JPS61185039A - Rotary electric machine having magnetic bearing - Google Patents

Rotary electric machine having magnetic bearing

Info

Publication number
JPS61185039A
JPS61185039A JP60024558A JP2455885A JPS61185039A JP S61185039 A JPS61185039 A JP S61185039A JP 60024558 A JP60024558 A JP 60024558A JP 2455885 A JP2455885 A JP 2455885A JP S61185039 A JPS61185039 A JP S61185039A
Authority
JP
Japan
Prior art keywords
magnetic
rotating shaft
magnetic bearing
bearing
electric machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60024558A
Other languages
Japanese (ja)
Other versions
JPH0785638B2 (en
Inventor
Takeshi Komata
剛 小俣
Hideaki Kobayashi
小林 日出明
Nobuo Tsumaki
妻木 伸夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60024558A priority Critical patent/JPH0785638B2/en
Publication of JPS61185039A publication Critical patent/JPS61185039A/en
Publication of JPH0785638B2 publication Critical patent/JPH0785638B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/09Structural association with bearings with magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2322/00Apparatus used in shaping articles
    • F16C2322/39General build up of machine tools, e.g. spindles, slides, actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2380/00Electrical apparatus
    • F16C2380/26Dynamo-electric machines or combinations therewith, e.g. electro-motors and generators

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

PURPOSE:To increase the axial moving distance of a rotational shaft by composing a magnetic bearing for axially moving of a magnetic unit mounted on the periphery of a rotational shaft and a magnetic force unit capable of axially attracting the magnetic unit. CONSTITUTION:A rotary electric machine has a motor 2 in which has a rotor 21 mounted on the outer surface of a rotational shaft 1 and a stator 22 disposed in the outer circumferential direction of the rotor 21, radially moving magnetic bearings 3, 4 for radially moving the shaft 1, and an axially moving magnetic bearing 5 for moving axially the shaft 1. The bearing 5 is composed of a magnetic unit 51 mounted on the periphery of the shaft 1 and magnetic force units 52a, 52b disposed in the outer circumferential direction of the unit 51.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は磁気軸受を有する回転IIL億に係り、さらに
詳しく述べると、回転軸の回転中にその回転軸を軸方向
及び半径方向に移動さぜる磁気軸受を備えた回転電機に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a rotating machine having a magnetic bearing, and more specifically, to a rotating shaft having a magnetic bearing, and more specifically, to a rotating shaft having a magnetic bearing, the rotating shaft is moved in the axial direction and the radial direction while the rotating shaft is rotating. The present invention relates to a rotating electric machine equipped with a magnetic bearing.

〔発明の背景〕[Background of the invention]

従来のこの極の回転電機は、特開昭58−71003号
公報に示されるように振動切削装置等に利用されており
、回転軸の先端に加工工具を取付け、回転軸を軸方向及
び半径方向に移動させて、加工工具が被加工物を切削す
ることができるように構成されている。即ち、従来の磁
気軸受を有する回転を機は、第8図に示すように、回転
軸1と、モータ2と、2つの半径方向移動用磁気軸受3
,4と、1つの軸方向移動用磁気軸受5とを備えている
Conventional rotating electric machines of this type are used in vibration cutting equipment, etc., as shown in Japanese Patent Laid-Open No. 58-71003, and a machining tool is attached to the tip of the rotating shaft, and the rotating shaft is rotated in the axial and radial directions. The machining tool is configured to be able to cut the workpiece by moving the machining tool to the position shown in FIG. That is, as shown in FIG. 8, a conventional rotating machine with magnetic bearings has a rotating shaft 1, a motor 2, and two magnetic bearings 3 for radial movement.
, 4, and one magnetic bearing 5 for axial movement.

前記モータ2は、回転軸1の外面部に取付けらnたロー
タ21と、ケース6の内側に取付けられて前記ロータ2
1の外周方向に配置されたステータnとで構成されてい
る。前記半径方向移動用磁気軸受3,4はモータ2の軸
方向の両側に設置されている。この半径方向移動用磁気
軸受3,4は、夫々が回転軸1の水面部に取付けられか
つ磁性材からなる磁性体31 、41と、ケース6の内
側に取付けられて磁性体31 、41の半径方向(図に
おいて上下方向)に配置された磁力部32 、42と、
ケース6に取付けられて磁性体31 、41の前記磁力
部32 、42と交差方向(囚において手前背紙方向)
に配置された図示しない磁力部とからなっている。前記
軸方向移動用磁気軸受5は、スピンドル1の一端に取付
けられ、かつ磁性材によって円板形に形成された磁性体
51と、ケース6内側にスピンドル1の軸方向に沼って
取付けられかつ磁性体51を挾むように対向配置された
磁力部52とからなっている。なおIOは回転軸の他端
に装着された加工工具である。
The motor 2 includes a rotor 21 attached to the outer surface of the rotating shaft 1 and a rotor 21 attached to the inside of the case 6.
The stator n is arranged in the outer circumferential direction of the stator n. The magnetic bearings 3 and 4 for radial movement are installed on both sides of the motor 2 in the axial direction. The magnetic bearings 3 and 4 for radial movement include magnetic bodies 31 and 41, each of which is attached to the water surface of the rotating shaft 1 and made of a magnetic material, and a radius of the magnetic bodies 31 and 41 which is attached to the inside of the case 6. magnetic force parts 32 and 42 arranged in the direction (vertical direction in the figure);
It is attached to the case 6 and crosses the magnetic parts 32 and 42 of the magnetic bodies 31 and 41 (in the direction of the front and back paper in the case).
It consists of a magnetic force section (not shown) located at The magnetic bearing 5 for axial movement includes a magnetic body 51 which is attached to one end of the spindle 1 and formed into a disc shape from a magnetic material, and a magnetic body 51 which is attached to the inner side of the case 6 in the axial direction of the spindle 1. It consists of magnetic force parts 52 that are arranged opposite to each other so as to sandwich a magnetic body 51 . Note that IO is a processing tool attached to the other end of the rotating shaft.

