JPH01259243A - Method and instrument for automatic determination of microscopic image of opaque ore or the like - Google Patents

Method and instrument for automatic determination of microscopic image of opaque ore or the like

Info

Publication number
JPH01259243A
JPH01259243A JP63086630A JP8663088A JPH01259243A JP H01259243 A JPH01259243 A JP H01259243A JP 63086630 A JP63086630 A JP 63086630A JP 8663088 A JP8663088 A JP 8663088A JP H01259243 A JPH01259243 A JP H01259243A
Authority
JP
Japan
Prior art keywords
ihp
image
ore
opaque
mineral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63086630A
Other languages
Japanese (ja)
Inventor
Masayuki Hisatsune
久恒 政幸
Iichi Nakamura
威一 中村
Hidesato Ochi
英里 越智
Hiroyuki Unno
海野 浩行
Kanichiro Tanabe
田辺 寛一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Nireco Corp
Original Assignee
Sumitomo Metal Mining Co Ltd
Nireco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd, Nireco Corp filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP63086630A priority Critical patent/JPH01259243A/en
Publication of JPH01259243A publication Critical patent/JPH01259243A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To execute the discrimination and identification of opaque ore and to execute easy and rapid ore identification and binarization by numerically converting a microscopic image and RGB images to IHP data, and identifying and binarizing the ore by the upper limit value and lower limit value of each of IHP 3 elements. CONSTITUTION:The texture image of the polished slice sample of a material contg. the opaque ore to be analyzed is observed by a microscope 11 and the texture image by the microscope 11 is picked up by a color TV 12. The picked up image data is numerically converted by an AD converter 13 to ternary systems; lightness (I), hue (H) and saturation (P). The converted information is stored in a memory 14. The identification and binarization of the ore by the upper limit value and lower limit value of each of the IHP 3 elements of the RGB images picked up by the camera are executed by a central control processing unit 15 in accordance with such information and, therefore, the discrimination and identification of the opaque ore are executed. In addition, the IHP is stored, by which the identification and binarization of the ore are easily and rapidly executed by utilizing the values thereof at every movement of the visual field.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、不透明鉱物を含有する物質の画像解析による
組織分析方法および装置、とくに各組織の構酸比率を自
動的に測定する定量測定方法および測定装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method and apparatus for tissue analysis by image analysis of substances containing opaque minerals, and in particular, a quantitative measurement method for automatically measuring the phosphoric acid ratio of each tissue. and regarding measuring devices.

〔従来技術〕[Prior art]

金属鉱石中には、通常、硫化鉱物や酸化鉱物などの有用
金属と、非金属酸化鉱物等の不要な非金属酸化物等が含
有され、これらの諸鉱物組織の構成比率や断面の粒度分
布の定量的な測定結果は、鉱石の性状評価や、鉱石処理
の際の粉砕、分離等の諸条件を処理するときの基本的な
要因となっている。
Metal ores usually contain useful metals such as sulfide minerals and oxide minerals, as well as unnecessary non-metal oxides such as non-metal oxide minerals, and the composition ratio of these mineral structures and cross-sectional particle size distribution vary. Quantitative measurement results are a fundamental factor in evaluating the properties of ores and determining various conditions such as crushing and separation during ore processing.

従来、上記のような金属硫化鉱物あるいは金属酸化物は
測定用としての薄片状態では光学的に不透明であるので
、薄片を樹脂によって固結し、表面を鏡面仕上げし、反
射顕微鏡の下で、色調によって組織同定し、これを手操
作によるポイントカウント法、ライン分析法、あるいは
面積分析法によって測定されている。
Conventionally, the metal sulfide minerals or metal oxides described above are optically opaque in the form of thin pieces for measurement, so the thin pieces are solidified with resin, the surface is mirror-finished, and the color tone is determined under a reflective microscope. Tissues are identified by manual point counting, line analysis, or area analysis.

