JPH02232550A - Tissue assay by image analysis - Google Patents
Tissue assay by image analysisInfo
- Publication number
- JPH02232550A JPH02232550A JP1053549A JP5354989A JPH02232550A JP H02232550 A JPH02232550 A JP H02232550A JP 1053549 A JP1053549 A JP 1053549A JP 5354989 A JP5354989 A JP 5354989A JP H02232550 A JPH02232550 A JP H02232550A
- Authority
- JP
- Japan
- Prior art keywords
- histogram
- tissue
- range
- density
- image analysis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000010191 image analysis Methods 0.000 title claims description 13
- 238000003556 assay Methods 0.000 title abstract 2
- 238000009826 distribution Methods 0.000 claims abstract description 38
- 239000000126 substance Substances 0.000 claims abstract description 11
- 230000005484 gravity Effects 0.000 claims abstract description 7
- 239000000203 mixture Substances 0.000 claims abstract description 7
- 238000000034 method Methods 0.000 claims description 31
- 238000011002 quantification Methods 0.000 claims description 12
- 230000008030 elimination Effects 0.000 claims description 5
- 238000003379 elimination reaction Methods 0.000 claims description 5
- 230000008878 coupling Effects 0.000 abstract 2
- 238000010168 coupling process Methods 0.000 abstract 2
- 238000005859 coupling reaction Methods 0.000 abstract 2
- 238000009499 grossing Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 7
- 241000201776 Steno Species 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 238000005286 illumination Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 241001270131 Agaricus moelleri Species 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
Landscapes
- Image Analysis (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Image Processing (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野]
本発明は、画像解析による組織定量方法に係わり、特に
、複数の組織を有する結合物質の濃淡画像の境界を定め
て、この境界に対応した各組織の面積比を求めて組織の
定量を行う組織定量方法に関する.
〔従来の技術〕
複数のmsaを有する塊状物質の組織構成比率測定に関
する技術が特開昭58−153144号公報に開示され
ている.これは反射率の異なる複数の組織の反射率の分
布を、その反射率の強さをX軸とし、各強さの度数をy
軸とした反射率ヒストグラムを求め、このヒストグラム
の包路線上の複数の極大点をピークとする複数のガウス
曲線を求め、このようにして得られた複数のガウス曲線
の各々の平均反射率および度数積分値と、測定対象試料
に関してあらかじめ得られている複数の坦織の反射率分
布とに基づいて、この試料の複数部分の各々における構
成比率を求めるものである.
〔発明が解決しようとする課題〕
上記従来の技術は、試料の反射率のヒストグラムを求め
、次にこの包路線の複数のピークを値を求めた後、この
各ピーク値を中心としてヒストグラムの形状をガウス曲
線(正規分布曲線)に変換して反射分布としている.こ
のためピーク値を中心に左右に均等に分布している場合
はよいが、左右不均等に分布している組織の面積比率を
同定すると誤差が大きくなる.
また、&[組織の中に欠落した組織があるときは、その
欠落部にも誤って無理な変形ガウス曲線を適合させ、誤
ったスレシェホールドレベル(閾値)を与える場合も生
じる.
本発明の目的は、複数の組織を有する結合物質の断面画
像を予め設定した濃淡段階に応して濃淡分布面積のヒス
トグラムを作成し、このヒストグラムに対して各対象&
l1織に対応ずる濃度範囲の推定閾値を設定し、次いで
このヒストグラムの形状、組織の濃度分布の形状等にも
とすいて羅定閾埴を定める方法を提供することにある.
〔課題を解決するための手段〕
上記目的を達成するため、本発明の画像解析による&[
i織定量方法は、複数の組織を有する結合物質の断面の
画像を予め設定した濃淡段階に応じて濃淡分布面積のヒ
ストグラムを作成し、該ヒストグラムに対して各対象&
f組織に対応する濃度範囲を定め、該濃度範囲の面積比
より各対象組織の構成を求める画像解析による&lll
織定量方法において、前記各対象msaに対応する濃度
範囲の、推定閾値を所定の許容範囲を有する値として設
定し、前記ヒストグラムの該許容範囲を中心とした形状
、前記組織の濃度分布の形状の少なくとも1つ以上にも
とすいて確定閾値を定めて前記濃度範囲の面積比を求め
ることを特散とするものである.また、ノイズ排除処理
をした前記ヒストグラムの前記許容範囲にある最小値を
前記確定閾値としてもよく、また、ノイズ排除処理をし
た前記ヒストグラムの前記許容範囲内の面積の重心位置
を前記確定閾値としてもよい.また、前記ヒストグラム
の前記許容範囲内の面積の2等分位置を前記確定閾値と
してもよい.また、前記ヒストグラムをノイズ排除処理
した後、該ヒストグラムの濃淡段階をX軸方向とし、濃
淡段階の度数をy軸方向として、前記許容範囲の中心よ
りX軸上左右に前記ヒストグラムのそれぞれ最初の変曲
点において切線を引き、該切線の交点のX座標を前記確
定閾値とするとよく、さらに、前記切線がそれぞれX軸
と交わる位置をXl+X!とじ、lxzx+lが所定値
以上のときは前記確定閾値をXI とx2の2つの値と
してもよい.