この磁気軸受を有する回転tmは、2つの半径方向移動
用磁気軸受3,4及び軸方向移動用磁気軸受5の磁力部
32 、42 、52を励磁して、これらに磁性体31
 、41 、51が吸引さnることにょシ回転軸1を図
示の如く支持させ、このときモータ2のス  ゛テータ
n及びロータ21によって回転軸1が回転されるように
なっている。そして、回転軸1の回転中に、例えは2つ
の半径方向移動用磁気軸受3゜4の一方の磁力部32 
、42を増磁して、これに磁性体31 、41が吸引さ
nることにより、回転軸1を上下方向に振動させ、かつ
他方の図示しない磁力部を増磁して、これに磁性体31
 、41が吸引されることにより、回転軸1を上下方向
と交差方向に振動させることができるようになっている
。さらに、軸方向移動用磁気軸受5において、何れか一
方の磁力部52を増磁して、これに磁性体51が吸引さ
れることにより、回転軸1を軸方向に移動させることが
できるようになっている。
The rotation tm having this magnetic bearing excites the magnetic force parts 32 , 42 , 52 of the two magnetic bearings 3 and 4 for radial movement and the magnetic bearing 5 for axial movement, so that the magnetic body 31
, 41, and 51 support the rotary shaft 1 as shown in the figure, and the rotary shaft 1 is rotated by the stator of the motor 2 and the rotor 21 at this time. During the rotation of the rotating shaft 1, for example, one of the magnetic force parts 32 of the two radially moving magnetic bearings 3.
, 42 are magnetized, and the magnetic bodies 31 and 41 are attracted to them, thereby causing the rotary shaft 1 to vibrate in the vertical direction.The other magnetic force part (not shown) is also magnetized, and the magnetic bodies 31 and 41 are attracted thereto. 31
, 41 are attracted, so that the rotating shaft 1 can be vibrated in the vertical direction and the cross direction. Furthermore, in the magnetic bearing 5 for axial movement, by magnetizing one of the magnetic parts 52 and attracting the magnetic body 51 to this, the rotating shaft 1 can be moved in the axial direction. It has become.

そのため、2つの半径方向移動用磁気軸受3゜4と軸方
向移動用磁気軸受5とは、夫々専用の位置検出器7,8
及び9と、これら位置検出器7゜8.9からの検出信号
に基づいて各々の磁力部32・42 、52の励研力を
独立的にコントロールする制御部とによって制御さnる
。位置検出器7,8.9は、夫々が対向する位置にクー
ゲラ)7m、8a。
Therefore, the two magnetic bearings 3° 4 for radial movement and the magnetic bearings 5 for axial movement are equipped with dedicated position detectors 7 and 8, respectively.
and 9, and a control section that independently controls the excitation force of each magnetic force section 32, 42, 52 based on detection signals from these position detectors 7.8.9. The position detectors 7, 8.9 are located at opposite positions (7m, 8a).

9aを有しており、そのターゲットとの間のギャップを
検出できるように構成されている。前記制御部は、夫々
が略同様のS成でりるから、ここでは軸方向移動用磁気
軸受5について述べる。即ち、回転軸1を軸方向に移動
させる場合、第9図に示すように、位置検出器9からの
検出信号が位相進み補償回路11を介して比較器12に
入力される。比較器12は、前記検出信号に基づいた入
力信号と、ギヤツブ設足器13によって予め移動量が設
定された設定値の入力信号とを比較してその偏差を求め
、比例積分回路14、増巾器15tl−介し磁力部52
に前記偏差に応じた励磁電流を与え、かくして回転軸1
の移動に応じて偏差がOになることによシ、回転軸1を
目標位kまで移動させる。
9a, and is configured to be able to detect a gap between the target and the target. Since each of the control sections has substantially the same S configuration, the magnetic bearing 5 for axial movement will be described here. That is, when moving the rotating shaft 1 in the axial direction, a detection signal from the position detector 9 is input to the comparator 12 via the phase lead compensation circuit 11, as shown in FIG. The comparator 12 compares the input signal based on the detection signal with the input signal of the set value whose movement amount is set in advance by the gear foot foot device 13, calculates the deviation, and calculates the deviation thereof. 15tl-through magnetic force section 52
An excitation current corresponding to the deviation is applied to the rotating shaft 1.
When the deviation becomes O in accordance with the movement of , the rotating shaft 1 is moved to the target position k.