これらの方法では、その主体をなすのは検査員の操作で
あり、対象試料を代表する組織の複数の視野の選定、各
鉱物組織の同定、組織の面積比率の決定(面積分析法)
、記録を行い、これらのステ、プを好ましくは50視野
以上について反復し、その積算値を計算する事により得
られた面積比率(体積比率)、これに各鉱物の比重を掛
け、それによって各組織の重量比率を求めている。
In these methods, the main operation is performed by the inspector, which involves selecting multiple fields of view of tissues representative of the target sample, identifying each mineral structure, and determining the area ratio of the tissues (area analysis method).
, record, repeat these steps preferably for 50 or more visual fields, calculate the integrated value, and multiply the area ratio (volume ratio) by the specific gravity of each mineral. The weight ratio of the tissue is being determined.

上記の従来方法は基本的に目視観察を基礎とするので、
必然的に検査員の作業に対するy)純度、疲労度、個人
差等に起因する測定精度、測定速度等に大きいばらつき
が避けられなかった。
Since the above conventional method is basically based on visual observation,
Inevitably, large variations in measurement accuracy, measurement speed, etc. due to purity, degree of fatigue, individual differences, etc. in the work of inspectors were unavoidable.

これに対応する手段として、反射顕微鏡組織に関する測
定の自動化に用いられる自動測定装置が開発されている
。たとえば、反射顕微鏡像をカラー1゛■カメうで撮像
し、検査員がしきい値を設定し、所望の画像をこのしき
い値によって二値化して、所望の組織に関する二値化像
を抽出し、その面積を適切な方法で求める方法が行われ
ている。
As a means to deal with this, an automatic measuring device has been developed that is used to automate measurements regarding reflection microscopic structures. For example, a reflection microscope image is taken with a color 1mm camera, the examiner sets a threshold, the desired image is binarized using this threshold, and a binarized image of the desired tissue is extracted. However, methods are being used to find the area using an appropriate method.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の技術で述べた反射顕微鏡組織に関する測定の自動
化方法は、各組織を白黒、濃淡のしきい値のみで二値化
するので、異なる色相をもちながら明るさ(光の反射率
)が等しい2つの異なる鉱物につい= 3− てその判別ができず、色相による判別をも含み検査員の
目視判定を再現できないという基本的な問題点を含んで
いた。
The automated method for measuring reflection microscopic tissues described in the conventional technology binarizes each tissue using only black and white and gray thresholds, so two types of tissue with different hues but equal brightness (light reflectance) are generated. The basic problem was that it was not possible to distinguish between three different minerals, and that it was not possible to reproduce the visual judgments made by inspectors, including discrimination based on hue.

本発明は、上記問題点を解決し、従来慣用されていた検
査員による色相、明度および彩度という色の3要素のす
べてを駆使した判別を、装置によって高精度に再現し、
しかも容易に自動化が達成できる不透明鉱物等の顕微鏡
画像の自動定量測定方法および装置を提供することを目
的とする。
The present invention solves the above-mentioned problems and uses a device to reproduce with high precision the conventional judgment made by inspectors that makes full use of all three color elements of hue, brightness, and saturation.
Moreover, it is an object of the present invention to provide a method and apparatus for automatic quantitative measurement of microscopic images of opaque minerals, etc., which can be easily automated.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成する本発明による鉱物の顕微鏡画像の自
動定量方法は、組織を分析する不透明鉱物を含有する物
質の研磨片試料を顕微鏡によりU織傷を観察し、前記組
織像をカラー1゛■カメラで撮像し、赤(R)、緑(G
)、青(B)の3色スペクトルハンドによる画像データ
を明度(■)、色相(H)、彩度(P)の3成分系に数
値変換し、IHP各要素ごとに、上限と下限の2つのし
きい値に限界された範囲またはその逆の範囲を、所望の
鉱物組織を同定できる程度に、上限値と下限値を設定し
、これらのしきい値によって二値化されたIHP各二値
化像のうち1つ以上の像の積集合をIHPによる二値化
像にし、数種の異なる鉱物に対して得られたIHPによ
る二値化像を得、それにより視野中の対象鉱物の因子を
演算しかつ測定し、各対象鉱物に対するIHPの上限値
および下限値を記憶させ、引き続き、別の視野に対して
、前記の、撮像、IHP交換、記憶された上限値および
下限値によるIHPによる二値化、および前記因子の測
定を含む手順を反復し、測定結果を集積して試料全体の
所望資料を測定する段階を含む。
The method for automatic quantification of microscopic images of minerals according to the present invention which achieves the above object is to observe the U-textured scratches of a polished sample of a material containing opaque minerals under a microscope, and to color the microscopic images of the microscopic images. The camera captures images, red (R), green (G).
), blue (B) three-color spectrum hand image data is numerically converted into a three-component system of brightness (■), hue (H), and saturation (P), and the upper and lower limits are calculated for each IHP element. The upper and lower limits are set to the extent that the desired mineral structure can be identified for the range limited by two thresholds or vice versa, and each binary IHP value is The product set of one or more of the images is converted into a binarized image by IHP, and a binarized image by IHP obtained for several different minerals is obtained, thereby determining the factors of the target mineral in the field of view. is calculated and measured, and the upper and lower limits of IHP for each target mineral are stored, and subsequently, for another field of view, the above-mentioned imaging, IHP exchange, and IHP based on the stored upper and lower limits are performed. The method includes repeating the procedure involving binarization and measurement of the factors and integrating the measurement results to measure the desired material for the entire sample.

