリンタ12
により印字出力されたとする。ここでは曲線グラフとし
て示しているが、勿論その他の例えば棒グラフ等のグラ
フ或いはデータ表示とすることも可能である。また上述
しなかったが、検査員は従来通りにCRT画面により被
検視野画像を見ることは勿論可能である。このようにし
て得られたグレーヒストグラムは極めて精度が高い。従
って検査員は単に従来のようにCRT画面のみに基づい
て組成対応のスレッシュホールドを設定する以外にグレ
ーヒストグラムを参照できるので、その遷移に基づいて
より正確にスレッシュホールドを設定することが可能と
なる。このようにして第3図に一例として4つのスレッ
シュホールドT+、TIT3.Ta を設定し、5つの
濃度の異なる組成を分別する場合をしめす。勿論これよ
り多数の分別も可能である。このようにスレッシュホー
ルド’r1.T、、T3.T4を設定すれば、既にグレ
ーヒストグラムが得られているのでこの視野画像におけ
る各組成に関する面積比は極めて簡単にまるのである。
As described above, the gray histogram, which is a feature of the present invention, is used, and quantitative measurement of the composition based on the gray histogram will be further explained. First, by processing the initial visual field image using the hardware described above, a gray histogram as shown in FIG.
Suppose that it is printed out by . Although shown here as a curve graph, it is of course possible to use other graphs such as bar graphs or data displays. Although not mentioned above, it is of course possible for the examiner to view images of the visual field to be examined on a CRT screen in the conventional manner. The gray histogram obtained in this way has extremely high accuracy. Therefore, instead of simply setting thresholds corresponding to the composition based only on the CRT screen as in the past, inspectors can refer to the gray histogram, making it possible to set thresholds more accurately based on the transitions. . Thus, FIG. 3 shows, by way of example, four thresholds T+, TIT3. The case where Ta is set and compositions with five different concentrations are separated is shown. Of course, more classifications than this are also possible. In this way, the threshold 'r1. T,,T3. If T4 is set, since a gray histogram has already been obtained, the area ratios for each composition in this visual field image can be determined very easily.

これらのデータは適当に保存される。ここで各組成は微
少部分として点在しているのでそれらの境界部分の取扱
いが一般に問題となか、従来知られているような境界近
傍即ちスレッシュホールド近傍の領域に関する排除処理
等のためのソフトウェアを適宜に利用できることは勿論
である。
These data are stored appropriately. Here, since each composition is scattered as minute parts, handling of these boundary parts is generally a problem, and conventionally known software for exclusion processing for the area near the boundary, that is, near the threshold, etc. Of course, it can be used as appropriate.

引続き試料1または顕微鏡2を移動して次ぎの視野画像
について測定を行う場合、上述と同様にしてその画像に
関するグレーヒストグラムがめられる。この際全体的な
濃度レベルが変化したとしても各組成の相対的な濃度関
係は変化しないとみなせる。従って例えば第3図に示し
たようにグレーヒストデータのスパンIに対する各スレ
ッシュホールドT1. ’rZ、 T3. Taの設定
位置の比率を記憶しておくことにより、容易にその画像
における各組成に関しての適正なスレッシュホールドを
自動的に設定することが可能となる。勿論これに加えて
、グレーヒストグラムにおけるピーク位置や変曲位置等
の検出に基づいて修正処理を行うことも好ましい。何れ
にしても、グレーヒストグラムを先ずめるという本発明
の特徴により、最初に所要のスレッシュホールドを設定
すれば引続く視野画像に関してのそれらの再設定は省略
でき、これにより測定の迅速化および自動化が可能とな
るのである。このようにして次々の視野につき測定が行
われ、全体としての各組成に関する定量測定が達成され
るのである。
When the sample 1 or the microscope 2 is subsequently moved and the next field image is measured, a gray histogram for that image is obtained in the same manner as described above. At this time, even if the overall concentration level changes, it can be assumed that the relative concentration relationship of each component does not change. Therefore, for example, as shown in FIG. 3, each threshold T1 . 'rZ, T3. By storing the ratio of the Ta setting positions, it becomes possible to easily and automatically set appropriate thresholds for each composition in the image. Of course, in addition to this, it is also preferable to perform correction processing based on detection of peak positions, inflection positions, etc. in the gray histogram. In any case, due to the feature of the present invention of presetting the gray histogram, setting the required thresholds at the outset eliminates their resetting for subsequent field images, thereby speeding up and automating the measurements. becomes possible. In this way, measurements are taken for successive fields and a quantitative determination of each composition as a whole is achieved.