〔作 用〕
複数の組織を有する結合物質の断面を画像解析装置によ
り測定し、画像の多数の濃淡段階に対応した分布面積の
ヒストグラムを作成して、各対象組織の面積比から各組
織の盪を同定する方法を、組織AとBからなる結合物質
の場合について説明する.
各組織の基本的な濃度分布は2つの組織が同一面積でも
、対象となる資料への照明の方法(光種,角度1明るさ
等】、顕微鏡の倍率などで異なってくる.顕微鏡の倍率
によっては、斑点,縞模様,雪塊模様などが出たり、消
えたりする.また同一組織内の濃度分布にも様々な態様
がある.これを第5図により説明する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a tissue quantification method using image analysis, and in particular, a method for determining the boundaries of a gray-scale image of a bonded substance having a plurality of tissues and adjusting the boundaries accordingly. This paper relates to a tissue quantification method for quantifying tissues by determining the area ratio of each tissue. [Prior Art] A technique for measuring the tissue composition ratio of a lumpy substance having a plurality of msa is disclosed in JP-A-58-153144. This is the distribution of reflectance of multiple tissues with different reflectances, with the strength of the reflectance as the x-axis and the frequency of each strength as the y-axis.
Obtain a reflectance histogram with the axis as the axis, obtain multiple Gaussian curves with peaks at multiple maximum points on the envelope of this histogram, and calculate the average reflectance and power of each of the multiple Gaussian curves obtained in this way. Based on the integral value and the reflectance distribution of a plurality of plain weaves obtained in advance for the sample to be measured, the composition ratio in each of the plurality of parts of the sample is determined. [Problems to be Solved by the Invention] The above-mentioned conventional technology calculates a histogram of reflectance of a sample, then calculates the values of multiple peaks of this envelope line, and then calculates the shape of the histogram around each peak value. is converted into a Gaussian curve (normal distribution curve) and used as the reflection distribution. Therefore, it is good if the tissue is distributed evenly on the left and right around the peak value, but the error will increase if the area ratio of tissues that are unevenly distributed on the left and right is identified. In addition, & [If there is a missing tissue in the tissue, an unreasonable deformed Gaussian curve may be applied to the missing part by mistake, giving an incorrect threshold level. The purpose of the present invention is to create a histogram of the density distribution area of a cross-sectional image of a connective substance having multiple tissues according to preset density levels, and to create a histogram of the density distribution area for each target &
The object of this invention is to provide a method for setting an estimated threshold for a concentration range corresponding to the 11 weave, and then determining a defined threshold based on the shape of this histogram, the shape of the tissue concentration distribution, etc. [Means for Solving the Problem] In order to achieve the above object, &[
The i-texture quantification method involves creating a histogram of the area of shading distribution according to preset shading levels for an image of a cross section of a binding substance that has multiple tissues, and then
f Image analysis that determines the concentration range corresponding to the tissue and determines the composition of each target tissue from the area ratio of the concentration range
In the tissue quantification method, the estimated threshold value of the concentration range corresponding to each target msa is set as a value having a predetermined tolerance range, and the shape of the histogram centered around the tolerance range and the shape of the concentration distribution of the tissue are determined. A special feature of this method is to determine the area ratio of the concentration range by determining a definite threshold value for at least one or more values. Further, the minimum value within the tolerance range of the histogram subjected to noise elimination processing may be used as the final threshold, or the position of the center of gravity of the area within the tolerance range of the histogram subjected to noise elimination processing may be used as the final threshold. good. Further, a position that bisects the area of the histogram within the permissible range may be set as the determined threshold. Further, after the histogram is subjected to noise elimination processing, the histogram is first changed from the center of the tolerance range to the left and right on the X-axis, with the gradation level of the histogram in the X-axis direction and the frequency of the gradation level in the y-axis direction. It is preferable to draw a tangent line at the curved point, and set the X coordinate of the intersection of the tangent line to the determined threshold value, and further define the position where each of the tangent lines intersects with the X axis as Xl+X! When lxzx+l is equal to or greater than a predetermined value, the final threshold may be set to two values, XI and x2. [Function] A cross-section of a binding substance that has multiple tissues is measured using an image analysis device, a histogram of the distribution area corresponding to the many gray levels of the image is created, and the area ratio of each target tissue is used to calculate the density of each tissue. The method for identifying this will be explained for the case of a binding substance consisting of tissues A and B. Even if two tissues have the same area, the basic concentration distribution of each tissue differs depending on the method of illuminating the target material (light type, angle, brightness, etc.), the magnification of the microscope, etc. Depending on the magnification of the microscope. In this case, spots, striped patterns, snowpack patterns, etc. appear and disappear.There are also various forms of concentration distribution within the same tissue.This will be explained with reference to FIG.
[a) 図は、姐繊A,Bの濃度差は小さいが濃度分
布の差が明瞭な場合である.
(bJ 図は、紐1aA, B間の濃度差が比較的大
きい場合である.
