JPS5999947A - Magnetic bearing - Google Patents

Magnetic bearing

Info

Publication number
JPS5999947A
JPS5999947A JP57206118A JP20611882A JPS5999947A JP S5999947 A JPS5999947 A JP S5999947A JP 57206118 A JP57206118 A JP 57206118A JP 20611882 A JP20611882 A JP 20611882A JP S5999947 A JPS5999947 A JP S5999947A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic bearing
induction motor
rotating body
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57206118A
Other languages
Japanese (ja)
Other versions
JPH0474936B2 (en
Inventor
Hajime Sudo
肇 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP57206118A priority Critical patent/JPS5999947A/en
Publication of JPS5999947A publication Critical patent/JPS5999947A/en
Publication of JPH0474936B2 publication Critical patent/JPH0474936B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0459Details of the magnetic circuit
    • F16C32/0461Details of the magnetic circuit of stationary parts of the magnetic circuit
    • F16C32/0465Details of the magnetic circuit of stationary parts of the magnetic circuit with permanent magnets provided in the magnetic circuit of the electromagnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/0493Active magnetic bearings for rotary movement integrated in an electrodynamic machine, e.g. self-bearing motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/09Structural association with bearings with magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2380/00Electrical apparatus
    • F16C2380/26Dynamo-electric machines or combinations therewith, e.g. electro-motors and generators

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

PURPOSE:To realize a high-speed rotation without any fear of damage caused by centrifugal force and reduce the size of an induction motor rotor, by employing a magnetic bearing rotator also as the induction motor rotor which provides a rotational force to the magnetic bearing rotator. CONSTITUTION:A magnetic bearing rotator 7 is supported by a magnetic force supply part 1. An induction motor stator 10 which produces a revolving magnetic field is installed around the outer periphery of a rotation axis direction control magnetic pole 3. The magnetic force supply part 1 is used also as a yoke for the induction motor revolving magnetic field. The magnetic bearing rotator 7 is formed from a metal which has low magnetic reluctance and is rotated by the revolving magnetic field produced by the induction motor stator 10. In other words, the magnetic bearing rotator 7 as a whole is employed also as an induction motor rotor.

Description

【発明の詳細な説明】 [発明の属する技術分野] 本発明は磁気力で1回転体を非接触で支承し、誘導モー
タに依って回転体に回転力を付与し、高速回転を実現す
る磁気軸受の改良に関する。
[Detailed description of the invention] [Technical field to which the invention pertains] The present invention is a magnetic system that supports a rotating body without contact using magnetic force, applies rotational force to the rotating body using an induction motor, and achieves high-speed rotation. Regarding improvements to bearings.

[従来技術とその問題点] 高速回転体を支承する方法の1つとして、回転体を磁気
力で非接触に支承する、いわゆる磁気軸受がある。回転
力の付与は、回転磁界を発生する固定子と、この回転磁
界を受けて、電磁誘導的に回転力を得る回転子で構成さ
れる誘導モータが主に利用される。第1図に従来の磁気
軸受構成の一例を示す。本図はいわゆるアウタロータ型
の5軸制御型磁気軸受で、磁気力供給部(1)には半径
方向磁極(21a 、21b 、21c 、21d 、
22a 、22b 、22c 、22d、 )が90°
の開き角で、上下4個ずつ設置され、各々には磁気力制
御コイル(41a〜41d、42a〜42d)が取着さ
れている。2mの牛径方向磁極群の間には5回転軸方向
環状磁極(3)及び制御コイル(51,52)がある。
[Prior Art and its Problems] One method of supporting a high-speed rotating body is a so-called magnetic bearing, which supports the rotating body by magnetic force in a non-contact manner. To apply rotational force, an induction motor is mainly used, which is composed of a stator that generates a rotating magnetic field and a rotor that receives the rotating magnetic field and obtains rotational force by electromagnetic induction. FIG. 1 shows an example of a conventional magnetic bearing configuration. This figure shows a so-called outer rotor type five-axis controlled magnetic bearing, and the magnetic force supply section (1) has radial magnetic poles (21a, 21b, 21c, 21d,
22a, 22b, 22c, 22d, ) are 90°
Four pieces are installed on the upper and lower sides with an opening angle of , and a magnetic force control coil (41a to 41d, 42a to 42d) is attached to each. Between the 2 m cow radial pole groups there are 5 rotating axial annular poles (3) and control coils (51, 52).

