JP2008268131A - Method for evaluating quality of grains, and grain leveling cutting apparatus used therefor - Google Patents
Method for evaluating quality of grains, and grain leveling cutting apparatus used therefor Download PDFInfo
- Publication number
- JP2008268131A JP2008268131A JP2007114751A JP2007114751A JP2008268131A JP 2008268131 A JP2008268131 A JP 2008268131A JP 2007114751 A JP2007114751 A JP 2007114751A JP 2007114751 A JP2007114751 A JP 2007114751A JP 2008268131 A JP2008268131 A JP 2008268131A
- Authority
- JP
- Japan
- Prior art keywords
- grain
- grains
- cross
- base plate
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Image Processing (AREA)
- Image Analysis (AREA)
Abstract
Description
本発明は、大麦、裸麦、小麦、ライ麦、燕麦、米等の穀類の粒を品質評価するために使用する穀粒均平切断装置および穀粒の品質評価方法に関する。 The present invention relates to a grain leveling and cutting apparatus and a grain quality evaluation method used to evaluate the quality of grains of barley, bare barley, wheat, rye, buckwheat, rice and the like.
農林水産省の麦の品質評価基準の1つとして、硝子率がある。これは、1粒の麦をカミソリで切断し、その断面における硝子質の割合を目視で判定するというものである。図5は、裸麦の断面を示す拡大図である。目視の判定基準は、毎年、日本米麦改良協会が主催する目合わせ会にて、穀物検定協会が作成した基準断面(硝子率)を目視で判定し、評価基準を決定している。ここで、図5に示すように、粒の組織が緻密で、粒の切断面が半透明状に見えるものを硝子質A、白く不透明状に見えるものを粉状質Bといい、サンプル中に硝子質粒の含まれている割合を硝子率という。 One of the quality evaluation standards for wheat by the Ministry of Agriculture, Forestry and Fisheries is the glass ratio. In this method, one grain of wheat is cut with a razor, and the vitreous ratio in the cross section is visually determined. FIG. 5 is an enlarged view showing a cross section of bare wheat. The visual judgment criteria are determined every year at the meeting held by the Japan Rice and Wheat Improvement Association by visually judging the standard cross section (glass ratio) created by the Grain Inspection Association. Here, as shown in FIG. 5, when the grain structure is dense and the cut surface of the grain looks translucent, it is called glassy substance A, and when it appears white and opaque, it is called powdery substance B. The ratio of vitreous grains is called the vitreous rate.
一粒の穀粒の硝子率を(1)式に示す。 The glass ratio of one grain is shown in equation (1).
また、同じ穀粒のサンプル群(同一ロット)から100粒を取ってそのサンプル群の硝子率を算出する方法も提案されている。その算出式を(2)式に示す。 There has also been proposed a method of taking 100 grains from a sample group (same lot) of the same grain and calculating the glass ratio of the sample group. The calculation formula is shown in Formula (2).
一般に、硝子率が高いほど粒が硬く(硬質)なり、たんぱく質含有量は多くなり、反対に、粉状質粒の多いものほど、たんぱく質含有量が低くなる傾向がある。 In general, the higher the glass ratio, the harder (harder) the grains and the higher the protein content. Conversely, the higher the powdery grains, the lower the protein content.
しかし、このような目視による硝子質の判定は、処理時間が長く、また目視の判定者により判断が異なるという問題がある。さらに、同じ判定者であっても、体調や疲労の度合い、時期によって、判定結果が異なる。 However, such a visual judgment of glass has the problem that the processing time is long and the judgment differs depending on the visual judge. Further, even for the same judge, the judgment results differ depending on the physical condition, the degree of fatigue, and the timing.
このような目視による判定に代わって、非特許文献1には、大麦の断面における硝子質の状況を、デジタルカメラと画像処理ソフトウェアを用いた画像解析により数量化する方法が提案されている。 In place of such visual determination, Non-Patent Document 1 proposes a method of quantifying the vitreous condition in the cross section of barley by image analysis using a digital camera and image processing software.