(Cl 図は、組織A,Bの濃度分布に重畳部分があ
るが境界部の分布確率が小さい場合である.(dl
図は、組織A,Bの濃度分布の重畳部分が大きくその境
界が不明確な場合である.
(e) 図は、&lll礒A,Bの一方は狭い(シャ
ープな)fA度範囲で他は広い(低い台状の)fA度範
囲の場合である.第5図は組織A,Bの面積比が同一の
場合であるが、&Il織A,Bの面積差が大きい場合も
存在する.これは濃度境界部に注目すると第5図(e)
に近い.
各組織の量を同定する方法とは、各組織の境界値を定め
、この境界値に囲まれる面積を計算することと同じこと
である.
第5図に基づき本発明は、隣接する2つの組織A,Bの
境界は濃淡段階に対応した分布面積のヒストグラム曲線
のボトム部に存在するとしたものである.しかし、この
ボトム位置も第5図(a), (C)(e)は比較的明
i1であるが、(b). (d)の場合不明確である.
そこでヒストグラムの形状、組織の濃度分布の形状に基
づき境界を定める方法を第6図により説明する.先ず被
測定試f1の画像から」二述のヒストグラムを作成し、
各組織の境界となるスレノシュホールドTi と、その
許容範囲士△Tiを既存のデータから推定して設定する
.次にこの範囲Ti ±ΔTi から確定シレノシュホ
ールドT1をヒストグラムの形状,組織の濃度分布の形
状に基づき決定する.
なお、上記Ti,ΔTi は濃度の絶対値としてもよい
が、絶対値を全濃度分布範囲で割って濃度比とした方が
使いよい.
(al図は、濃度差が小さくても!Il織A,Hの区分
が明確でヒストグラムのノイズ排除処理としてのスムー
ジング処理をした後ボトム位置を求めこれを境界(閾値
)とする.
(bl図は、!JlmA,Bの境界特性に大きな差があ
るとき、例えば一方向の勾配が急いで他方の勾配がなだ
らかであるようなときでTi −ΔTi とTi+ΔT
iで囲まれるヒストグラムの面積の重心位置をTi′と
する.この場合スムージング処理は不要である.
重心計算は次式による.
Σ y−x
Ti ’ =
Σ y
ここで X:ヒストグラムの横座標(X座標)y;ヒス
トグラムの縦座標(y座標)
a=Ti −ΔTi, b−Ti +ΔTi(C)図
は、組織の濃度分布の形状より採用を決めるもので、こ
の形状が節単なものであるとき、Ti一ΔTi とTi
+ΔTiで囲まれるヒストグラムの面積の2等分点を
Ti ’ とする.この場合、スムージング処理は不要
なので演算速度も早い.計算式は次式による.
l/2 ×Σ y=Σ y −−−−−−−−−−
−(2)(2)式を満たすCを求めc−Ti’ とする
。これは左辺を求めて≦になるCを求めればよい。[a] The figure shows a case where the difference in density between fibers A and B is small, but the difference in density distribution is clear. (The bJ diagram shows a case where the concentration difference between the strings 1aA and B is relatively large. (The Cl diagram shows a case where the concentration distributions of tissues A and B have an overlapping part, but the distribution probability of the boundary part is small. (dl
The figure shows a case where the concentration distributions of tissues A and B overlap greatly and the boundary is unclear. (e) The figure shows the case where one of A and B has a narrow (sharp) fA degree range and the other has a wide (low trapezoidal) fA degree range. Although Fig. 5 shows a case where the area ratios of the weaves A and B are the same, there are also cases where the difference in area between the &Il weaves A and B is large. If we focus on the concentration boundary, this can be seen in Figure 5(e).
Close to. The method of identifying the amount of each tissue is the same as determining the boundary value of each tissue and calculating the area surrounded by this boundary value. Based on FIG. 5, the present invention assumes that the boundary between two adjacent tissues A and B exists at the bottom of the histogram curve of the distribution area corresponding to the density level. However, this bottom position is also relatively bright i1 in FIGS. 5(a), (C), and (e), but in FIG. 5(b). In case (d), it is unclear.
Therefore, a method for determining boundaries based on the shape of the histogram and the shape of the tissue concentration distribution will be explained using Figure 6. First, from the image of test sample f1, create a histogram as described above,
The threshold Ti serving as the boundary between each organization and its tolerance range ΔTi are estimated and set from existing data. Next, from this range Ti ±ΔTi, a definite shillenohold T1 is determined based on the shape of the histogram and the shape of the tissue concentration distribution. Note that the above Ti and ΔTi may be taken as absolute values of concentration, but it is better to use the absolute value divided by the entire concentration distribution range to obtain the concentration ratio. (In the al diagram, even if the density difference is small, the division between Il textures A and H is clear. After smoothing is performed to eliminate noise in the histogram, the bottom position is determined and this is used as the boundary (threshold). (bl diagram) !JlmWhen there is a large difference in the boundary characteristics of A and B, for example when the gradient in one direction is steep and the gradient in the other is gentle, Ti - ΔTi and Ti + ΔT
Let Ti' be the center of gravity of the area of the histogram surrounded by i. In this case, smoothing processing is not necessary. The center of gravity is calculated using the following formula. Σ y−x Ti ' = Σ y where X: abscissa of histogram (X coordinate) y; ordinate of histogram (y coordinate) a=Ti −ΔTi, b−Ti +ΔTi (C) The diagram shows the tissue concentration. The adoption is decided based on the shape of the distribution, and when this shape is simple, Ti - ΔTi and Ti
Let Ti' be the point that bisects the area of the histogram surrounded by +ΔTi. In this case, smoothing processing is not required, so the calculation speed is fast. The calculation formula is as follows. l/2 ×Σ y=Σ y −−−−−−−−−−
-(2) Find C that satisfies equation (2) and set it as c-Ti'. This can be done by finding the left side and finding C that satisfies ≦.