以上のように本発明は予め濃度段階を定める多数のスレ
ッシュホールドレベルを設定しておき、ITV撮像信号
の振幅を基にして画像を構成する各画素に関しての濃度
レベルをめてグレーヒストグラムをめておき、該グレー
ヒストグラムに基づいて組織対応のスレッシュホールド
を設定して所要の組成の定量測定を行うので、組織対応
のスレッシュホールドは最初に設定するだけで次々の視
野に関しては省略できて自動化が可能となる。
As described above, in the present invention, a large number of threshold levels are set in advance to determine density levels, and a gray histogram is created by determining the density level for each pixel that constitutes an image based on the amplitude of the ITV imaging signal. Then, tissue-specific thresholds are set based on the gray histogram to perform quantitative measurements of the desired composition, so the tissue-specific thresholds can be set at the beginning and can be omitted for successive fields of view, allowing for automation. becomes.

しかもグレーヒストグラムはハードウェアで迅速にまる
ので測定時間を著しく短縮できる。従って統計的な測定
処理が可能となる。さらにまた、検査員に熟練度を要求
せず且つ再現性のある高精度の測定がかのうとなる。こ
のように極めて大きな効果を得られるのである。
Furthermore, since the gray histogram can be quickly completed using hardware, the measurement time can be significantly reduced. Therefore, statistical measurement processing becomes possible. Furthermore, highly accurate measurements with reproducibility can be achieved without requiring the inspector to be highly skilled. In this way, extremely large effects can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の概略を示すブロック図。 第2図は一例とせるグレーヒストグラムを示す線図。 第3図はグレーヒストグラムに関する測定組織対応のス
レッシュホールドの設定を示す線図。 1・・試料 2・・顕微鏡 3・・ITV 4・・増幅部 5・・二値化部 6・・同期分離部 7・・スレッシュホールドレベル発生部8・・マスク領
域発生部 9・・二値データ計数部 10・・マスク面積計数部 11・・ヒストデータ演算部 12・・プリンタ 特許出願人 日本レギュレーター株式会社特許出願人 
新日本製鐵株式会社 代理人弁理士小野 栄
FIG. 1 is a block diagram showing an outline of the present invention. FIG. 2 is a diagram showing an example of a gray histogram. FIG. 3 is a diagram showing threshold settings corresponding to measurement tissues regarding a gray histogram. 1. Sample 2.. Microscope 3.. ITV 4.. Amplification section 5.. Binarization section 6.. Synchronization separation section 7.. Threshold level generation section 8.. Mask area generation section 9.. Binary Data counting unit 10...Mask area counting unit 11...Historical data calculation unit 12...Printer patent applicant Japan Regulator Co., Ltd. Patent applicant
Nippon Steel Corporation Representative Patent Attorney Sakae Ono

Claims (1)

【特許請求の範囲】[Claims] 顕微鏡画像において各部の濃度差に基づく画像解析を行
う方法であって、画像における濃淡程度を多数の段階に
分別するための複数のスレッシュホールドレベルを予め
設定しておき、影像信号振幅を基に画像を構成する単位
面積部分即ち画素の各々に関して逐次に前記スレッシュ
ホールドレベルによって濃淡段階を示すデータに変換し
、更にこれらのデータを基にして画像に含まれる各濃度
段階に関してのヒストグラムをハードウェアによって瞬
時にめ、このようにして得られたヒストグラムを基に測
定すべき各対象組成の濃度範囲を定めるスレッシュホー
ルドを設定することにより、面積比等を任意のソフトウ
ェアにより演算して測定することを特徴とする焼結鉱等
の顕微鏡画像における自動定量測定方法。
This is a method of performing image analysis based on the density difference of each part of a microscope image, in which multiple threshold levels are set in advance to classify the degree of darkness in the image into a large number of stages, and the image is analyzed based on the image signal amplitude. Each unit area portion, that is, each pixel, constituting the image is sequentially converted into data indicating a density level using the threshold level, and based on these data, a histogram for each density level included in the image is instantaneously created by hardware. Therefore, by setting a threshold that defines the concentration range of each target composition to be measured based on the histogram obtained in this way, the area ratio etc. can be calculated and measured using arbitrary software. Automatic quantitative measurement method using microscopic images of sintered ore, etc.
JP20722183A 1983-11-04 1983-11-04 Automatic quantitative measurement for microscope image of sintered ore or the like Pending JPS60100032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20722183A JPS60100032A (en) 1983-11-04 1983-11-04 Automatic quantitative measurement for microscope image of sintered ore or the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20722183A JPS60100032A (en) 1983-11-04 1983-11-04 Automatic quantitative measurement for microscope image of sintered ore or the like