ところで、上記に示す従来例は、軸方向移動用磁気軸受
5が、軸方向に対向配置されたコイル部52 、52間
で磁性体51を吸引させるように構成されているので、
回転軸1の軸方向の移動量が磁性体51と磁力部52 
、52との間のギャップ長さによって制限され、このた
め、その移動量が極めて小さい不具合がある。
By the way, in the conventional example shown above, the magnetic bearing 5 for axial movement is configured to attract the magnetic body 51 between the coil parts 52, 52 arranged opposite to each other in the axial direction.
The amount of axial movement of the rotating shaft 1 is determined by the magnetic body 51 and the magnetic force part 52.
, 52, and therefore the amount of movement is extremely small.

この不具合を解決する為、回転11@全体を移動できる
ような送りe構を別に設けていたが、その場合、送り機
構が祷雑でかつ大型になるばかりでなく、コストがそれ
だけ高くつく問題がある。
In order to solve this problem, a separate feed mechanism was provided that could move the entire rotation 11@, but in that case, not only would the feed mechanism become complicated and large, but it would also be costly. be.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記事情に鑑み、回転軸の軸方向の移
動itをギャップに制限されることがないようKL、以
て回転軸の軸方向の移動量は送り機構を別に設けなくと
も大きくすることができる磁気軸受を有する回転電機を
提供するにある。
In view of the above circumstances, an object of the present invention is to prevent the axial movement of the rotating shaft from being limited by the gap, so that the amount of axial movement of the rotating shaft can be increased without separately providing a feed mechanism. An object of the present invention is to provide a rotating electrical machine having a magnetic bearing capable of

〔発明の概要〕[Summary of the invention]

本発明者らは、糧々検肘及び試験を行なった結果、回転
軸の移動量が軸方向移動用磁気軸受の磁性体と磁力部と
の間のギャップ長さより大きくするには、前記ギャップ
長さを軸方向に設けず、これと直交する方向、即ち半径
方向に設けることに着目した。つまシ、ギャップ長さを
半径方向に設けた場合、磁力部を励磁したとき、磁力が
磁性体に対し半径方向と軸方向との2つの分力を生じる
が、その軸方向の磁力を利用することに着目した。
As a result of extensive examination and testing, the present inventors found that in order to make the amount of movement of the rotating shaft larger than the gap length between the magnetic body and the magnetic part of the magnetic bearing for axial movement, the gap length must be Attention was focused on providing the radial direction not in the axial direction, but in a direction perpendicular to the axial direction, that is, in the radial direction. When the pick and gap lengths are set in the radial direction, when the magnetic part is excited, the magnetic force generates two component forces in the radial direction and axial direction on the magnetic body, but the axial magnetic force is used. I focused on this.

即ち、本発明の磁気軸受を有する回転電機は、軸方向移
動用磁気軸受を、回転軸の周面部に取付けられた磁性体
と、該磁性体と対応する外周部に設置されてその磁性体
と半径方向のギャップを有し、かつ助出されたとき磁性
体を軸方向に吸引し得る磁力部とで構成したことに特徴
を有する。
That is, in the rotating electric machine having a magnetic bearing of the present invention, the magnetic bearing for axial movement has a magnetic body attached to the peripheral surface of the rotating shaft, and a magnetic body installed on the outer peripheral part corresponding to the magnetic body. It is characterized by having a gap in the radial direction and a magnetic force section that can attract the magnetic material in the axial direction when it is pulled out.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明のいくつかの実施例を第1図乃至第7図に
ついて説明する。第1図及び第2図は本発明の磁気軸受
を有する回転tmの第1の実施例を示し、同一において
第8図及び第9図と同一符号のものは同じもの、もしく
は相当するものを表わしている。
Some embodiments of the invention will now be described with reference to FIGS. 1 to 7. FIGS. 1 and 2 show a first embodiment of a rotating tm having a magnetic bearing according to the present invention, and the same reference numerals as in FIGS. 8 and 9 represent the same or equivalent parts. ing.

実施例の磁気軸受を有する回転電機は、回転軸1と、該
回転軸1の外面部に取付けらnたロータ21及び該ロー
タ21の外周方向に配置さniステータnよシ構成され
るモータ2と、回転軸1を半径方向に移動させる少々く
とも2つの半径方向移動用磁気軸受3.4と、回転軸1
を軸方向に移動させる少なくとも1つの軸方向移動用磁
気軸受5とを備えて構成されている。この点は従来例と
同様である。
The rotating electrical machine having a magnetic bearing according to the embodiment includes a rotating shaft 1, a rotor 21 attached to the outer surface of the rotating shaft 1, and a motor 2 consisting of a stator disposed in the outer circumferential direction of the rotor 21. , at least two radially moving magnetic bearings 3.4 for moving the rotating shaft 1 in the radial direction, and the rotating shaft 1.
and at least one magnetic bearing 5 for axial movement. This point is similar to the conventional example.

しかして、前記軸方向移動用磁気軸受5は、回転軸1の
周面部に取付けられ九磁性体51と、その磁性体51の
外周方向に配置された2つの出力部52m、52bとで
構成されている。
The magnetic bearing 5 for axial movement is constructed of a nine magnetic body 51 attached to the circumferential surface of the rotating shaft 1, and two output parts 52m and 52b arranged in the outer circumferential direction of the magnetic body 51. ing.