なお、X,y,a,bは(1)式と同しである, (d
l,(el. (r)図はヒストグラムをスムージング
処理した後、Tiを中心にしてχ軸上の左右の最初の変
曲点にリ線を引き、この切線の交点を利用する方法であ
る.この方法は、ボトムの位置がヒストグラムより目視
できるが、その位置が明瞭ではない場合に用いる.
切線の引き方は、ヒス1・ダラムのy方向の差を求めて
ゆき差の増加減少の逆転位置(2階微分が0となる位置
)を求め、ここに回帰直線を引けばよい.(d)図は、
2つの切線の交点のy座標が正の場合でありこの交点の
X座標を71 ’ とする。Note that X, y, a, and b are the same as in equation (1), (d
Figure l, (el. (r) shows a method in which after smoothing the histogram, lines are drawn at the first left and right inflection points on the χ axis with Ti as the center, and the intersection of these tangent lines is used. This method is used when the bottom position can be visually checked from the histogram, but the position is not clear.The way to draw a cutting line is to find the difference in the y direction between His 1 and Duram, and then find the reversal position of increase/decrease in the difference. (the position where the second-order differential becomes 0) and draw a regression line here.(d) Figure shows
This is a case where the y-coordinate of the intersection of the two tangent lines is positive, and the x-coordinate of this intersection is 71'.
(el図、(『)図は、2つの切線の交点のy座標が負
の堪合で各切線のX軸との交点xl+Xzの差lxz−
Xl1の大きさに違いのある場合である.(el図の差
は、予めデータ解析により定めた定数値?り小さい場合
で、このときは切線の交点のy座標は負となるが、この
交点のX座標をTi′とする.
ff)図の差は上記の定数値より大きな場合で、このと
きは(f)図に示すように2つの組織の間にいずれに属
するか不明な面積があるがその大きさは小さいので、こ
の部分を削除して面積計算等には算入しないようにした
ものである.それ故Ti ’ =x.,Ti’=x■の
2つの境界値とする.以上の6つの判断基準により、2
つのMi磯の境界をヒストグラムの形状や、iJ1#s
の濃度分布の形状から決定できるので、この境界に囲ま
れたヒストグラムの各面積を計算すれば各組織の量を同
定することができる.
(実 施 例〕
以下、本発明の一実施例を第1図〜第4図第6図を用い
て説明する.
複数の組織を有する結合物として例えば焼結鉱の試料を
画像解析装置に設定し、試料の断面の画像を例えば25
6の濃淡段階に分割し濃淡分布面積のヒストグラムを作
成する.このヒストグラムの作成はソフト的、またはハ
ード的に作成することができるが、ハード的に行えば、
迅速に作成できる,ハード的に作成する方法の1つが特
開昭60−100032号公報に開示されている.第3
図にヒストグラムの一例を示す.
以下、第1図を用いて説明する.第1図は、校正基準を
作成する手順を示すフローチャートである.校正基準を
作成する理由は、前述したように各組織の濃度分布は照
明の方法、画像解析装置に組み込まれたw1微鏡の倍率
などで異なるため、先ず、試料の基準となる視野を設定
し、照明や倍率を11節してなるべく多くの濃淡段階に
対応ずるようなヒストグラムを作成し、このヒストグラ
ムの形状、組織の濃度分布の形状等をパラメータとして
既存の′R$4より、各組織の境界値(スレンシェホー
ルド)とその許容範囲を定め、これに基づき以降の各視
野の組織の境界値を定める基準とするものである.
第IUj!Jにおいて、まずステップ1lで、fA変段
階を定める多数の閾値(スレッシュホールド)を設定す
る.本実施例では256の段階としたが、全濃度範囲の
自動調整やスムージング処理のためには500以上の段
階が好ましい.しかし、現在のところ撮像用カメラの能
力が追従できない.ステンブエ2で対象画像の各W!1
素をスレッシェホールドに対応して2値化して濃度を求
めてグレーヒストグラムを作成する.この一例を第3図
に示す.第3図の横軸(X軸)には4度のスレッシュホ
ールド(256個に分割)をとり縦軸(y軸)に各スレ
シュホールドの間の面積を全体面積に対する%値で示す
.