磁気力は2つの環状永久磁石(61,62)から供給さ
れ、磁気軸受回転体(力士の継鉄(81,82)に磁気
吸引力を及ぼし変位計(91a 〜91d 、 92a
 〜92d 、93a。
Magnetic force is supplied from two annular permanent magnets (61, 62), which exerts a magnetic attraction force on the magnetic bearing rotating body (sumo wrestler's yoke (81, 82) and displaces the displacement meters (91a to 91d, 92a).
~92d, 93a.

93b)の信号を図示しない信号処理回路を通して前記
制御コイ# (41a 〜41d 、、、12a 〜4
2d )を付勢することに依り、磁気支承を実現する。
93b) is passed through a signal processing circuit (not shown) to the control coils # (41a to 41d, . . . , 12a to 4).
By energizing 2d), magnetic bearing is realized.

回転力の付与は通常誘導モータが利用される。An induction motor is usually used to apply the rotational force.

誘導モータは、回転磁界を作り出す固定子(IOa)と
、電磁誘導的に回転力を発生させる回転子(fob)で
構成されるが、この誘導モータ回転子(+01))は磁
気軸受回転体の外壁(第1図)或いは内壁(第2図)に
取着される。外壁に取着される場合には誘導モータ回転
子(10b )の外側に磁気軸受回転体が存在しないの
で、遠心力に依る誘導モータ回転子(10b)の破損が
生じ易く、内壁に取着される場合においても、取着部へ
の遠心応力集中は避は難く、いずれの場合においても破
損の危険を考慮する時、磁気軸受回転体の回転数の大巾
な向上は期待出来ない。又、誘導モータ回転子(]Oh
)の取着場所と、これに対応して誘導モータ固定子(I
Oa)の設置場所を用意する必要があり、磁気軸受のコ
ムパクト化が困難であった。誘導モータ固定子(IOa
)からの回転磁界を効率的に利用する際に用いられる継
鉄0υを設置する時には、小型化は、更に難しいものと
なる。
An induction motor is composed of a stator (IOa) that generates a rotating magnetic field and a rotor (fob) that generates rotational force by electromagnetic induction. It is attached to the outer wall (Fig. 1) or the inner wall (Fig. 2). When the induction motor rotor (10b) is attached to an outer wall, there is no magnetic bearing rotating body outside the induction motor rotor (10b), so the induction motor rotor (10b) is easily damaged by centrifugal force. Even in such cases, concentration of centrifugal stress on the attachment portion is unavoidable, and in either case, when considering the risk of damage, it is difficult to expect a significant increase in the rotational speed of the magnetic bearing rotating body. Also, induction motor rotor (]Oh
) and the corresponding induction motor stator (I
It was necessary to prepare a place for installing Oa), making it difficult to make the magnetic bearing compact. Induction motor stator (IOa
) Miniaturization becomes even more difficult when installing a yoke 0υ, which is used to efficiently utilize the rotating magnetic field from the magnetic field.

[発明の目的] 本発明は上記の事情に鑑みてなされたもので、その目的
とするところは、磁気力で支承される磁気軸受回転体を
、回転力を付与する誘導モータの回転子として兼用し、
もって、遠心力に依る破損の心配なしに高速回転を実現
し、且つ磁気軸受回転体及び磁気軸受本体をコンパクト
に構成出来る磁気軸受の提供を目的さする。
[Object of the Invention] The present invention has been made in view of the above circumstances, and its purpose is to make a magnetic bearing rotating body supported by magnetic force double as a rotor of an induction motor that provides rotational force. death,
Therefore, it is an object of the present invention to provide a magnetic bearing that can realize high-speed rotation without fear of damage due to centrifugal force, and can have a compact magnetic bearing rotating body and a magnetic bearing main body.

「発明の概要」 本発明に係る磁気軸受け、磁気軸受固定体と磁気軸受回
転体から成る。磁気軸受固定体には磁気力供給源が設置
され、磁気軸受回転体に取着された継鉄を磁束の経路の
一部吉することで、磁気軸受回転体は磁気力に依って非
接触に支承される。
"Summary of the Invention" A magnetic bearing according to the present invention includes a magnetic bearing fixed body and a magnetic bearing rotating body. A magnetic force supply source is installed on the magnetic bearing fixed body, and by using a yoke attached to the magnetic bearing rotating body as part of the magnetic flux path, the magnetic bearing rotating body is made non-contact by magnetic force. supported.

この磁気軸受回転体は主相として高透磁率材料以外の材
料で強度が高い、電気抵抗率の低い金属、例えばチタン
合金を用いて形成されている。磁気軸受固定体には、磁
気軸受回転体を横切る回転磁界を発生する誘導モータ固
定子が設置されており、前述の様に、この磁気軸受回転
体は電気抵抗率の低い金属で形成されているので、電磁
線溝で力が生じ、従って磁気軸受回転体は回転する。す
なわち、磁気軸受回転体には通常の誘導モータに使用さ
れる銅などで作られた誘導モータ回転子は取着されず、
磁気軸受回転体が誘導モータ回転子として兼用されてい
る。従って、この磁気軸受回転体には、通常の磁気軸受
で見られる様な誘導モータの回転子を取着すべき特別な
場所は設けられていない。又、回転磁界を発生するいわ
ゆる誘導モータ固定子は、磁気軸受回転体に、回転磁界
を付与出来る任意の場所に設置されている。
This magnetic bearing rotating body is formed using a material other than a high magnetic permeability material as a main phase, such as a metal with high strength and low electrical resistivity, such as a titanium alloy. The magnetic bearing fixed body is equipped with an induction motor stator that generates a rotating magnetic field that crosses the magnetic bearing rotating body, and as mentioned above, this magnetic bearing rotating body is made of a metal with low electrical resistivity. Therefore, a force is generated in the electromagnetic groove, and the magnetic bearing rotating body rotates. In other words, the induction motor rotor, which is made of copper or the like used in ordinary induction motors, is not attached to the magnetic bearing rotating body.
The magnetic bearing rotor also serves as the induction motor rotor. Therefore, this magnetic bearing rotating body is not provided with a special place to attach the rotor of the induction motor, as is the case with ordinary magnetic bearings. Also, a so-called induction motor stator that generates a rotating magnetic field is installed at any location where it can apply a rotating magnetic field to the magnetic bearing rotating body.

[発明の効果] 前述した構成である古、誘導モータ固定子の作り出す回
転磁界に依って回転力を得る誘導モータ回転子は磁気軸
受回転体が兼用しているので、通常は別途に磁気軸受回
転体に取着される誘導モータ回転子の受ける遠心力に依
る破損の危険性及び誘導モータ回転子の磁気軸受回転体
への取着部における応力集中に依る破損の危険性を回避
出来る。
[Effects of the Invention] In the case of the above-mentioned configuration, since the induction motor rotor, which obtains rotational force by the rotating magnetic field generated by the induction motor stator, also serves as a magnetic bearing rotating body, usually a separate magnetic bearing rotating body is used. The risk of damage due to the centrifugal force exerted on the induction motor rotor attached to the body and the risk of damage due to stress concentration at the attachment portion of the induction motor rotor to the magnetic bearing rotating body can be avoided.

従って、通常はこれらの破損の危険性のだめ、低く抑え
られていた。磁気軸受回転体の回転数を、破損の心配な
しに大巾に増加することが可能となる。
Therefore, the risk of these damages is usually kept low. It becomes possible to greatly increase the rotational speed of the magnetic bearing rotating body without fear of damage.

又、従来の様に誘導モータ回転子を取着する特別な場所
を用意する必要がないので、誘導モータ固定子の設置位
置は任意に選択出来、よって磁気軸受回転体、並びに磁
気軸受本体の小型化を図れる。
In addition, since there is no need to prepare a special place to mount the induction motor rotor as in the conventional case, the installation position of the induction motor stator can be selected arbitrarily, thereby reducing the size of the magnetic bearing rotating body and the magnetic bearing body. You can aim for

[発明の実施例] 以下、本発明の実施例を図面を参照しながら説明する。[Embodiments of the invention] Embodiments of the present invention will be described below with reference to the drawings.

第3図は、アウタロータ型5軸制御型磁気軸受であり磁
気軸受回転体(力を磁気力供給部(L)に依って支承す
る機構は第1図、第2図で説明したものと全く同様であ
る。この磁気軸受回転体は高透磁率材料ではなく、強度
が高く、電気抵抗率の低い金属、例えばチタン合金で形
成され、内壁には磁気支承に関与する継鉄(81,82
)が取着されているだけで、誘導モータ回転子に相当す
る環状金属部材は、内壁にも外壁にも取着されていない
Figure 3 shows an outer rotor type 5-axis controlled magnetic bearing, and the magnetic bearing rotating body (the mechanism that supports the force by the magnetic force supply section (L) is exactly the same as that explained in Figures 1 and 2). This magnetic bearing rotating body is not made of a high magnetic permeability material, but is made of a metal with high strength and low electrical resistivity, such as a titanium alloy, and the inner wall is equipped with yokes (81, 82) that are involved in magnetic bearing.
) is attached, and the annular metal member corresponding to the induction motor rotor is not attached to either the inner wall or the outer wall.

回転磁界を作り出す誘導モータ固定子00)は、本図で
は回転軸方向制御磁極(3)の外周に設置され、誘導モ
ータ回転磁界用継鉄は磁気軸受磁気力供給部(1)が兼
用している。従って、従来の磁気軸受には不可欠であ一
〕だ誘導モータ回転子及び回転磁界用継鉄を取着する為
の場所を省略することが出来る。
The induction motor stator 00) that produces the rotating magnetic field is installed on the outer periphery of the rotating shaft direction control magnetic pole (3) in this figure, and the magnetic bearing magnetic force supply section (1) also serves as the yoke for the induction motor rotating magnetic field. There is. Therefore, the space for attaching the induction motor rotor and rotating magnetic field yoke, which are essential to conventional magnetic bearings, can be omitted.

又、磁気軸受回転体(7)は磁気抵抗率の低い金属で形
成されているので、誘導モータ固定子(10からの回転
磁界は、前記磁気軸受回転体(力を横切る時、電磁誘導
に依り力をこの磁気軸受回転体上に発生させ、回転が実
現する。すなわち、磁気軸受回転体(力全体が、誘導モ
ータ回転子として兼用されている。磁気軸受回転体(′
L)の外壁に取着されるものは皆無であり、内壁におい
ても磁気支承に係る最小限の継鉄のみしか取着されてお
らず、従って、遠心力に対して破損し難くなるので、回
転体の大巾な回転数の増加が可能となる。誘導モータ固
定子θαの設置位置は1回転磁界を磁気軸受回転体(力
に印加出来る所なら任意であり、磁気軸受の形式もアウ
タロータ型5軸制御方式に限るものでは無い0
In addition, since the magnetic bearing rotating body (7) is formed of a metal with low magnetic resistivity, the rotating magnetic field from the induction motor stator (10) is caused by electromagnetic induction when it crosses the magnetic bearing rotating body (force). Rotation is realized by generating force on the magnetic bearing rotating body (the entire force is also used as the induction motor rotor).
There is nothing attached to the outer wall of L), and only the minimum yoke related to magnetic bearing is attached to the inner wall, so it is difficult to damage due to centrifugal force, so rotation It is possible to greatly increase the number of rotations of the body. The installation position of the induction motor stator θα can be any location that can apply one rotation of the magnetic field to the rotating magnetic bearing (force), and the type of magnetic bearing is not limited to the outer rotor type 5-axis control system.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は磁気軸受回転体の外壁に、誘導モータ回転子を
取着した磁気軸受の従来例を示す断面図。 第2図は同じ内壁如取着した場合の従来例を示す断面図
、M3図は本発明に係る磁気軸受の要部縦断面図である
。 ]・・磁気軸受磁気供給部、 21a 〜21d 、22a =22d ・−・半径方
向磁極、3・・・回転軸方向磁極、 41 a 〜41d、−42a 〜42d 、、、半径
方向制御コイル、51 、52・・軸方向制御コイル 61 、62・・・永久磁石、 ヱ・・・磁気軸受回転体、 81.82・・・継鉄、 91a 〜91d 、 92a 〜92d 、 93a
 、 a3b−・−変位計、10 、10a・・・誘導
モータ固定子、10b・・誘導モータ回転子、 11・・・回転磁界用継鉄。 代理人 弁理士  則 近 憲 佑 (ほか1名) 第  1  図 十  / q3−f、   7 白 −[]、’13a IcuI 胱              ど/a、7c[ロー 
4/(1 、−1L/ 丁− 8/     −”’   −−m−−’     、
A/3z               、!ElZシ
已。        て二一二        −−−
A;已ニー1−  1つ−542a ?lに −ZZa 、、−[]        [I+−りaDI2 ob 1 第  2  図
FIG. 1 is a sectional view showing a conventional example of a magnetic bearing in which an induction motor rotor is attached to the outer wall of a magnetic bearing rotating body. FIG. 2 is a cross-sectional view showing a conventional example when the magnetic bearing is mounted on the same inner wall, and FIG. M3 is a vertical cross-sectional view of the main part of the magnetic bearing according to the present invention. ]...Magnetic bearing magnetism supply unit, 21a to 21d, 22a = 22d...Radial direction magnetic pole, 3...Rotation axis direction magnetic pole, 41a to 41d, -42a to 42d,...Radial direction control coil, 51 , 52... Axial direction control coil 61, 62... Permanent magnet, E... Magnetic bearing rotating body, 81.82... Yoke, 91a to 91d, 92a to 92d, 93a
, a3b--Displacement meter, 10, 10a... Induction motor stator, 10b... Induction motor rotor, 11... Yoke for rotating magnetic field. Agent Patent attorney Noriyuki Chika (and 1 other person) No. 1 Figure 10 / q3-f, 7 White - [], '13a IcuI bladder do/a, 7c [Ro
4/(1, -1L/Ding-8/-”'--m--',
A/3z,! ElZ shi已. te212 ---
A; Ni 1-1-542a? l to -ZZa,, -[] [I+-riaDI2 ob 1 Fig. 2

Claims (2)

【特許請求の範囲】[Claims] (1)磁気力に依って高速回転体を非接触で支承する磁
気軸受において、磁気軸受回転体をこの磁気軸受回転体
に回転力を付与する誘導モータの回転子上して兼用した
ことを特徴きする磁気軸受。
(1) A magnetic bearing that supports a high-speed rotating body using magnetic force in a non-contact manner is characterized in that the magnetic bearing rotating body is also mounted on the rotor of an induction motor that applies rotational force to the magnetic bearing rotating body. magnetic bearing.
(2)磁気軸受固定子側継鉄を、誘導モータの回転磁界
の磁路の一部として兼用したことを特徴とする特許請求
の範囲第1項記載の磁気軸受。
(2) The magnetic bearing according to claim 1, wherein the magnetic bearing stator side yoke also serves as a part of the magnetic path of the rotating magnetic field of the induction motor.
JP57206118A 1982-11-26 1982-11-26 Magnetic bearing Granted JPS5999947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57206118A JPS5999947A (en) 1982-11-26 1982-11-26 Magnetic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57206118A JPS5999947A (en) 1982-11-26 1982-11-26 Magnetic bearing

Publications (2)

Publication Number Publication Date
JPS5999947A true JPS5999947A (en) 1984-06-08
JPH0474936B2 JPH0474936B2 (en) 1992-11-27

Family

ID=16518091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57206118A Granted JPS5999947A (en) 1982-11-26 1982-11-26 Magnetic bearing

Country Status (1)

Country Link
JP (1) JPS5999947A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61185039A (en) * 1985-02-13 1986-08-18 Hitachi Ltd Rotary electric machine having magnetic bearing
EP1115194A2 (en) * 2000-01-05 2001-07-11 Sankyo Seiki Mfg. Co. Ltd. Magnetic levitation motor and method for manufacturing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5783138A (en) * 1980-11-11 1982-05-24 Toshiba Corp Rotary electric machine with magnetic bearing device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5783138A (en) * 1980-11-11 1982-05-24 Toshiba Corp Rotary electric machine with magnetic bearing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61185039A (en) * 1985-02-13 1986-08-18 Hitachi Ltd Rotary electric machine having magnetic bearing
EP1115194A2 (en) * 2000-01-05 2001-07-11 Sankyo Seiki Mfg. Co. Ltd. Magnetic levitation motor and method for manufacturing the same
EP1115194A3 (en) * 2000-01-05 2002-08-28 Sankyo Seiki Mfg. Co. Ltd. Magnetic levitation motor and method for manufacturing the same

Also Published As

Publication number Publication date
JPH0474936B2 (en) 1992-11-27

Similar Documents

Publication Publication Date Title
JPS60245457A (en) Motor
JP2001078389A (en) Magnetic levitation motor
JP2007089270A (en) Axial motor and its rotor
JP2020513723A (en) Rotating electric machine including magnetic position sensor
JPS6139839A (en) Torque motor
JP2020092585A (en) Hybrid field type axial air gap type synchronous generator and synchronous motor
JP4077066B2 (en) Electric motor
US20200166041A1 (en) Vacuum pump, and magnetic bearing device and annular electromagnet used in vacuum pump
US11336162B2 (en) Spherical brushless direct current machine
JPS5999947A (en) Magnetic bearing
JP2019198224A (en) Synchronous motor with permanent magnet
JP2017192214A (en) Brushless motor
JP2011024385A (en) Double rotor structure magnetic support motor and turntable mounted with the same
JPH04322150A (en) Motor
JP2006353052A (en) Brushless motor
JP2010141991A (en) Rotating motor
JP3925204B2 (en) Assembly method of motor with sensor
JPS6091851A (en) Magnet rotary type motor
JPS6176055A (en) Rotor for brushless motor
JPS5854219A (en) Magnetic bearing
JP4621661B2 (en) Rotating machine
JPS61203853A (en) Motor
JPH0583916A (en) Brushless motor
JP2007244169A (en) Motor
JP2005192366A (en) Motor with built-in magnetic encoder