Publications (1)

Publication Number Publication Date
JPS60100032A true JPS60100032A (en) 1985-06-03

Family

ID=16536245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20722183A Pending JPS60100032A (en) 1983-11-04 1983-11-04 Automatic quantitative measurement for microscope image of sintered ore or the like

Country Status (1)

Country Link
JP (1) JPS60100032A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02232550A (en) * 1989-03-06 1990-09-14 Nireco Corp Tissue assay by image analysis
EP0397568A2 (en) * 1989-05-10 1990-11-14 Etat Francais - Laboratoire Central Des Ponts Et Chaussees Inspection method for a mixture of glass balls and fillings, especially used for improving the visibility of road markings at night
US7889329B2 (en) * 2006-04-08 2011-02-15 Roche Diagnostics Operations, Inc. Analysis of optical data with the aid of histograms
WO2020260762A1 (en) * 2019-06-28 2020-12-30 Andritz Oy Determining one or more proportional particle group shares in flue gas of a recovery boiler

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5822940A (en) * 1981-08-03 1983-02-10 Mitsubishi Chem Ind Ltd Method and apparatus for analyzing structure of coal
JPS58153144A (en) * 1982-03-09 1983-09-12 Nippon Kokan Kk <Nkk> Apparatus for measuring organization composition ratio in massive material having a plurality of organizations with different reflectivities

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5822940A (en) * 1981-08-03 1983-02-10 Mitsubishi Chem Ind Ltd Method and apparatus for analyzing structure of coal
JPS58153144A (en) * 1982-03-09 1983-09-12 Nippon Kokan Kk <Nkk> Apparatus for measuring organization composition ratio in massive material having a plurality of organizations with different reflectivities

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02232550A (en) * 1989-03-06 1990-09-14 Nireco Corp Tissue assay by image analysis
EP0397568A2 (en) * 1989-05-10 1990-11-14 Etat Francais - Laboratoire Central Des Ponts Et Chaussees Inspection method for a mixture of glass balls and fillings, especially used for improving the visibility of road markings at night
FR2646916A1 (en) * 1989-05-10 1990-11-16 France Etat Ponts Chaussees METHOD FOR CONTROLLING A MIXTURE OF GLASS BEADS AND FILLERS USED IN PARTICULAR FOR MAKING ROAD MARKS VISIBLE AT NIGHT
US7889329B2 (en) * 2006-04-08 2011-02-15 Roche Diagnostics Operations, Inc. Analysis of optical data with the aid of histograms
WO2020260762A1 (en) * 2019-06-28 2020-12-30 Andritz Oy Determining one or more proportional particle group shares in flue gas of a recovery boiler

Similar Documents

Publication Publication Date Title
KR930000543B1 (en) Process and device for detecting and evaluating surface cracks in workpieces
JPS60204080A (en) Method and device for automatic quantitative measurement of tissue using picture analysis
JP3581149B2 (en) Method and apparatus for identifying an object using a regular sequence of boundary pixel parameters
JP2004093338A (en) Appearance inspection device and appearance inspection method
JPS60100032A (en) Automatic quantitative measurement for microscope image of sintered ore or the like
JPS61123985A (en) Picture processor
EP4010873A2 (en) Use of an hdr image in a visual inspection process
WO2020130786A1 (en) A method of analyzing visual inspection image of a substrate for corrosion determination
JPH0210461B2 (en)
JP2008268131A (en) Method for evaluating quality of grains, and grain leveling cutting apparatus used therefor
JP2004199391A (en) Method and device for deciding threshold in image analysis, binarizing device and image analyzing device and information processing method with learning function and image analyzing device with learning function and, recording medium for these methods
JP2016217913A (en) X-ray inspection device
JP3745075B2 (en) Film thickness measuring device
KR20180030293A (en) Segregation analysis apparatus and method
KR20220013409A (en) Particle Quantification Device
LIPKIN et al. Textural parameters related to nuclear maturation in the granulocytic leukocytic series
JPS5830049B2 (en) Automatic reticulocyte measurement device
CN111398323A (en) Calculation method for automatically acquiring X-ray analysis position in mineral automatic analysis system
JP4254323B2 (en) Foreign matter inspection method and foreign matter inspection device
JP2711649B2 (en) Surface scratch detection method for inspection object
JPS6310379B2 (en)
Jatti Segmentation of microscopic bone images
JPH0337564A (en) Automatic magnetic-particle examination apparatus
KR20000004110U (en) Image Processing and Image Reader of Radiation NDT
Holba et al. Image processing in defectoscopy