ステップ13ではグレーヒストグラムの濃度の全範囲(
iffi度スパン)を求める.これを用いて、濃度の絶
対値を濃度比として表すためである.第4図は第3図を
スムージング処理したものであり、図中で示したRが濃
度スパンを表す.ステップl4でヒストグラムの形状、
組織の濃度分布の形状等をパラメータとし既存の資料に
基づき各組織の境界値Ti と許容範囲±ΔTiを定め
る.この許容範囲は、試料の他の視野の境界値Ti′を
決定するに当たって、相対的な濃度比は校正基準のもの
と変わらないとし、Ti′はTi ±ΔTiの範囲内に
存在するものとして、Ti′を定めるパラメータとして
使用するためである。(El diagram, (') figure shows that the y-coordinate of the intersection of two tangent lines is negative and the difference lxz- between the intersection xl+Xz of each tangent line with the
This is a case where there is a difference in the size of Xl1. (The difference in the EL diagram is when it is smaller than a constant value determined in advance by data analysis. In this case, the y-coordinate of the intersection of the tangent lines is negative, but the X-coordinate of this intersection is Ti'. ff) Figure If the difference is greater than the above constant value, in this case, as shown in figure (f), there is an area between the two tissues that it is unclear which one it belongs to, but its size is small, so this part is deleted. Therefore, it is not included in area calculations, etc. Therefore Ti' = x. , Ti'=x■. Based on the above six criteria, 2
The shape of the histogram and iJ1#s are the boundaries of the two Mi islands.
Since it can be determined from the shape of the concentration distribution, the amount of each tissue can be identified by calculating each area of the histogram surrounded by this boundary. (Example) An example of the present invention will be described below with reference to Figs. 1 to 4 and 6. A sample of sintered ore, for example, as a bonded substance having multiple structures is set in an image analysis device. For example, the image of the cross section of the sample is
Divide into 6 gray scales and create a histogram of the gray scale distribution area. This histogram can be created using software or hardware, but if it is done using hardware,
One of the hardware-based methods that can be created quickly is disclosed in Japanese Patent Application Laid-Open No. 100032/1983. Third
An example of a histogram is shown in the figure. This will be explained below using Figure 1. FIG. 1 is a flowchart showing the procedure for creating a calibration standard. The reason for creating a calibration standard is that, as mentioned above, the concentration distribution of each tissue differs depending on the illumination method, the magnification of the W1 microscope built into the image analysis device, etc., so first, set the field of view that will serve as the standard for the sample. , create a histogram that corresponds to as many gradation levels as possible by adjusting the illumination and magnification in 11 sections, and use the shape of this histogram and the shape of the density distribution of the tissue as parameters to calculate the shape of each tissue from the existing 'R$4. The boundary value (Slenshehold) and its permissible range are determined, and this is used as the standard for determining the tissue boundary value of each visual field thereafter. No. IUj! In J, first, in step 1l, a large number of threshold values (thresholds) that determine fA change stages are set. In this embodiment, the number of steps is 256, but it is preferable to have 500 or more steps for automatic adjustment and smoothing of the entire density range. However, the capabilities of imaging cameras currently cannot keep up with this. Each W of the target image with Stenbue 2! 1
Binarize the element according to the threshold, find the density, and create a gray histogram. An example of this is shown in Figure 3. The horizontal axis (X-axis) of Figure 3 shows the 4 degree threshold (divided into 256 pieces), and the vertical axis (y-axis) shows the area between each threshold as a percentage of the total area. In step 13, the entire range of gray histogram densities (
Find the iffi degree span). This is used to express the absolute value of concentration as a concentration ratio. Figure 4 is a smoothed version of Figure 3, and R shown in the figure represents the density span. In step l4, the shape of the histogram,
The boundary value Ti and allowable range ±ΔTi of each tissue are determined based on existing data using the shape of the concentration distribution of the tissue as a parameter. This tolerance range is based on the assumption that when determining the boundary value Ti' of the other field of view of the sample, the relative concentration ratio is not different from that of the calibration standard, and Ti' is within the range of Ti ±ΔTi. This is because it is used as a parameter for determining Ti'.
次に第2図を用いてメインルーチンを説明する.メイン
ルーチンは第1図の校正基準作成ルーチンで作成した基
準スレッシュホールドTi ±△Tiヲ用いて類似組成
の他の試料の&[l織のスレシエホールドTi′値を迅
速に定めてゆく手順を示す。Next, the main routine will be explained using Figure 2. The main routine uses the standard threshold Ti ±△Ti created in the calibration standard creation routine shown in Figure 1 to quickly determine the threshold Ti' value for other samples with similar compositions. show.
ステップ2lは、第1図のステップ12,と同しで、対
象視野ごとにグレーヒストグラムを求め、ステップ22
で全濃度範囲を求めてグレーヒストグラムを濃度比とし
て相対的に表す.このように基準化することによって、
第1図で求めたTi±八T1を適用することができる.
ステンブ23でスレッシュホールドの総数nを設定する
.これにより、各スレソシェホールド毎にその値Ti′
を定めることができる.