すなわち、この文献では、大麦の品質評価の評価項目として、硝子率が重要であることに鑑み、実体顕微鏡で拡大した粒の画像をデジタルカメラにより撮影し、PC(パーソナルコンピュータ)に入力し、画像処理ソフトウェアで画像処理するものである。その画像処理は、麦粒断面の色をサンプリングし、色の薄い部分を粉質部分、濃い部分を硝子質部分と判定するものである。 That is, in this document, in view of the importance of the glass ratio as an evaluation item for barley quality evaluation, an image of a grain enlarged with a stereomicroscope is taken with a digital camera, and input to a PC (personal computer). Image processing is performed by processing software. In the image processing, the color of the wheat grain cross section is sampled, and the light-colored portion is determined as the powdery portion and the dark portion is determined as the vitreous portion.
前記非特許文献1で提案された、画像解析による大麦の硝子質数量化方法では、実体顕微鏡で拡大した麦粒の画像をデジタルカメラにより取り込むようにしているが、麦粒の切断面を実体顕微鏡と垂直に設定することは困難である。これが立体撮影の弱点であり、撮影された写真は、麦粒の断面の輪郭がぼける。さらに、顕微鏡撮影には、一定の照明(照度)が必要であり、照明光が麦の切断面で反射し、顕微鏡の撮影面に入ると、その部分の輝度が極めて大きくなり、正確な映像を撮影することが不可能である。そこで、色フィルターを用いて画像を補正する等の対策を要する。
そこで本発明は、穀粒の断面(硝子質部分)を瞬時に解析できる方法、および、品質評価の対象となる複数の穀粒の切断を一度に同時に行うことのできる装置を提供することを目的とする。
In the method for quantifying barley glass based on image analysis proposed in Non-Patent Document 1, an image of wheat grains enlarged by a stereomicroscope is captured by a digital camera. It is difficult to set it vertically. This is a weak point of stereoscopic photography, and the photographed photograph has a blurred outline of the cross section of wheat grains. Furthermore, a certain amount of illumination (illuminance) is required for microscopic photography, and when the illumination light is reflected by the cut surface of wheat and enters the photographing surface of the microscope, the brightness of that portion becomes extremely high, and an accurate image is obtained. It is impossible to shoot. Therefore, it is necessary to take measures such as correcting the image using a color filter.
Therefore, the present invention has an object to provide a method capable of instantaneously analyzing a cross section (vitreous portion) of a grain and a device capable of simultaneously cutting a plurality of grains to be subjected to quality evaluation. And
前記課題を解決するため、本発明の穀粒の品質評価方法は、
ほぼ赤道部を切断した、同じサンプル群から選ばれた所定数の穀粒の切断面を撮像手段により同時に撮像してコンピュータに取り込み、
撮像した穀粒の切断面の原画像から、当該穀粒の断面の抽出を行い、
前記抽出した穀粒の断面と前記原画像における穀粒の切断面の画像を合成して、背景にノイズのない穀粒の切断面の画像を生成し、
前記穀粒の切断面のコントラストを所定の閾値で二値化することにより、粉状質部分の抽出を行い、
前記穀粒の断面の画像より求めた各穀粒の断面積より、前記抽出された当該穀粒における粉状質部分の面積を減算して、1粒の硝子質面積を演算し、
前記各穀粒の断面積と硝子質面積とに基づいて1粒の硝子率を演算し、
硝子率が所定の上限値を超える硝子質粒の個数と、硝子質が前記上限値以下で所定の下限値以上の半硝子質粒の個数と、全サンプル数とから、そのサンプル群の硝子率を求め、
この硝子率に基づいて、当該サンプル群の穀粒の品質を評価することを特徴とする。
In order to solve the above-described problem, the grain quality evaluation method of the present invention includes:
Images of the cut surfaces of a predetermined number of grains selected from the same group of samples cut substantially from the equator are simultaneously captured by the imaging means and loaded into a computer.
From the original image of the cut surface of the imaged grain, extract the cross section of the grain,
By synthesizing the image of the extracted grain cross-section and the grain cut surface in the original image to generate an image of the grain cut surface without noise in the background,
By binarizing the contrast of the cut surface of the grain with a predetermined threshold, the powdery material part is extracted,
From the cross-sectional area of each grain obtained from the cross-sectional image of the grain, the area of the powdery portion in the extracted grain is subtracted to calculate the vitreous area of one grain,
Based on the cross-sectional area and the vitreous area of each grain, the rate of one grain is calculated,
The vitreous ratio of the sample group is obtained from the number of vitreous grains having a vitreous ratio exceeding a predetermined upper limit, the number of semi-vitreous grains having a vitreous quality below the upper limit and greater than or equal to the predetermined lower limit, and the total number of samples. ,
Based on this glass rate, the quality of the grain of the sample group is evaluated.
本発明の穀粒の品質評価方法においては、ほぼ赤道部を切断した所定数、例えば100粒の穀粒の切断面を同時に撮像してコンピュータに取り込む。コンピュータでは、その原画像における背景(穀粒の切断面以外の部分)を真っ黒、穀粒の切断面を真っ白にする画像処理を行い、断面の抽出(二値化)を行う。これにより、背景におけるノイズが消去される。この、断面の二値化画像から、穀粒の切断面の面積を求めることができる。次いで、原画像と穀粒の断面の画像とを合成し、背景にノイズのない穀粒の切断面の画像を生成する。この穀粒の切断面には、硝子質部分と粉状質部分が存在するため、所定の閾値で二値化することにより、粉状質部分の抽出を行う。穀粒の断面の画像より求めた各穀粒の断面積より、抽出された当該穀粒における粉状質部分の面積を減算して、1粒の硝子質面積を演算する。その演算式は、前記の(1)式である。この演算を全粒に対して行い、前記の(2)式に基づいて、当該サンプル群の硝子率を求め、所定の評価基準に基づいて、品質の評価を行う。 In the grain quality evaluation method of the present invention, a predetermined number of, for example, 100 grain cut surfaces obtained by cutting substantially the equator are simultaneously imaged and loaded into a computer. The computer performs image processing that makes the background (portion other than the cut surface of the grain) in the original image black and the cut surface of the grain pure white, and extracts (binarizes) the cross section. Thereby, the noise in the background is eliminated. From the binarized image of the cross section, the area of the cut surface of the grain can be obtained. Next, the original image and the image of the cross section of the grain are combined to generate an image of the cut surface of the grain without noise in the background. Since the vitreous portion and the powdery portion are present on the cut surface of the grain, the powdery portion is extracted by binarizing with a predetermined threshold. From the cross-sectional area of each grain obtained from the cross-sectional image of the grain, the area of the powdery portion of the extracted grain is subtracted to calculate one glassy area. The arithmetic expression is the above expression (1). This calculation is performed on all the grains, the glass ratio of the sample group is obtained based on the above equation (2), and the quality is evaluated based on a predetermined evaluation standard.
前記撮像手段としてはスキャナを用いることができ、このスキャナのプラテンガラス上に前記所定数の穀粒の切断面が密着するように垂直に並べて撮像する。これにより、デジタルカメラによる撮像時のような照明光の反射もなく、輪郭がぼけることもなく画像を測定することが可能となる。また、スキャナの解像度が増せば増すほど、測定精度が向上する。 A scanner can be used as the imaging means, and images are arranged vertically so that the predetermined number of grain cut surfaces are in close contact with the platen glass of the scanner. As a result, it is possible to measure an image without reflection of illumination light as in the case of imaging with a digital camera and without blurring the outline. Also, the measurement accuracy improves as the resolution of the scanner increases.
また、本発明の穀粒均平切断装置は、
穀粒の一端部を一個ずつ保持する凹部を複数形成した固定台板と、
前記固定台板にセットされ、前記凹部の位置に対応する位置に穀粒挿通穴を形成した可動台板と、
前記可動台板の前記穀粒挿通穴に嵌入して前記凹部に一端部が保持された各穀粒の他端部を押圧する弾性部材からなる押圧部を設けた可動押圧板と
を備え、前記固定台板と可動台板と可動押圧板とで各穀粒を固定した状態で前記固定台板と可動台板との間に前記固定台板の上面に沿ってカッターを移動させて各穀粒のほぼ赤道部を同時に切断する構成としたことを特徴とする。
In addition, the grain leveling and cutting device of the present invention,
A fixed base plate formed with a plurality of recesses for holding one end portion of each grain, and
A movable base plate set on the fixed base plate and having a grain insertion hole at a position corresponding to the position of the recess,
A movable pressing plate provided with a pressing portion made of an elastic member that is fitted into the grain insertion hole of the movable base plate and presses the other end of each grain whose one end is held in the recess, Each grain is moved along the upper surface of the fixed base plate between the fixed base plate and the movable base plate in a state where each grain is fixed by the fixed base plate, the movable base plate, and the movable press plate. It is characterized by having a configuration in which substantially the equator portion is cut simultaneously.
本発明の穀粒均平切断装置は、穀粒の品質評価を効率的に行うものである。この穀粒均平切断装置においては、多数、例えば100粒の穀粒の赤道部(通常、楕円体である穀粒の長手方向の中央部の周囲部)を同時に切断できるよう、各穀粒を立てた状態で保持する。そのために、穀粒の一端部を一個ずつ保持する凹部を複数形成した固定台板を設ける。さらに、固定台板にセットされた穀粒の赤道部より上の上半部を挿通する穀粒挿通穴を形成した可動台板を設ける。さらに、可動台板の穀粒挿通穴に嵌入して固定台板の凹部に一端部が保持された各穀粒の他端部を押圧する弾性部材からなる押圧部を設けた可動押圧板を設ける。このようにして固定台板と可動台板と可動押圧板とで固定された各穀粒を、固定台板と可動台板との間に固定台板の上面に沿ってカッターを移動させて各穀粒のほぼ赤道部を同時に切断する。これにより、多数の穀粒が固定台板の凹部に整列した状態で、同時に各穀粒の赤道部を切断することができる。
このように、穀粒均平切断装置を用いて必要サンプル数の穀粒を同時に切断することにより、サンプルの前処理作業を簡易化するとともに、一定の状態の切断面を持つものを大量に得ることが出来るようになる。また、分析作業も簡易なものとなる。
The grain leveling and cutting apparatus of the present invention efficiently evaluates grain quality. In this grain flat cutting device, each grain is cut so that a large number, for example, the equator part of 100 grains (usually the peripheral part of the center part in the longitudinal direction of the grain which is an ellipsoid) can be cut simultaneously. Hold in an upright position. For this purpose, a fixed base plate in which a plurality of recesses for holding one end of each grain is formed is provided. Furthermore, the movable base plate which formed the grain penetration hole which penetrates the upper half part above the equator part of the grain set to the fixed base plate is provided. Furthermore, a movable pressing plate provided with a pressing portion made of an elastic member that is inserted into the grain insertion hole of the movable base plate and presses the other end portion of each grain whose one end portion is held in the concave portion of the fixed base plate is provided. . In this way, each grain fixed by the fixed base plate, the movable base plate, and the movable press plate is moved between the fixed base plate and the movable base plate along the upper surface of the fixed base plate by moving the cutter. Cut almost the equator of the grain at the same time. Thereby, the equator part of each grain can be cut | disconnected simultaneously in the state which many grains arranged in the recessed part of the fixed baseplate.
In this way, by simultaneously cutting the required number of samples of grains using the grain leveling and cutting device, the sample pretreatment work is simplified and a large number of samples having a certain state of cutting surface are obtained. It will be possible. Also, the analysis work is simplified.
本発明の穀粒の品質評価方法によれば、従来では切断処理した材料は目視で判定されており、高度な専門技術が必要であり、処理能力の限界、得られたデータの客観性に欠けるなどの問題があったが、これらの問題を一挙に解決することができる。
また、本発明の穀粒均平切断装置によれば、従来のカミソリによる一粒ずつの切断方法に比較して、安全で大量に特殊な技術を伴わずに実行することが可能となる。
According to the grain quality evaluation method of the present invention, the material that has been cut is conventionally judged visually, and requires high-level specialized technology, which is limited in processing capability and lack of objectivity in the obtained data. However, these problems can be solved all at once.
In addition, according to the grain leveling and cutting apparatus of the present invention, it is possible to carry out safely and in large quantities without any special technique as compared with the conventional cutting method of each grain with a razor.
以下、本発明の実施の形態を、図1〜図4を用いて説明する。
図1は本発明の実施の形態による穀粒の画像取り込み方法を示す工程図、図2は画像処理方法を示す説明図、図3は穀粒の粉状質部分の抽出方法を示す説明図、図4は本発明の実施の形態による穀粒均平切断装置の断面図である。本実施の形態においては、穀粒として裸麦を例にして説明するが、他の種類の麦や米等の穀粒においても、同様に適用することができることは勿論である。
Embodiments of the present invention will be described below with reference to FIGS.
FIG. 1 is a process diagram illustrating an image capturing method of a grain according to an embodiment of the present invention, FIG. 2 is an explanatory diagram illustrating an image processing method, and FIG. 3 is an explanatory diagram illustrating a method for extracting a powdery portion of the grain. FIG. 4 is a cross-sectional view of a grain leveling and cutting device according to an embodiment of the present invention. In the present embodiment, an explanation will be given by taking bare wheat as an example of the grain, but it goes without saying that the present invention can be similarly applied to grains of other types of wheat, rice, and the like.
図1において、(a)は麦粒を赤道面から切断し、スキャナ1のプラテンガラス2上に、切断面をしたにして100個並べた状態を示している。(b)は、プラテンガラス2上に並べた麦粒を示す平面図である。スキャナ1を走査して、(c)に示すようにPC3にスキャン画像を取り込む。取り込まれた画像は、ディスプレイ4上で確認することができる。 In FIG. 1, (a) shows a state in which wheat grains are cut from the equator plane, and 100 pieces are arranged on the platen glass 2 of the scanner 1 with a cut surface. (B) is a plan view showing wheat grains arranged on the platen glass 2. The scanner 1 is scanned, and the scanned image is taken into the PC 3 as shown in (c). The captured image can be confirmed on the display 4.
図2(a)は、スキャンした原画像の一部を示している。この原画像では、背景にノイズがのっており、そのままでは、麦粒の断面積算出の際に誤差が出る。そこで、図2(b)に示すように、あるレベルで原画像の二値化を行い、麦粒の断面(白い部分)を抽出する。次いで、原画像と断面とのANDをとり、図2(c)に示すように、背景にノイズがのらない麦粒の断面画像を得る。 FIG. 2A shows a part of the scanned original image. In this original image, noise is added to the background, and an error occurs when calculating the cross-sectional area of wheat grains as it is. Therefore, as shown in FIG. 2B, the original image is binarized at a certain level to extract a cross section (white portion) of the wheat grain. Next, the AND of the original image and the cross section is taken to obtain a cross-sectional image of wheat grains with no noise in the background, as shown in FIG.
次に、図3に示すように、粉状質部分の抽出を行う。すなわち、図2(c)の画像に対し、所定の閾値を設定し、二値化処理を行う。図3において、麦断面内の白い部分が粉状質部分であり、黒い部分が硝子質部分である。
No.1〜No.100の麦粒に対し、前掲の(1)式を用いて、それぞれの硝子率を求める。
Next, as shown in FIG. 3, extraction of a powdery part is performed. That is, a predetermined threshold value is set for the image in FIG. 2C and binarization processing is performed. In FIG. 3, the white part in a wheat cross section is a powdery part, and a black part is a vitreous part.
No. 1-No. With respect to 100 wheat grains, the respective glass ratios are obtained using the above-described formula (1).
次いで、それぞれの硝子率が70%を超える麦粒(硝子質粒)の数を数え、また、硝子率が30%以上70%以下の麦粒(半硝子質粒)の数を数え、前掲の(2)式により、そのサンプル群の硝子率を求める。
求めた硝子率により、そのサンプル群の品質評価を行う。評価基準は、日本米麦改良協会等の一般基準による。
Next, the number of wheat grains (vitreous grains) each having a glass ratio exceeding 70% was counted, and the number of wheat grains (semi-vitreous grains) having a glass ratio of 30% or more and 70% or less was counted. ) To obtain the glass ratio of the sample group.
The quality of the sample group is evaluated based on the obtained glass ratio. Evaluation criteria are based on general standards such as Japan Rice Wheat Improvement Association.
表1は、3つのロットの裸麦に対し、従来の目視による硝子率の算出方法(対照)と、本発明による硝子率の自動演算による算出結果を示すものである。比較すると、本発明方法と従来の方法とは、極めて近い結果が得られることがわかる。 Table 1 shows the calculation method (control) of the glass ratio by visual observation and the calculation result by the automatic calculation of the glass ratio according to the present invention for three lots of bare barley. By comparison, it can be seen that the method of the present invention and the conventional method give extremely close results.
次に、図4を用いて、本発明の実施の形態による穀粒均平切断装置について説明する。
図4において、本実施の形態の穀粒均平切断装置10は、穀粒の一端部を一個ずつ保持する凹部11aを複数形成した固定台板11と、固定台板11にセットされ、凹部11aの位置に対応する位置に穀粒挿通穴12aを形成した可動台板12と、可動台板12の穀粒挿通穴12aに嵌入して凹部11aに一端部が保持された各穀粒の他端部を押圧する弾性部材からなる押圧部13aを設けた可動押圧板13とを備えている。可動台板12と可動押圧板13とは、端部において蝶番14により回転自在に取り付けられている。固定台板11と可動台板12と可動押圧板13とで各穀粒を固定した状態で、固定台板11と可動台板12との間に、固定台板11の上面に沿ってカッター15を移動させて、各穀粒のほぼ赤道部を同時に切断する。
Next, the grain leveling and cutting apparatus according to the embodiment of the present invention will be described with reference to FIG.
In FIG. 4, the grain leveling and cutting device 10 according to the present embodiment is set on a fixed base plate 11 having a plurality of concave portions 11 a that hold one end of each grain, and the concave base 11. The other end of each grain, which is inserted into the grain insertion hole 12a of the movable base plate 12 and has one end held in the recess 11a. And a movable pressing plate 13 provided with a pressing portion 13a made of an elastic member that presses the portion. The movable base plate 12 and the movable pressing plate 13 are rotatably attached by hinges 14 at the ends. In a state where each grain is fixed by the fixed base plate 11, the movable base plate 12, and the movable pressing plate 13, the cutter 15 is disposed between the fixed base plate 11 and the movable base plate 12 along the upper surface of the fixed base plate 11. To cut the equator part of each grain at the same time.
このように、穀粒均平切断装置10を用いて必要サンプル数の穀粒を同時に切断することにより、サンプルの前処理作業を簡易化するとともに、一定の状態の切断面を持つものを大量に得ることが出来るようになる。また、分析作業も簡易なものとなる。 In this way, by simultaneously cutting the necessary number of samples of grains using the grain leveling and cutting device 10, the sample pretreatment work is simplified, and a large number of samples having a certain state of cutting surface are obtained. You can get it. Also, the analysis work is simplified.
本発明は、穀粒の断面(硝子質部分)を瞬時に解析できる方法、および、品質評価の対象となる複数の穀粒の切断を一度に同時に行うことのできる装置として、農業の品質管理や流通の分野において利用することができる。 The present invention provides a method capable of instantaneously analyzing a cross section (vitreous portion) of a grain, and an apparatus capable of simultaneously cutting a plurality of grains subject to quality evaluation at the same time as agricultural quality control or It can be used in the field of distribution.
1 スキャナ
2 プラテンガラス
3 パーソナルコンピュータ(PC)
4 ディスプレイ
10 穀粒均平切断装置
11 固定台板
11a 凹部
12 可動台板
12a 穀粒挿通穴
13 可動押圧板
13a 押圧部
14 蝶番
15 カッター
1 Scanner 2 Platen Glass 3 Personal Computer (PC)
4 Display 10 Grain flat cutting device 11 Fixed base plate 11a Recess 12 Movable base plate 12a Grain insertion hole 13 Movable pressing plate 13a Pressing portion 14 Hinge 15 Cutter
Claims (3)
撮像した穀粒の切断面の原画像から、当該穀粒の断面の抽出を行い、
前記抽出した穀粒の断面と前記原画像における穀粒の切断面の画像を合成して、背景にノイズのない穀粒の切断面の画像を生成し、
前記穀粒の切断面のコントラストを所定の閾値で二値化することにより、粉状質部分の抽出を行い、
前記穀粒の断面の画像より求めた各穀粒の断面積より、前記抽出された当該穀粒における粉状質部分の面積を減算して、1粒の硝子質面積を演算し、
前記各穀粒の断面積と硝子質面積とに基づいて1粒の硝子率を演算し、
硝子率が所定の上限値を超える粒の個数と、硝子質が前記上限値以下で所定の下限値以上の粒の個数と、全サンプル数とから、そのサンプル群の硝子率を求め、
この硝子率に基づいて、当該サンプル群の穀粒の品質を評価すること
を特徴とする穀粒の品質評価方法。 Images of the cut surfaces of a predetermined number of grains selected from the same group of samples cut substantially from the equator are simultaneously captured by the imaging means and loaded into a computer.
From the original image of the cut surface of the imaged grain, extract the cross section of the grain,
By synthesizing the image of the extracted grain cross-section and the grain cut surface in the original image to generate an image of the grain cut surface without noise in the background,
By binarizing the contrast of the cut surface of the grain with a predetermined threshold, the powdery material part is extracted,
From the cross-sectional area of each grain obtained from the cross-sectional image of the grain, the area of the powdery portion in the extracted grain is subtracted to calculate the vitreous area of one grain,
Based on the cross-sectional area and the vitreous area of each grain, the rate of one grain is calculated,
From the number of grains whose glass ratio exceeds a predetermined upper limit, the number of grains whose glass quality is not more than the upper limit and not less than the predetermined lower limit, and the total number of samples, the glass ratio of the sample group is obtained,
A grain quality evaluation method characterized by evaluating the grain quality of the sample group based on the glass ratio.
前記固定台板にセットされ、前記凹部の位置に対応する位置に穀粒挿通穴を形成した可動台板と、
前記可動台板の前記穀粒挿通穴に嵌入して前記凹部に一端部が保持された各穀粒の他端部を押圧する弾性部材からなる押圧部を設けた可動押圧板と
を備え、前記固定台板と可動台板と可動押圧板とで各穀粒を固定した状態で前記固定台板と可動台板との間に前記固定台板の上面に沿ってカッターを移動させて各穀粒のほぼ赤道部を同時に切断する構成としたことを特徴とする穀粒均平切断装置。 A fixed base plate formed with a plurality of recesses for holding one end portion of each grain, and
A movable base plate set on the fixed base plate and having a grain insertion hole at a position corresponding to the position of the recess,
A movable pressing plate provided with a pressing portion made of an elastic member that is fitted into the grain insertion hole of the movable base plate and presses the other end of each grain whose one end is held in the recess, Each grain is moved along the upper surface of the fixed base plate between the fixed base plate and the movable base plate in a state where each grain is fixed by the fixed base plate, the movable base plate, and the movable press plate. The grain leveling and cutting apparatus characterized by having a configuration that cuts substantially the equator part of the grain at the same time.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007114751A JP2008268131A (en) | 2007-04-24 | 2007-04-24 | Method for evaluating quality of grains, and grain leveling cutting apparatus used therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007114751A JP2008268131A (en) | 2007-04-24 | 2007-04-24 | Method for evaluating quality of grains, and grain leveling cutting apparatus used therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008268131A true JP2008268131A (en) | 2008-11-06 |
Family
ID=40047816