また、上記方法を実施するための本発明による装置は、
組織を分析される不透明鉱物を含有する物質の研磨片試
料の組織像を観測する顕微鏡と、該顕微鏡による組織像
を撮像するカラーTVと、カラーTVからの画像データ
を明度(I)、色相(H)、彩度(P)の3成分系に数
値変換するそれぞれの変換装置と、前記変換装置からの
情報を記憶する記憶装置と、前記情報を処理する中央制
御処理装置と、前記中央制御処理装置からの情報を受け
る画像表示並びに記憶装置と、ステージ・フォーカス自
動制御装置とを含む。
Furthermore, the apparatus according to the invention for carrying out the above method comprises:
A microscope for observing the tissue image of a polished piece sample of a material containing an opaque mineral whose structure is to be analyzed, a color TV for capturing the tissue image using the microscope, and a color TV for capturing the image data from the color TV in terms of brightness (I) and hue ( H) respective conversion devices for numerically converting into a three-component system of chroma (P), a storage device for storing information from the conversion device, a central control processing device for processing the information, and the central control processing. It includes an image display and storage device that receives information from the device, and an automatic stage focus control device.

〔作用〕[Effect]

上記のように構成されているので、l HP系の資料に
より、TVカメラによって撮像されたRBG像のI H
P 3要素ごとの上限値および下限値による鉱物の同定
、二値化をするので、不透明鉱物の判別と同定が実施で
き、併せてIHPの上限値および下限値を記taさせる
ことにより、視野を移動させるたびにその値を利用して
鉱物の同定、二値化の反復を容易かつ迅速化し、公知の
、任意のソフトウェアを利用して各鉱物の面積割合等各
種の所望資料の測定。
Since it is configured as above, the IH of the RBG image captured by the TV camera is
P Since minerals are identified and binarized using the upper and lower limit values for each of the three elements, it is possible to distinguish and identify opaque minerals, and by recording the upper and lower limit values of IHP, the field of view can be improved. Each time the value is moved, mineral identification and binarization can be repeated easily and quickly, and various desired data such as the area ratio of each mineral can be measured using any known software.

表示、印字が容易かつ迅速に実施でき、必要に応してこ
れらの段階が自動化できる。
Display and printing can be performed easily and quickly, and these steps can be automated if necessary.

〔実施例〕〔Example〕

本発明による不透明鉱物を含有する組織分析方法を実施
する装置の一実施例を図面を参照して以下に説明する。
An embodiment of the apparatus for carrying out the method for analyzing a tissue containing opaque minerals according to the present invention will be described below with reference to the drawings.