ステップ24でグレーヒストグラムのTi ±△T1近
傍の形状が第6図(a)に示すように濃度分布で隣接す
る組織の区別が明確が否か判断し、区別が明確であれば
、ステップ25でグレーヒストグラムのスムージングを
行う.スムージングには公知の方法がいくつかあるが、
その一つにFFT法(Fast. F ourier
Transform)がある.これは、対象曲線をフ
ーリエ変換し、周波数解析を行いノイズを除去するため
高周波成分をカットし、これを逆フーリエ変換して曲線
を再生するものである.第3図にグレーヒストグラムの
スムージング前の形状を示し第4図にスムージング後の
形状を示す.次にステンブ26でボトム位置を求めてこ
の位置をTi ’ とする.ステップ24で濃度分布で
隣接する&lI!aの区別が明確でない場合はステップ
27で濃度分布で隣接する組織の境界の特性を調べる.
この特性が第6図(C)に示すように一方の勾配が急い
で他方がゆるやかである場合はボトム位置は確定しにく
い場合が多い.この場合はステップ28で、Ti ±Δ
Tiで囲まれる面積の重心位置を(】)式で求めこの重
心位置をTi゛とする.この方法はスムージングは不要
である.ステノブ27で、境界の特性が第6図(C)に
示すようなものでない場合は、ステップ29で、&[l
!lの濃度分布の形状を調べ、その形状が節単な場合ス
テンブ30でTi ±ΔTi 間の面積を2等分する位
置を(2)式で求め、その位置をTi′とする.この方
法はスムージングは不要であり、演算も早い.ステップ
29で、分布形状が複雑な場合、ステップ3lで、グレ
ーヒストグラムをスムージングし、ステソプ32で、T
i のχ軸上左右のそれぞれ最初の変曲点膏求め、それ
ぞれの点で切線を引く.ステップ32以降は、グレーヒ
ストグラム上でボトムの位置は目視できるが、しかしそ
の位置を確定する程は明確でない場合のTi′位置を決
定するステソブである.
ステノブ33で2本の切線の交点のy座標が正が否かを
調べ正であればステノブ34で、その切線の交点のχ座
標をTi ’とする.これは第6図回の場合である.ス
テップ33で切線の交点のy座標が正でない場合は、ス
テップ35で、各切線がX軸と交わる点Xl+X!を求
めステップ36でX8とX1との長さIXIX1|が既
知のデータから得られた(lIDより大きいか否か調べ
大きくない場合はステップ37で切線の交点のX座標を
Ti′とする.この場合交点のy座標は負か0でありこ
の様子を第6図(e)に示す.ステップ36でl x.
−x,が値Dより小さくない場合はステップ38でTi
′” X++Ti ’ 一X!とする.つまりスレノシ
ェホールドは2つとなりX,とx2の間の面積は除去し
てしまう.これは、この“よ゜うな場合は第6図ff)
に示すように隣接する組織の境界は決め難く、かつXI
とXt間の面積は小さいので、この面積を除去した方
が精度が向上するからである.次にステップ39でiを
n−1として次の境界値を調べる準備をする.ステップ
40で境界値はすべて決定したか否かを調べ、また残っ
ていればステップ24に戻り、すべての境界値を決定と
する.
このようにして各境界値が決まれば、この境界値に囲ま
れる面積を出すことにより組織の構成を決定することが
できる.このようにして試料の各視野の組織の構成を迅
速に決定することができる.上述の実施例は、本発明の
複数個ある境界値の決め方を組み合わせた一例であり、
試料の種類に応じて他の組み合わせ法も可能である.
〔発明の効果〕
本発明によれば、複数の組織を有する結合物質の断面の
画像を予め設定した濃淡段階に応じて濃.淡分布面積の
ヒストグラムを作成し、各対象組織に対応する濃度範囲
の推定閾値を許容範囲を付して設定し、ヒストグラムの
形状,mmの濃度分布の形状に基づいて、准定国値から
鏡定閾値をほぼ機械的に決定することができるので、!
Il織の定量を迅速かつta度よく行うことができる.Step 2l is the same as step 12 in FIG. 1, and a gray histogram is obtained for each target visual field, and step 22
Find the entire density range with and express the gray histogram relatively as a density ratio. By standardizing in this way,
Ti±8T1 determined in Figure 1 can be applied.
Set the total number of thresholds n in step 23. As a result, the value Ti′ for each thread
can be determined. In step 24, it is determined whether or not the shape of the gray histogram near Ti ±ΔT1 is clearly distinguishable between adjacent tissues based on the density distribution as shown in FIG. 6(a). If the distinction is clear, step 25 is performed. Performs smoothing of the gray histogram. There are several known methods for smoothing, but
One of them is the FFT method (Fast.
Transform). This performs a Fourier transform on the target curve, performs frequency analysis, cuts high frequency components to remove noise, and then performs an inverse Fourier transform to reproduce the curve. Figure 3 shows the shape of the gray histogram before smoothing, and Figure 4 shows the shape after smoothing. Next, find the bottom position using the stem 26 and set this position as Ti'. In step 24, adjacent &lI! in concentration distribution! If the distinction between a is not clear, in step 27, the characteristics of the boundary between adjacent tissues are examined based on the concentration distribution.