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007114751A Pending JP2008268131A (en) | 2007-04-24 | 2007-04-24 | Method for evaluating quality of grains, and grain leveling cutting apparatus used therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008268131A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4436886B1 (en) * | 2009-06-10 | 2010-03-24 | 株式会社ケット科学研究所 | Grain cutting / aligning apparatus and grain cutting / aligning method used in a grain quality evaluation system |
CN105430350A (en) * | 2015-12-21 | 2016-03-23 | 中储粮成都粮食储藏科学研究所 | Grain seed image acquisition system |
CN106404780A (en) * | 2016-08-31 | 2017-02-15 | 上海交通大学 | Tablet computer-based rice spike phenotype analyzer and use method thereof |
CN112730273A (en) * | 2021-01-06 | 2021-04-30 | 淮阴工学院 | Portable rice quality detection device and detection method thereof |
-
2007
- 2007-04-24 JP JP2007114751A patent/JP2008268131A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4436886B1 (en) * | 2009-06-10 | 2010-03-24 | 株式会社ケット科学研究所 | Grain cutting / aligning apparatus and grain cutting / aligning method used in a grain quality evaluation system |
JP2010284736A (en) * | 2009-06-10 | 2010-12-24 | Kett Electric Laboratory | Apparatus and method for cutting and aligning grain used in grain quality evaluation system |
CN105430350A (en) * | 2015-12-21 | 2016-03-23 | 中储粮成都粮食储藏科学研究所 | Grain seed image acquisition system |
CN106404780A (en) * | 2016-08-31 | 2017-02-15 | 上海交通大学 | Tablet computer-based rice spike phenotype analyzer and use method thereof |
CN112730273A (en) * | 2021-01-06 | 2021-04-30 | 淮阴工学院 | Portable rice quality detection device and detection method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2460801C (en) | Method for quantitative video-microscopy and associated system and computer software program product | |
US8655009B2 (en) | Method and apparatus for performing color-based reaction testing of biological materials | |
US9547801B2 (en) | Methods of chromogen separation-based image analysis | |
US6697509B2 (en) | Method and apparatus for scoring the uptake of markers in cells | |
EP1484595B1 (en) | Color space transformations for use in identifying objects of interest in biological specimens | |
US11226280B2 (en) | Automated slide assessments and tracking in digital microscopy | |
JP6787076B2 (en) | Color reaction detection system, color reaction detection method and program | |
AU2002334590A1 (en) | Method quantitative video-microscopy and associated system and computer software program product | |
US20120262563A1 (en) | Method for preparing quantitative video-microscopy and associated system | |
JP2010169484A5 (en) | ||
CN103063576A (en) | Method for quantitatively analyzing inclusions in steel under laser microscope | |
CN108333176A (en) | A kind of system and method for mobile terminal quantitative analysis dry chemical detection strip | |
CN105718931A (en) | System And Method For Determining Clutter In An Acquired Image | |
JP2008268131A (en) | Method for evaluating quality of grains, and grain leveling cutting apparatus used therefor | |
CN113450383B (en) | Quantitative analysis method, device, equipment and medium of immunochromatographic test paper | |
EP1947441B1 (en) | Apparatus for determining positions of objects contained in a sample | |
EP4010873B1 (en) | Use of an hdr image in a visual inspection process | |
JP2002257736A (en) | Method and device for inspecting end face of honeycomb structure | |
JP2011232303A (en) | Image inspection method and image inspection device | |
KR102082102B1 (en) | Soil classification estimation method and soil moisture percentage estimation method using soil image | |
CN108647549B (en) | Bar code image processing method, device and system | |
US20070104359A1 (en) | Digital inspection of the physical quality of plain surfaces | |
Chen et al. | Image profile area calculation based on circular sample measurement calibration | |
CN106323885A (en) | Measurement method of organic substance maturity of rock sample | |
JP2008261850A (en) | Image inspection method for inspection plate |