第1図は鉱石の組織分析に使用する研磨片の斜視図であ
る。研磨片1は、測定対象とする鉱石試料から従来行わ
れている縮分法によって採取した代表部分2を合成樹脂
3で固結した後、試料面を研磨して測定面IAとしたも
のである。本発明はこのような研磨片1を使用して測定
対象試料を構成する組織の構成比率を測定する。
FIG. 1 is a perspective view of a polishing piece used for analyzing the structure of ore. The polished piece 1 is made by solidifying a representative part 2 taken from an ore sample to be measured by a conventional reduction method and solidifying it with a synthetic resin 3, and then polishing the sample surface to form a measurement surface IA. . In the present invention, such a polishing piece 1 is used to measure the composition ratio of the tissue constituting the sample to be measured.

第2図に本発明の装置を概略的に構成図で示す。FIG. 2 shows a schematic diagram of the apparatus of the present invention.

第2図において、対象鉱物の研磨片lの組織を測定する
顕微鏡11と、該顕微鏡で観察されたmm像を撮像する
カラーTV12と、カラーTV2からの画像データを明
度(I)2色相(H)、彩度(P)の3成分素に数値変
換するそれぞれのADコンバータ13と、前記ADコン
バータからの情報を記憶するメモリ装置14と、前記情
報を処理する中央制御処理装置15と、前記中央制御処
理装置15がらの情報を受けるカラー画像表示装置17
、グラフィックプリンク18およびキーボードを含むグ
ラフィックターミナルと、前記中央制御処理装置から前
記顕微鏡に配設されたステージ装置10を制御するステ
ージ・フォーカス自動制御装置22を含む。
In FIG. 2, a microscope 11 measures the structure of a polished piece l of a target mineral, a color TV 12 takes a mm image observed with the microscope, and image data from the color TV 2 is displayed in terms of brightness (I), two hues (H ), chroma (P), a memory device 14 for storing information from the AD converter, a central control processing unit 15 for processing the information, and a central processing unit 15 for processing the information. Color image display device 17 receiving information from control processing device 15
, a graphics terminal including a graphics link 18 and a keyboard, and an automatic stage focus controller 22 for controlling the stage device 10 disposed on the microscope from the central control processing unit.

次に本発明による組織分析方法について、前記構成によ
る装置について述べれば次のとおりである。
Next, regarding the tissue analysis method according to the present invention, the apparatus having the above configuration will be described as follows.

本発明の方法の概略を示すフロー図である第3図におい
て、先ず研磨片1の被測定面の、なるべく多種類の鉱物
種を含む任意の鉱物を選定し、CRT上で観察(任意選
定できる)し、測定に適する倍率の対物レンズ、照明強
度、照明フィルタを含む初期条件を設定し・・ ・・3
1、顕微鏡11によって拡大された赤(RED)、緑(
GREEN)、青(BLUE)の3スペクトルハンドの
各濃淡画像を取り込み・・ ・・32、このメモリーを
本体に記憶し、リアルカラー像としてカソードレイチュ
ーブ(CRT)17にRGBの各強度で表現する。この
データをIHPの組み合ねゼによるデータに演算し変換
し、・・・ 33、次に、CRT上で、リアルカラー像
と二値化像を対照しながら測定対象とする鉱物のみを選
定する・ ・34゜次にその鉱物について十分な程度に
二値化できるIHPの各上限および下限レベルを設定す
る・・・35゜このとき、CRT17上の対象鉱物上の
任意の画素を指定して当該画素のIHPの各値を表示す
る方法を用いて一層容易かつ迅速にIHPの各上限およ
び下限値を決定できる。
In FIG. 3, which is a flowchart showing an outline of the method of the present invention, first, any mineral containing as many mineral species as possible is selected on the surface to be measured of the polishing piece 1, and observed on a CRT (optional). ) and set the initial conditions including the objective lens with magnification suitable for measurement, illumination intensity, and illumination filter...3
1. Red (RED) and green (
32. This memory is stored in the main unit, and is expressed as a real color image in the cathode ray tube (CRT) 17 with each intensity of RGB. . This data is calculated and converted into IHP combination data, and... 33.Next, select only the minerals to be measured while comparing the real color image and the binarized image on the CRT.・ ・34゜ Next, set the upper and lower limit levels of IHP that can be binarized to a sufficient degree for that mineral... 35゜At this time, specify any pixel on the target mineral on the CRT 17 and select the corresponding By using the method of displaying each value of IHP of a pixel, each upper and lower limit value of IHP can be determined more easily and quickly.

最初の対象鉱物を同定するためのI HPの上限値およ
び下限値を記憶させる・・・・終了。
Memorize the upper and lower limits of IHP for identifying the first target mineral...End.

その後、第2の対象鉱物に対し同様の操作を反復し、I
HPの各上限値および下限値を決定し、記taさせる。
After that, repeat the same operation for the second target mineral, and
Determine and record the upper and lower limits of HP.

この操作を第3、第4・・・の必要な種類の対象鉱物に
ついても同様な操作により同定し、二値化用データを記
憶させる。第1の視野のみでは全ての必要な鉱物同定デ
ータ(二値化用データ)が得られない場合には、これを
補うために適当な第2の視野を選定し、RG B ?r
A淡画像画像り込み、IHPデータへの変換、鉱物同定
二値化用データの決定記憶を繰り返す。以上で連続測定
のための準備が完了する。
The same operation is performed for the third, fourth, etc. necessary types of target minerals to identify them, and the binarization data is stored. If all necessary mineral identification data (data for binarization) cannot be obtained with only the first field of view, select an appropriate second field of view to compensate for this, and select RGB? r
Repeat the process of importing the A light image, converting it to IHP data, and determining and storing the data for mineral identification binarization. This completes the preparation for continuous measurement.

次に、既に取り込んでIHPデータへの変換が終わって
いる視野の画像を、上記の準備段階で記憶させた鉱物同
定二値化用データによって二値化し、各鉱物毎の二値化
画像を得る。この二値化画像は通常二値化画像メモリ 
(以下BMと記す)に各鉱物毎に貯えられ、そのBM内
の各部分画像(粒子)の面積、最大長、円相光径などの
パラメータを測定し、粒度分布や面積率、体積や重量換
算データを演算算出する。各鉱物の比重と成分分析値を
あらかしめ入力しておくことにより推定品位を求めるこ
ともできる。
Next, the image of the field of view that has already been captured and converted to IHP data is binarized using the mineral identification binarization data stored in the above preparation stage to obtain a binarized image for each mineral. . This binarized image is usually stored in a binarized image memory.
(hereinafter referred to as BM) is stored for each mineral, and parameters such as area, maximum length, circular phase diameter, etc. of each partial image (particle) in that BM are measured, particle size distribution, area ratio, volume and weight. Calculate the conversion data. Estimated quality can also be determined by roughly inputting the specific gravity and component analysis values of each mineral.

引き続いて、同−研磨片の他の任意の視野を、自動(又
は手動)のステージ装置22によって選定し・・ 31
、RGBによる濃淡画像として取り込み・・  32、
IHPデータへと変換し・・・33、上記の記憶させで
ある鉱物同定二値化データによって、容易かつ迅速に二
値化した画像を得、・・・・37、面積割合、重量割合
、推定品位、粒度分布を測定して、表示必要により印字
する。・・ ・38、この視野を変える操作を所定回数
(通常50回)くり返して、データを積算記憶させ計算
させることにより、測定試料全体の各鉱物の面積割合、
重量割合、推定品位、鉱物断面の粒度分布を求め、表示
させることができる。視野の移動のたび毎に、必要に応
して自動(又は手動)のフォーカス装置22によって焦
点を合わせる。
Subsequently, another arbitrary field of view of the polished piece is selected by the automatic (or manual) stage device 22... 31
, import as a grayscale image using RGB... 32,
Convert to IHP data... 33. Obtain a binarized image easily and quickly using the mineral identification binarized data stored above... 37. Area ratio, weight ratio, estimation Measure quality and particle size distribution, and print if required. ... 38. By repeating this operation of changing the field of view a predetermined number of times (usually 50 times), storing and calculating the data in an integrated manner, the area ratio of each mineral in the entire measurement sample,
The weight ratio, estimated grade, and particle size distribution of the mineral cross section can be determined and displayed. Each time the field of view moves, the focus is adjusted by an automatic (or manual) focusing device 22 as necessary.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は顕微鏡画像、カラーTV
カメラによるRGB像を、IHP系データに数値変換し
、IHP3要素ごとの上限値および下限値によって鉱物
を同定、二値化する方法によって、従来の方法では困難
であった不透明鉱物の判別と同定を行うことができると
ともに、IHPの上限値および下限値を記憶装置に記憶
させて、視野を移動させるたびにこれらの値を利用して
、容易かつ迅速に鉱物同定、二値化をくり返すことを可
能として、公知の任意のソフトウェアを利用して、各鉱
物の面積割合、重量割合、試料の推定品位、鉱物断面の
粒度分布等を測定し、表示、印字することが、容易に、
迅速に必要に応じて自動的に可能となるという、極めて
大きな効果が得られる。
As explained above, the present invention is applicable to microscopic images, color TV
By numerically converting the RGB image taken by a camera into IHP system data, and identifying and binarizing minerals using the upper and lower limit values for each of the three IHP elements, it is possible to distinguish and identify opaque minerals, which was difficult with conventional methods. In addition, the upper and lower limits of IHP can be stored in a storage device, and these values can be used each time the field of view is moved to easily and quickly repeat mineral identification and binarization. If possible, using any known software, the area ratio, weight ratio, estimated quality of the sample, particle size distribution of the mineral cross section, etc. of each mineral can be easily measured, displayed, and printed.
An extremely large effect can be obtained in that it can be quickly and automatically performed as needed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明による組織の定量測定において使用す
る研磨片を示す斜視図。 第2図は、本発明による鉱物組織自動定量測定装置の構
成を示す概略構成図。 第3図は、本発明の方法の概略を示すフロー図である。 1・・・研磨片     2・・・・・鉱石粒子3・・
・樹脂      IA・ 測定面10・・・ステージ
装置  11・・ 反射顕微鏡12・・・カラーTV 
   13・・・ADコンバータ14・・・メモリ  
   15・・・中央制御処理装置16・・・インクフ
ェース 17・・・CRT18・・・ グラフィックプ
リンク 19 ・・グラフィックターミナル 20・・・キーボード   21・・・マウス22 ・
オートステージオートフォーカスコントローラ 31・・・初期条件(対物レンズ倍率、照明強度1照明
フイルター)設定 32・、RGB濃淡画像取り込み 33、、、RGB濃淡画像I HP変換34・・・対象
鉱物選定 35 ・・二値化レベル(上下限)設定36 ・・測定
項目設定  37・・ 二値化38 ・・測定・表示・
印字 39・、・視野移動    40・・・終了特許出願人
 住友金属鉱山株式会社 株式会社 ニレコ
FIG. 1 is a perspective view showing a polishing piece used in quantitative measurement of tissue according to the present invention. FIG. 2 is a schematic configuration diagram showing the configuration of an automatic quantitative measurement device for mineral structure according to the present invention. FIG. 3 is a flow diagram outlining the method of the present invention. 1... Polished piece 2... Ore particles 3...
・Resin IA・ Measurement surface 10... Stage device 11... Reflection microscope 12... Color TV
13...AD converter 14...Memory
15... Central control processing unit 16... Ink face 17... CRT 18... Graphic link 19... Graphic terminal 20... Keyboard 21... Mouse 22 ・
Auto stage autofocus controller 31... Initial conditions (objective lens magnification, illumination intensity 1 illumination filter) settings 32, RGB gradation image capture 33, RGB gradation image I HP conversion 34... Target mineral selection 35... Binarization level (upper and lower limits) setting 36...Measurement item setting 37... Binarization 38...Measurement/display...
Printing 39... Movement of field of view 40... Terminated patent applicant Sumitomo Metal Mining Co., Ltd. Nireco Co., Ltd.

Claims (1)

【特許請求の範囲】 1、組織を分析する不透明鉱物を含有する物質の研磨片
試料を顕微鏡により組織像を観察し、前記組織像をカラ
ーTVカメラで撮像し、赤(R)、緑(G)、青(B)
の3色スペクトルバンドによる画像データを明度(I)
、色相(H)、彩度(P)の3成分系に数値変換し、I
HP各要素ごとに、上限と下限の2つのしきい値に限界
された範囲またはその逆の範囲を、所望の鉱物組織を同
定できる程度に、上限値と下限値を設定し、これらのし
きい値によって二値化されたIHP各二値化像のうち1
つ以上の像の積集合をIHPによる二値化像にし、数種
の異なる鉱物に対して得られたIHPによる二値化像を
得、それにより、視野中の対象鉱物の因子を演算しかつ
測定し、各対象鉱物に対するIHPの上限値および下限
値を記憶させ、引き続き、別の視野に対して、前記の、
撮像、IHP交換、記憶された上限値および下限値によ
るIHPによる二値化、および前記因子の測定を含む手
順を反復し、測定結果を集積して試料全体の所望資料を
測定する段階を含むことを特徴とする鉱物の顕微鏡画像
の自動定量測定方法。 2、組織を分析される不透明鉱物を含有する物質の研磨
片試料により組織像を観測する顕微鏡と、該顕微鏡によ
る組織像を撮像するカラーTVと、カラーTVからの画
像データを明度(I)、色相(H)、彩度(P)の3成
分系に数値変換するそれぞれの変換装置と、前記変換装
置からの情報を記憶する記憶装置と、前記情報を処理す
る中央制御処理装置と、前記中央制御処理装置からの情
報を受ける画像表示並びに記憶装置と、ステージ・フォ
ーカス自動制御装置とを含むことを特徴とする鉱物の顕
微鏡画像の自動定量測定装置。
[Scope of Claims] 1. Observe the tissue image of a polished piece sample of a substance containing opaque minerals using a microscope, and capture the tissue image using a color TV camera. ), blue (B)
Image data based on the three color spectrum bands of brightness (I)
, numerically converted into a three-component system of hue (H) and saturation (P), and I
For each HP element, set the upper and lower limits to the extent that the desired mineral structure can be identified, and set the range limited by two thresholds, the upper limit and the lower limit, or vice versa. 1 of each IHP binarized image binarized by value
The product set of three or more images is converted into a binarized image by IHP, and the IHP binarized images obtained for several different minerals are obtained, and the factor of the target mineral in the field of view is calculated and Measure, memorize the upper and lower limits of IHP for each target mineral, and then continue to measure the above for another field of view.
repeating the procedure including imaging, IHP exchange, IHP binarization with stored upper and lower limit values, and measurement of the factors, and integrating the measurement results to measure the desired material of the entire sample; A method for automatic quantitative measurement of microscopic images of minerals. 2. A microscope for observing a tissue image using a polished sample of a substance containing an opaque mineral whose structure is to be analyzed; a color TV for capturing the tissue image using the microscope; each conversion device for numerically converting into a three-component system of hue (H) and saturation (P); a storage device for storing information from the conversion device; a central control processing device for processing the information; 1. An automatic quantitative measuring device for microscopic images of minerals, comprising an image display and storage device that receives information from a control processing device, and an automatic stage/focus control device.
JP63086630A 1988-04-08 1988-04-08 Method and instrument for automatic determination of microscopic image of opaque ore or the like Pending JPH01259243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63086630A JPH01259243A (en) 1988-04-08 1988-04-08 Method and instrument for automatic determination of microscopic image of opaque ore or the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63086630A JPH01259243A (en) 1988-04-08 1988-04-08 Method and instrument for automatic determination of microscopic image of opaque ore or the like

Publications (1)

Publication Number Publication Date
JPH01259243A true JPH01259243A (en) 1989-10-16

Family

ID=13892347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63086630A Pending JPH01259243A (en) 1988-04-08 1988-04-08 Method and instrument for automatic determination of microscopic image of opaque ore or the like

Country Status (1)

Country Link
JP (1) JPH01259243A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004045110A (en) * 2002-07-10 2004-02-12 Toyota Motor Corp Method and apparatus for measuring color ratio of plastic molding and method for re-toning plastic fragments
WO2006036411A2 (en) * 2004-09-27 2006-04-06 Idc, Llc Systems and methods for measuring color and contrast in specular reflective devices
JP2011141156A (en) * 2010-01-06 2011-07-21 Nippon Steel Corp Specification method of dust kind of dust fall
JP2019174378A (en) * 2018-03-29 2019-10-10 オルガノ株式会社 Measurement method and measurement device for component concentration, and water treatment method and water treatment equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60204080A (en) * 1984-03-27 1985-10-15 Nireko:Kk Method and device for automatic quantitative measurement of tissue using picture analysis
JPS6292900A (en) * 1985-10-18 1987-04-28 カネボウ株式会社 Method of evaluating color

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60204080A (en) * 1984-03-27 1985-10-15 Nireko:Kk Method and device for automatic quantitative measurement of tissue using picture analysis
JPS6292900A (en) * 1985-10-18 1987-04-28 カネボウ株式会社 Method of evaluating color

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004045110A (en) * 2002-07-10 2004-02-12 Toyota Motor Corp Method and apparatus for measuring color ratio of plastic molding and method for re-toning plastic fragments
WO2006036411A2 (en) * 2004-09-27 2006-04-06 Idc, Llc Systems and methods for measuring color and contrast in specular reflective devices
WO2006036411A3 (en) * 2004-09-27 2006-07-13 Idc Llc Systems and methods for measuring color and contrast in specular reflective devices
JP2008516193A (en) * 2004-09-27 2008-05-15 アイディーシー、エルエルシー System and method for measuring color and contrast in specular reflective devices
JP2011141156A (en) * 2010-01-06 2011-07-21 Nippon Steel Corp Specification method of dust kind of dust fall
JP2019174378A (en) * 2018-03-29 2019-10-10 オルガノ株式会社 Measurement method and measurement device for component concentration, and water treatment method and water treatment equipment

Similar Documents

Publication Publication Date Title
KR100442071B1 (en) Nondestructive inspection method and an apparatus thereof
RU2242744C2 (en) Method for measuring of alumina calcination extent and uniformity
US6697509B2 (en) Method and apparatus for scoring the uptake of markers in cells
JP3581149B2 (en) Method and apparatus for identifying an object using a regular sequence of boundary pixel parameters
JPS60204080A (en) Method and device for automatic quantitative measurement of tissue using picture analysis
CN108931536B (en) Method and device for evaluating the quality of a coated surface
US20110255081A1 (en) Apparatus and methods for setting up optical inspection parameters
JP3884834B2 (en) Defect inspection method and apparatus
JP7467205B2 (en) Method for optically detecting biomarkers - Patents.com
US8406514B2 (en) Image processing device and recording medium storing image processing program
JPH01259243A (en) Method and instrument for automatic determination of microscopic image of opaque ore or the like
WO2020130786A1 (en) A method of analyzing visual inspection image of a substrate for corrosion determination
WO2021014682A1 (en) Particle quantitative measurement device
JPH09199560A (en) Inspecting method of semiconductor surface defect and its automatic inspecting equipment
JP2017188790A (en) Color discrimination method and color discrimination device
EP0281392A2 (en) Method and apparatus for bone histomorphometry
Alvarez et al. Qualitative and quantitative evaluation of iron ore sinters through digital microscopy
JP3745075B2 (en) Film thickness measuring device
KR20150047220A (en) Quantitative method for constituents of sintered ore
JP2820030B2 (en) Image display device
JP2001194316A (en) Method and device for non-destructive inspection
EP1129337A1 (en) Blood analysis device and method for establishing a serodiagnosis
DE102010005616B3 (en) Device for evaluating roughness or homogeneity or quality of e.g. sharpened surface of piston ring, has evaluation components determining portion of bright and dark image points, where roughness is evaluated based on certain portions
JP2909756B2 (en) Nonmetallic inclusion inspection method and nonmetallic inclusion inspection apparatus
JP3999615B2 (en) Inspection image processing method