When this characteristic is shown in Figure 6 (C), where one slope is steep and the other is gentle, it is often difficult to determine the bottom position. In this case, in step 28, Ti ±Δ
Find the center of gravity position of the area surrounded by Ti using the formula ( ]) and let this center of gravity position be Ti゛. This method does not require smoothing. If the characteristic of the boundary is not as shown in FIG. 6(C) in the steno knob 27, in step 29,
! Examine the shape of the concentration distribution of l, and if the shape is knotty, use equation (2) to find the position where the area between Ti ±ΔTi is divided into two by the stem 30, and let that position be Ti'. This method does not require smoothing and is fast to calculate. In step 29, if the distribution shape is complex, in step 3l, the gray histogram is smoothed, and in step 32, T
Find the first inflection point on the left and right sides of i on the χ axis, and draw a tangent line at each point. Step 32 and subsequent steps are steps for determining the Ti' position when the bottom position on the gray histogram is visible, but it is not clear enough to determine the position. The steno knob 33 checks whether the y-coordinate of the intersection of the two tangent lines is positive or not. If it is positive, the steno knob 34 sets the χ coordinate of the intersection of the two tangent lines to Ti'. This is the case in Figure 6. If the y-coordinate of the intersection of the tangent lines is not positive in step 33, then in step 35, the point Xl+X! where each tangent line intersects with the X axis! In step 36, the length IXIX1| of X8 and In this case, the y-coordinate of the intersection point is negative 0, and this situation is shown in FIG. 6(e).In step 36, l x.
-x, is not smaller than the value D, in step 38 Ti
′”
As shown in
This is because the area between Xt and Xt is small, so removing this area will improve accuracy. Next, in step 39, prepare to examine the next boundary value by setting i to n-1. In step 40, it is checked whether all boundary values have been determined, and if they remain, the process returns to step 24 and all boundary values are determined. Once each boundary value is determined in this way, the structure of the tissue can be determined by calculating the area surrounded by this boundary value. In this way, the tissue composition of each field of the sample can be quickly determined. The above-mentioned embodiment is an example in which a plurality of boundary value determination methods of the present invention are combined,
Other combination methods are possible depending on the type of sample. [Effects of the Invention] According to the present invention, an image of a cross section of a binding substance having a plurality of tissues is darkened or darkened in accordance with preset grayscale levels. Create a histogram of the light distribution area, set the estimated threshold value of the concentration range corresponding to each target tissue with a tolerance range, and calculate mirror determination from the quasi-standard value based on the shape of the histogram and the shape of the concentration distribution in mm. Because the threshold value can be determined almost mechanically!
Quantification of Il texture can be performed quickly and with high accuracy.
Claims (6)
設定した濃淡段階に応じて濃淡分布面積のヒストグラム
を作成し、該ヒストグラムに対して各対象組織に対応す
る濃度範囲を定め、該濃度範囲の面積比より各対象組織
の構成を求める画像解析による組織定量方法において、
前記各対象組織に対応する濃度範囲の、推定閾値を所定
の許容範囲を有する値として設定し、前記ヒストグラム
の該許容範囲を中心とした形状、前記組織の濃度分布の
形状の少なくとも1つ以上に基づいて確定閾値を定めて
前記濃度範囲の面積比を求めることを特徴とする画像解
析による組織定量方法。(1) Create a histogram of the density distribution area of an image of a cross section of a binding substance having multiple tissues according to preset density levels, define a density range corresponding to each target tissue for the histogram, and In the tissue quantification method using image analysis, which determines the composition of each target tissue from the area ratio of the range,
The estimated threshold value of the concentration range corresponding to each target tissue is set as a value having a predetermined tolerance range, and at least one of the shape of the histogram centered around the tolerance range, and the shape of the concentration distribution of the tissue is set. A tissue quantification method using image analysis, characterized in that a definitive threshold is determined based on the density range and an area ratio of the concentration range is determined.
容範囲にある最小値を前記確定閾値としたことを特徴と
する請求項1記載の画像解析による組織定量方法。(2) The tissue quantification method by image analysis according to claim 1, characterized in that the minimum value within the permissible range of the histogram subjected to noise elimination processing is set as the final threshold.
位置を前記確定閾値としたことを特徴とする請求項1記
載の画像解析による組織定量方法。(3) The tissue quantification method by image analysis according to claim 1, characterized in that the position of the center of gravity of the area within the allowable range of the histogram is set as the determined threshold.
分位置を前記確定閾値としたことを特徴とする請求項1
記載の画像解析による組織定量方法。(4) Claim 1 characterized in that the determined threshold value is a position dividing the area of the histogram into two equal parts within the permissible range.
Tissue quantification method by image analysis described.