具体的に述べると、前記磁性体51は、例えば珪素剛板
等からなる薄い磁性板を積層して適度の外径と長さく厚
さ)を有する円筒状に形成され、その内部に回転軸1を
嵌合して回転軸lの一端部に取付けられている。
Specifically, the magnetic body 51 is formed into a cylindrical shape having an appropriate outer diameter, length, and thickness by laminating thin magnetic plates made of, for example, silicon rigid plates, and has a rotating shaft 1 inside it. is fitted to one end of the rotating shaft l.

前記磁力部52m、52bは、夫々が磁性体51を吸引
するものであって、例えばコアとこnを取り囲むように
巻回さnたコイルからなっている。この磁力部52at
52bは、磁性体51の外径寸法より大きい内径を有す
る円筒形をなしており、ケース6内面に暇付けられて、
磁性体51の外周方向に配置さnている。従って、夫々
の磁力部52a、52bが磁性体51に対し軸と直交す
る方向、即ち半径方向にギャップを有している。
The magnetic force parts 52m and 52b each attract the magnetic body 51, and are made of, for example, coils wound around a core. This magnetic force part 52at
52b has a cylindrical shape with an inner diameter larger than the outer diameter of the magnetic body 51, and is attached to the inner surface of the case 6.
They are arranged in the outer circumferential direction of the magnetic body 51. Therefore, each magnetic force part 52a, 52b has a gap with respect to the magnetic body 51 in the direction perpendicular to the axis, that is, in the radial direction.

また磁力部52m、52bは、夫々の磁気的中心部が磁
性体51の中心部とずれるように回転軸1の軸方向に沼
って対向配置されている。そして、何れか一方が励磁さ
れたとき、半径方向と軸方向との2つの分力のトカが作
用して、その軸方向の磁力によって磁性体51を吸引す
ることにより、磁性体51を軸方向に移動させることが
できるようになっている。
Further, the magnetic force parts 52m and 52b are disposed opposite to each other in the axial direction of the rotating shaft 1 so that their respective magnetic centers are offset from the center of the magnetic body 51. When either one is excited, two force components in the radial direction and the axial direction act, and the magnetic body 51 is attracted in the axial direction by the magnetic force in the axial direction. It is now possible to move it to

その次め、磁力部52の軸方向の磁力は軸方向移動用の
位置検出器9と、制a81Sとによって制御される。前
記位置検出器9は、ケース6内面の回転軸1と対向する
位置に取付けられ、力1つ回転軸1の一備面に固定され
たターケラ)9at有しておシ、該ターケラト9aとの
間のギャップを検出できるように構成されている。前記
側(iI&1部は、位置検出器9の出力部が位相補償回
路11を介して比較器12の一方の入力部に接続され、
比較器12の他方の入力部にはキャップ設定器13が従
続されている。
Next, the axial magnetic force of the magnetic force section 52 is controlled by the position detector 9 for axial movement and the control a81S. The position detector 9 is mounted on the inner surface of the case 6 at a position facing the rotating shaft 1, and has a turret 9at fixed to one surface of the rotating shaft 1. It is configured to detect gaps between On the side (iI & 1 section, the output section of the position detector 9 is connected to one input section of the comparator 12 via the phase compensation circuit 11,
A cap setting device 13 is connected to the other input of the comparator 12 .

該ギャップ設定器13は位置検出器9とそのターゲラ)
9mとの−1のギャップを設定する。そして、比較器1
2の出力部には、比例積分回路14、増巾器15を介し
た前記磁力fi52mと、インバータ1b、比例積分回
路17、増巾器18を介した前記磁力部52 bとが並
列に接続されている。
The gap setting device 13 is a position detector 9 and its target.)
Set a gap of -1 with 9m. And comparator 1
The magnetic force fi52m via the proportional-integral circuit 14 and the amplifier 15 and the magnetic force section 52b via the inverter 1b, the proportional-integral circuit 17 and the amplifier 18 are connected in parallel to the output section of 2. ing.

即ち、前記制御部は、比較器12によって位置検出器9
からの検出信号とギャップ設定器13の指令値信号との
偏差が出力されたとき、その出力信号が一方においては
そのまま比例積分回路14、増巾器15を介し磁力部5
2&に入力されると共に、他方においてはインバータ1
6によって極性反転されることにより、上記と同様のル
ートを経て磁力部52bに入力される。従って、この制
御回路は、回転軸1が設定位置よシも離れると、一方の
磁力部52bが増磁されると共に、他方の磁力部52 
mが減磁され、また設定位置よシ縮まると、他方の磁力
部52 aが増磁されると共に、一方の磁力部52 b
が減磁され、かくして回転軸1を所望位aまで移動制御
できるようになっている。
That is, the control section uses the comparator 12 to detect the position detector 9.
When the deviation between the detection signal from the gap setter 13 and the command value signal of the gap setter 13 is output, the output signal is directly transmitted to the magnetic force unit 5 via the proportional integral circuit 14 and the amplifier 15 on the one hand.
2 & and on the other hand, inverter 1
By having the polarity reversed by 6, the signal is input to the magnetic section 52b via the same route as above. Therefore, in this control circuit, when the rotating shaft 1 leaves the set position, one magnetic force section 52b is magnetized, and the other magnetic force section 52b is magnetized.
When m is demagnetized and contracted from the set position, the other magnetic force section 52 a is magnetized, and one magnetic force section 52 b
is demagnetized, thus making it possible to control the movement of the rotating shaft 1 to a desired position a.

本実施例の回転電機は、上記の如く、軸方向移動用磁気
軸受5の磁性体51と磁力部52m、52bとが半径方
向にギャップを持ち、磁力部52m、52bのうち、何
れか一方を増磁すると共に他方を減磁して、磁性体51
を軸方向に移動させるので、回転軸1を軸方向に確実に
移動させることができる。
As described above, in the rotating electrical machine of this embodiment, the magnetic body 51 of the magnetic bearing 5 for axial movement and the magnetic force parts 52m, 52b have a gap in the radial direction, and either one of the magnetic force parts 52m, 52b is The magnetic body 51 is magnetized while demagnetizing the other.
Since the rotating shaft 1 is moved in the axial direction, the rotating shaft 1 can be reliably moved in the axial direction.

従って、従来のように軸移動方向にギャップ長さを有す
る磁気軸受5と比較すると回転軸1の移動量がギャップ
長さに制限されることがないので、回転軸1の軸方向の
移動量をよシ大きくすることができる。
Therefore, compared to the conventional magnetic bearing 5 which has a gap length in the axis movement direction, the amount of movement of the rotating shaft 1 is not limited by the gap length, so the amount of axial movement of the rotating shaft 1 can be reduced. It can be made much larger.

また、回転軸1の軸方向の移動量が大きいと、半径方向
移動用磁気軸受3,4の位置検出用としての位置検出器
7,8のターゲット7 a e 3 mが軸方向に大き
くずれるので、位置検出器7,8が正確に検出できなく
なるおそれがある。しかし本例では、夫々のターゲラ)
7m、Bai軸方向に拡げて従来のものよシ長さく厚み
)を持たせているので、ターゲラ)7m、8aが軸方向
に偏倚しても、正確な位置を検出することができる。
Furthermore, if the amount of axial movement of the rotary shaft 1 is large, the targets 7 a e 3 m of the position detectors 7 and 8 for detecting the positions of the magnetic bearings 3 and 4 for radial movement will shift greatly in the axial direction. , there is a risk that the position detectors 7 and 8 will not be able to detect accurately. However, in this example, each Targera)
7m, expanded in the axial direction to make it longer and thicker than the conventional one, so even if the target blades 7m and 8a shift in the axial direction, accurate position detection is possible.

第3図は本発明の第2の実施例を示している。   −
この実施例において、前記第1の実施例と異なるのは、
軸方向移動用磁気軸受5の磁力部52 a 、 52b
がソレノイドで構成され、かつ磁性体51が永久研石等
のように着磁されたものを用いた麿にある。
FIG. 3 shows a second embodiment of the invention. −
This embodiment differs from the first embodiment as follows:
Magnetic force portions 52 a and 52 b of the magnetic bearing 5 for axial movement
is composed of a solenoid, and the magnetic body 51 is a magnetized material such as a permanent grinding stone.

従って、この実施例は基本的には第1の実施例と同様の
作用効果を得ることができる。
Therefore, this embodiment can basically obtain the same effects as the first embodiment.

第4図及び第5図は本発明の第3の実施例を示している
。この場合は、軸方向移動用磁気軸受5の磁性体51が
回転軸1の局面部に対し軸方向に沿って複数配置され、
かつ磁力部52が軸方向に沿って螺旋状に複数配置され
ている。即ち、前記複数の磁性体51は、夫々が同様の
外径及び長さく厚さ)をなしており、かつ回転軸1に対
し適宜の間隔をもって軸方向に浴って取付けられている
。前記複数の磁力部52は、夫々がケース6内側の磁性
体51を取り囲む位置に取付けられて、回転軸1の軸方
向に溢って螺旋状に配置されている。前記磁気軸受5は
、磁力部52の夫々が軸方向に浴って順次励磁及び消磁
されたとき、その励磁された磁力部52が磁性体51を
吸引することによシ、磁性体51を軸方向に移動させ、
これによって回転軸1t−軸方向に移動させることがで
きるようになっている。そのため、前記り数の磁力部5
2は、夫々が孤立的にオン、オフ制?I11されるよう
に構成されている。
4 and 5 show a third embodiment of the invention. In this case, a plurality of magnetic bodies 51 of the magnetic bearing 5 for axial movement are arranged along the axial direction with respect to the curved surface of the rotating shaft 1,
A plurality of magnetic force parts 52 are arranged in a spiral shape along the axial direction. That is, the plurality of magnetic bodies 51 have the same outer diameter, length, and thickness, and are attached to the rotating shaft 1 at appropriate intervals in the axial direction. The plurality of magnetic parts 52 are each attached to a position surrounding the magnetic body 51 inside the case 6, and are arranged in a spiral shape overflowing in the axial direction of the rotating shaft 1. In the magnetic bearing 5, when each of the magnetic force parts 52 is sequentially excited and demagnetized in the axial direction, the excited magnetic force parts 52 attract the magnetic body 51, thereby causing the magnetic body 51 to axially move. move in the direction
This makes it possible to move it in the direction of the rotating shaft 1t-axis. Therefore, the above number of magnetic force parts 5
2. Is each individual on and off independently? I11.

第6図は本発明の第4の実施例を示している。FIG. 6 shows a fourth embodiment of the invention.

この場合は、軸方向移動用磁気軸受5として、2つの半
径方向移動用磁気軸受3,4を利用したものである。
In this case, two magnetic bearings 3 and 4 for radial movement are used as the magnetic bearing 5 for axial movement.

即ち、前記S気軸受5の磁性体51が前記磁気軸受3.
4の磁性体31 、41で、かつ磁気軸受5の磁力部5
2が磁気軸9!3 、4の磁力部32 、42で夫々構
成されると共に、磁性体51と磁力部52との磁気的中
心部とが軸方向にずれるように配置されている。
That is, the magnetic body 51 of the S air bearing 5 is connected to the magnetic bearing 3.
4 magnetic bodies 31 and 41, and the magnetic force part 5 of the magnetic bearing 5
2 is composed of the magnetic force parts 32 and 42 of the magnetic axes 9!3 and 4, respectively, and the magnetic body 51 and the magnetic center part of the magnetic force part 52 are arranged so as to be shifted in the axial direction.

そして、2つの磁気軸受3,4のうち、10jれか一方
の磁気軸受3.4の磁力部32 、42を増磁して、こ
れに磁性体31 、41が吸引されることにより、磁性
体31 、41 t−軸方向に移動させるようになって
いる。
Then, the magnetic parts 32 and 42 of one of the two magnetic bearings 3 and 4 are magnetized, and the magnetic bodies 31 and 41 are attracted to this, so that the magnetic bodies 31, 41 It is adapted to be moved in the t-axis direction.

従って、この実施例は、軸方向移動用磁気軸受5として
2つの半径方向移動用磁気軸受を利用しているので、前
述した第1〜第3の実施例に比較して、部品点数を削減
することができ、それだけコストを下けることができる
Therefore, since this embodiment uses two radially moving magnetic bearings as the axially moving magnetic bearing 5, the number of parts is reduced compared to the first to third embodiments described above. It is possible to reduce costs accordingly.

第7図は本発明の第5の実施例を示している。FIG. 7 shows a fifth embodiment of the invention.

この実施例は、軸方向移動用磁気軸受として、モータ2
1c利用したものでめる。即ち、この場合の前記磁気軸
受5は、磁性体51がモータ2のロータ21で構成され
ると共に、出力部52がモータ2のステータnで構成さ
れ、かつロータ21とステータηとが相対的に軸方向に
ずれている。そして、ロータ21に対するステータηの
磁力を変化せしめて、これにロータ21を吸引すること
により、ロータ21を軸方向に移動させることができる
ようになっている。
This embodiment uses the motor 2 as a magnetic bearing for axial movement.
It is made using 1c. That is, in the magnetic bearing 5 in this case, the magnetic body 51 is constituted by the rotor 21 of the motor 2, the output part 52 is constituted by the stator n of the motor 2, and the rotor 21 and the stator η are relatively axially misaligned. By changing the magnetic force of the stator η with respect to the rotor 21 and attracting the rotor 21 thereto, the rotor 21 can be moved in the axial direction.

従って、この実施例は、軸方向移動用磁気軸受5として
モータ2を利用しているので、前述した第1〜第3の実
施例と比較すると、第4の実施例と同様に部品点数を削
減でき、それだけコストを下げることができる他、この
回転11機を立てtiltkで使用した場合、回転軸1
にスラスト荷重が作用するが、ロータ21とステータρ
との磁気我引力に工ってスラスト力を緩和できるので、
磁気軸受3゜4.5に対する負荷を軽減することもでき
る。
Therefore, in this embodiment, since the motor 2 is used as the magnetic bearing 5 for axial movement, the number of parts is reduced as in the fourth embodiment compared to the first to third embodiments described above. In addition to reducing costs, if this 11 rotary machine is used in a vertical tiltk, 1 rotary axis can be used.
A thrust load acts on the rotor 21 and the stator ρ.
The thrust force can be alleviated by modifying the magnetic attraction between the
It is also possible to reduce the load on the magnetic bearing 3°4.5.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明は、軸方向移動用磁気軸受が
回転軸の局面部に隊付けられた磁性体と、該磁性体の外
周部と対応する位置に設置されると共に、その磁性体と
半径方向にギャップを有し、かつ励磁されたとき磁性体
を軸方向に吸引し得る磁力部とで構成されるので、回転
軸の軸方向の移動itを、前記磁性体と磁力部との間の
ギャップ長に制限されることがなく大きくすることがで
きる。
As described above, the present invention provides that a magnetic bearing for axial movement is installed at a position corresponding to a magnetic body arranged on a curved surface of a rotating shaft, and an outer peripheral part of the magnetic body, and and a magnetic force section that has a gap in the radial direction and can attract the magnetic body in the axial direction when excited, so that the axial movement of the rotating shaft is controlled by the interaction between the magnetic body and the magnetic force section. It is possible to increase the gap length without being limited by the gap length between the two.

従って、本発明によれば、送シ機構を別に設ける   
”ことが不要になるので、それだけコンパクトにするこ
とができると共に、経済性にも優れ、しかも非接触の送
り構造となるので、磨耗部分がないので保守が容易でお
る等の利点がある。
Therefore, according to the present invention, the feeding mechanism is separately provided.
Since this is no longer necessary, it can be made more compact and more economical, and since it has a non-contact feeding structure, there are no parts that wear out, so maintenance is easy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の磁気軸受金有する回転電機の第1の実
施例を示す断面−1第2図は軸方向移動用磁気軸受の制
御回路図、第3図は本発明の磁気軸受を有する回転tm
の第2の実施例を示す断面図、第4図は本発明の磁気軸
受を1する回転電機の第3の実診例を示す断面−1第5
図は第4図のv−v線断面図、第6囚は本発明の磁気軸
受を有する回転電機の第4の!I!施例を示す断面図、
第7図は本発明の磁気軸受を有する回転電機の第5の実
施例を示す断面図である。第8図は従来の磁気軸受を有
する回転電機の一例を示す断面図、第9因は従来の軸方
向移動用磁気軸受の制御回路図である。 1・・・回転軸、2・・・モータ、21・・・ロータ、
n・・・ステータ、3,4・・・半径方向移動用磁気軸
受、31゜41・・・磁性体、32 、42・・・磁力
部、5・・・軸方向移動用磁気軸受、51・・・磁性体
、52・・・磁力部。 代理人弁理士  秋 本 正 実 第1図 第2図 第3図 第4図 第5図 第6図 第7図
Fig. 1 is a cross section showing a first embodiment of a rotating electric machine having a magnetic bearing metal according to the present invention. Fig. 2 is a control circuit diagram of a magnetic bearing for axial movement, and Fig. 3 is a cross-sectional diagram showing a first embodiment of a rotating electrical machine having a magnetic bearing according to the present invention. rotation tm
FIG. 4 is a cross-sectional view showing a second example of the magnetic bearing of the present invention, and FIG.
The figure is a sectional view taken along the line v-v in FIG. I! A sectional view showing an example,
FIG. 7 is a sectional view showing a fifth embodiment of a rotating electric machine having a magnetic bearing according to the present invention. FIG. 8 is a sectional view showing an example of a rotating electric machine having a conventional magnetic bearing, and the ninth factor is a control circuit diagram of a conventional magnetic bearing for axial movement. 1...Rotating shaft, 2...Motor, 21...Rotor,
n... Stator, 3, 4... Magnetic bearing for radial movement, 31° 41... Magnetic body, 32, 42... Magnetic force part, 5... Magnetic bearing for axial movement, 51. ...Magnetic material, 52...Magnetic force part. Representative Patent Attorney Tadashi Akimoto Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7

Claims (1)

【特許請求の範囲】 1、回転軸と、該回転軸の外面部に取付けられたロータ
及び該ロータの外周位置に配置されたステータで構成す
るモータと、回転軸を軸方向に移動させる少なくとも1
つの軸方向移動用磁気軸受と、回転軸を軸と直交する方
向に移動させる少なくとも2つの半径方向移動用磁気軸
受とを備えた磁気軸受を有する回転電機において、前記
軸方向移動用磁気軸受は、回転軸の周面部に取付けられ
た磁性体と、該磁性体の外周部と対応する位置に設置さ
れると共に、磁性体に対し半径方向にギャップを有し、
かつ励磁されたとき軸方向に磁性体を吸引し得る磁力部
とで構成することを特徴とする磁気軸受を有する回転電
機。 2、特許請求の範囲第1項において、前記磁力部を、磁
性体の軸方向に沿つて対向配置したことを特徴とする磁
気軸受を有する回転電機。 3、特許請求の範囲第2項において、前記磁力部をソレ
ノイドで構成したことを特徴とする磁気軸受を有する回
転電機。 4、特許請求の範囲第1項において、前記磁性体を、回
転軸の軸方向に間隔をもつて複数配置させ、前記磁力部
を、回転軸の軸方向に沿つてかつ螺旋状に複数配置させ
てなることを特徴とする磁気軸受を有する回転電機。 5、特許請求の範囲第1項において、前記磁性体を、夫
々の半径方向移動用磁気軸受の磁性体で構成し、前記磁
力部を、夫々の半径方向移動用磁気軸受の磁力部で構成
したことを特徴とする磁気軸受を有する回転電機。 6、特許請求の範囲第1項において、前記磁性体をモー
タのロータで、かつ前記磁力部をモータのステータで夫
々構成すると共に、該ステータとロータとを相対的に軸
方向にずらしていることを特徴とする磁気軸受を有する
回転電機。
[Scope of Claims] 1. A motor comprising a rotating shaft, a rotor attached to the outer surface of the rotating shaft, and a stator disposed on the outer circumference of the rotor, and at least one motor for moving the rotating shaft in the axial direction.
In a rotating electric machine having a magnetic bearing including one magnetic bearing for axial movement and at least two magnetic bearings for radial movement that move a rotating shaft in a direction orthogonal to the axis, the magnetic bearing for axial movement includes: a magnetic body attached to the circumferential surface of the rotating shaft; the magnetic body is installed at a position corresponding to the outer circumference of the magnetic body, and has a gap in the radial direction with respect to the magnetic body;
A rotating electric machine having a magnetic bearing, characterized in that the rotating electric machine is constituted by a magnetic force part capable of attracting a magnetic material in the axial direction when excited. 2. A rotating electric machine having a magnetic bearing according to claim 1, wherein the magnetic force parts are arranged oppositely along the axial direction of the magnetic body. 3. A rotating electric machine having a magnetic bearing as set forth in claim 2, wherein the magnetic force section is constituted by a solenoid. 4. In claim 1, a plurality of the magnetic bodies are arranged at intervals in the axial direction of the rotating shaft, and a plurality of the magnetic parts are arranged in a spiral shape along the axial direction of the rotating shaft. A rotating electric machine having a magnetic bearing characterized by a magnetic bearing. 5. In claim 1, the magnetic body is constituted by a magnetic body of each magnetic bearing for radial movement, and the magnetic force part is constituted by a magnetic force part of each magnetic bearing for radial movement. A rotating electric machine having a magnetic bearing characterized by: 6. In claim 1, the magnetic body is constituted by a rotor of a motor, the magnetic force part is constituted by a stator of a motor, and the stator and rotor are relatively shifted in the axial direction. A rotating electrical machine with a magnetic bearing characterized by:
JP60024558A 1985-02-13 1985-02-13 Rotating electric machine with magnetic bearing Expired - Lifetime JPH0785638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60024558A JPH0785638B2 (en) 1985-02-13 1985-02-13 Rotating electric machine with magnetic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60024558A JPH0785638B2 (en) 1985-02-13 1985-02-13 Rotating electric machine with magnetic bearing

Publications (2)

Publication Number Publication Date
JPS61185039A true JPS61185039A (en) 1986-08-18
JPH0785638B2 JPH0785638B2 (en) 1995-09-13

Family

ID=12141484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60024558A Expired - Lifetime JPH0785638B2 (en) 1985-02-13 1985-02-13 Rotating electric machine with magnetic bearing

Country Status (1)

Country Link
JP (1) JPH0785638B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01252343A (en) * 1988-03-30 1989-10-09 Seiko Seiki Co Ltd Contact position detecting device and machine tool employing said device
JPH0243523U (en) * 1988-08-11 1990-03-26
JPH04125312A (en) * 1990-09-17 1992-04-24 Seiko Seiki Co Ltd Magnetic bearing device
EP0674112A1 (en) * 1994-03-17 1995-09-27 Seiko Seiki Kabushiki Kaisha Spindle apparatus
EP2413482A1 (en) * 2010-07-30 2012-02-01 Siemens Aktiengesellschaft Airplane

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5999947A (en) * 1982-11-26 1984-06-08 Toshiba Corp Magnetic bearing
JPS59173459U (en) * 1983-05-06 1984-11-20 株式会社安川電機 Magnetic bearing control device
JPS59219523A (en) * 1983-05-27 1984-12-10 Toshiba Corp Magnetic bearing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5999947A (en) * 1982-11-26 1984-06-08 Toshiba Corp Magnetic bearing
JPS59173459U (en) * 1983-05-06 1984-11-20 株式会社安川電機 Magnetic bearing control device
JPS59219523A (en) * 1983-05-27 1984-12-10 Toshiba Corp Magnetic bearing

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01252343A (en) * 1988-03-30 1989-10-09 Seiko Seiki Co Ltd Contact position detecting device and machine tool employing said device
JPH0243523U (en) * 1988-08-11 1990-03-26
JPH0534336Y2 (en) * 1988-08-11 1993-08-31
JPH04125312A (en) * 1990-09-17 1992-04-24 Seiko Seiki Co Ltd Magnetic bearing device
EP0674112A1 (en) * 1994-03-17 1995-09-27 Seiko Seiki Kabushiki Kaisha Spindle apparatus
EP2413482A1 (en) * 2010-07-30 2012-02-01 Siemens Aktiengesellschaft Airplane
WO2012013645A3 (en) * 2010-07-30 2013-05-16 Siemens Aktiengesellschaft Aircraft

Also Published As

Publication number Publication date
JPH0785638B2 (en) 1995-09-13

Similar Documents

Publication Publication Date Title
US6121704A (en) Magnetic bearing
US3988658A (en) Electromagnetic drive assembly for rotary bodies using a magnetically mounted rotor
US4563046A (en) Flywheel apparatus
US6849979B2 (en) Active magnetic bearing with integrated detectors
US20030197440A1 (en) Stator core for a magnetic bearing and the method of manufacturing it
US4340261A (en) Magnetic bearing arrangement
US6543355B1 (en) Roller for a rotary press
KR20160146750A (en) Rotary electrical machine
US5202598A (en) Back-up bearing for permanent magnet biased magnetic bearing
US20030102726A1 (en) Stepping motor
EP0595070A1 (en) Grinding wheel spindle equipment
EP2006558A2 (en) Magnetic bearing device and machine tool with such a device
US4281265A (en) Disc motor with A.C. and D.C. stator windings
JPS61185039A (en) Rotary electric machine having magnetic bearing
US5145169A (en) Roll feed device
KR960004917B1 (en) Rotary apparatus
JPH03107615A (en) Magnetic bearing
JPH09236123A (en) Magnetic bearing device
JP3255236B2 (en) 2-DOF actuator
US6362549B1 (en) Magnetic bearing device
JPH11101233A (en) Magnetic bearing device
JPH0332338A (en) Magnetic bearing formed integrally with motor
JPH10318258A (en) Stator unit for magnetic bearing and manufacture thereof
JP4733534B2 (en) Rotating body balance adjusting device and machine tool
KR100699346B1 (en) Non-contact revolving stage