ストグラムの濃淡段階をx軸方向とし、濃淡段階の度数
をy軸方向として、前記許容範囲の中心よりx軸上左右
に前記ヒストグラムのそれぞれ最初の変曲点において切
線を引き、該切線の交点のx座標を前記確定閾値とした
ことを特徴とする請求項1記載の画像解析による組織定
量方法。(5) After the histogram has been subjected to noise elimination processing, the histogram's gradations are set in the x-axis direction, and the frequency of the gradation steps is set in the y-axis direction, and the first rows of the histogram are placed on the left and right sides on the x-axis from the center of the tolerance range. 2. The tissue quantification method using image analysis according to claim 1, wherein a cut line is drawn at an inflection point, and the x-coordinate of the intersection of the cut lines is set as the determined threshold value.
x_2とし、|x_2−x_1|が所定値以上のときは
前記確定閾値をx_1とx_2の2つの値としたことを
特徴とする請求項5記載の画像解析による組織定量方法
。(6) The position where each of the above-mentioned cutting lines intersects with the x-axis is x_1,
6. The tissue quantification method by image analysis according to claim 5, wherein x_2 is set, and when |x_2-x_1| is equal to or greater than a predetermined value, the determined threshold is set to two values, x_1 and x_2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1053549A JPH06103251B2 (en) | 1989-03-06 | 1989-03-06 | Tissue quantification method by image analysis |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1053549A JPH06103251B2 (en) | 1989-03-06 | 1989-03-06 | Tissue quantification method by image analysis |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02232550A true JPH02232550A (en) | 1990-09-14 |
JPH06103251B2 JPH06103251B2 (en) | 1994-12-14 |
Family
ID=12945876
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1053549A Expired - Fee Related JPH06103251B2 (en) | 1989-03-06 | 1989-03-06 | Tissue quantification method by image analysis |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06103251B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009094905A (en) * | 2007-10-10 | 2009-04-30 | Canon Inc | Information processing apparatus and information processing method |
US9240043B2 (en) | 2008-09-16 | 2016-01-19 | Novartis Ag | Reproducible quantification of biomarker expression |
JP2018044234A (en) * | 2016-09-16 | 2018-03-22 | 新日鐵住金株式会社 | Component ratio estimation device, component ratio estimation program, and method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60100032A (en) * | 1983-11-04 | 1985-06-03 | Nireko:Kk | Automatic quantitative measurement for microscope image of sintered ore or the like |
-
1989
- 1989-03-06 JP JP1053549A patent/JPH06103251B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60100032A (en) * | 1983-11-04 | 1985-06-03 | Nireko:Kk | Automatic quantitative measurement for microscope image of sintered ore or the like |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009094905A (en) * | 2007-10-10 | 2009-04-30 | Canon Inc | Information processing apparatus and information processing method |
US9240043B2 (en) | 2008-09-16 | 2016-01-19 | Novartis Ag | Reproducible quantification of biomarker expression |
JP2018044234A (en) * | 2016-09-16 | 2018-03-22 | 新日鐵住金株式会社 | Component ratio estimation device, component ratio estimation program, and method thereof |
Also Published As
Publication number | Publication date |
---|---|
JPH06103251B2 (en) | 1994-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3870044B2 (en) | Pattern inspection method and pattern inspection apparatus | |
US7983471B2 (en) | Pattern inspection apparatus and method | |
CN101082592B (en) | Uneven checking method and device | |
US20100053319A1 (en) | Method and apparatus for pattern inspection | |
Abril et al. | Automatic method based on image analysis for pilling evaluation in fabrics | |
JP5216274B2 (en) | Pattern evaluation method and apparatus | |
JP3279868B2 (en) | Defect inspection method and device for inspected pattern | |
EP4099012A1 (en) | Metal structure phase classification method, metal structure phase classification device, metal structure phase learning method, metal structure phase learning device, material property prediction method for metal material, and material property prediction device for metal material | |
CN115471486A (en) | Switch interface integrity detection method | |
KR950019730A (en) | Method for Determining Reflectivity of Coal Bititite and Automatic Analysis of Microstructural Components | |
CN109074644A (en) | For using system, method and the computer program product of local auto-adaptive threshold value identification manufacture component defect | |
CA2604101C (en) | Method of analyzing cell structures and their components | |
JPH02232550A (en) | Tissue assay by image analysis | |
CN117237350A (en) | Real-time detection method for quality of steel castings | |
JP2000215310A (en) | Picture quality evaluating method and picture quality evaluating device utilizing the same | |
US6768812B1 (en) | Method for locating features on an object using varied illumination | |
JPS61189406A (en) | Pattern binarization method and its device | |
CA2191177C (en) | Strand dimension sensing | |
US20230326176A1 (en) | Method for performing topographic measurement and topographic measuring machine | |
JP2001085487A (en) | Method of detecting hole pattern and hole pattern detector, and method of measuring hole area at hole center, and device for measuring area of hole at the hole center | |
McGunnigle et al. | Segmentation of Rough Surfaces using Reflectance. | |
Huffer et al. | An indirect method of measuring widths suitable for automated bone histomorphometry | |
JPH09145637A (en) | Method for judging grade of roughness defect | |
JP2803388B2 (en) | Parts inspection equipment | |
Yu et al. | Nondestructive Detection Algorithm for Si3N4 Bearing Roller Microcrack Characterization Based on Multiscale Gamma Correction and Growth Region Segmentation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |