JP2020092585A - Hybrid field type axial air gap type synchronous generator and synchronous motor - Google Patents

Hybrid field type axial air gap type synchronous generator and synchronous motor Download PDF

Info

Publication number
JP2020092585A
JP2020092585A JP2018237750A JP2018237750A JP2020092585A JP 2020092585 A JP2020092585 A JP 2020092585A JP 2018237750 A JP2018237750 A JP 2018237750A JP 2018237750 A JP2018237750 A JP 2018237750A JP 2020092585 A JP2020092585 A JP 2020092585A
Authority
JP
Japan
Prior art keywords
pole
field
armature
magnetic flux
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018237750A
Other languages
Japanese (ja)
Inventor
成田 憲治
Kenji Narita
憲治 成田
純一 小池
Junichi Koike
純一 小池
東満 山本
Harumitsu Yamamoto
東満 山本
孝則 原口
Takanori Haraguchi
孝則 原口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SOCIO RECUR KK
Socio Recur Ltd
Original Assignee
SOCIO RECUR KK
Socio Recur Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SOCIO RECUR KK, Socio Recur Ltd filed Critical SOCIO RECUR KK
Priority to JP2018237750A priority Critical patent/JP2020092585A/en
Publication of JP2020092585A publication Critical patent/JP2020092585A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Synchronous Machinery (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

To solve the problem in which, since, in order to maximize an output of a wind turbine according to a fluctuation of wind speed in small wind power generation, it is necessary to match torque of a generator with a torque of a maximum output point of the wind turbine, which changes in proportion to the square of the speed as the wind speed or rotation speed changes, it is not possible with a permanent magnet generator.SOLUTION: An axial air gap type inner rotor type variable magnetic field flux type synchronous generator and a synchronous motor, in which output of a wind turbine can be maximized by: utilizing a composite field of a permanent magnet and an electromagnet; arranging an armature in a center and a field on both sides; installing a DC excitation winding on an inner diameter side of the armature; fixing an outer diameter side to an aluminum bracket and improving heat conduction to make it easier to escape heat generated by the winding to the outside; bonding the field to a rotary shaft of a ferromagnetic material; and controlling a direct current exciting current according to a wind speed.SELECTED DRAWING: Figure 5(2)

Description

この発明は風力発電用等のハイブリッド界磁方式アキシャルエアギャップ型同期発電機ならびに同期電動機に関するものである。The present invention relates to a hybrid field type axial air gap type synchronous generator and a synchronous motor for wind power generation.

風車が作り出す機械的出力は、回転角速度の3乗に比例するのに対し、その機械的エネルギーを電気的エネルギーに変換する同期発電機の機械的入力は回転角速度の2乗に比例するので、風車を最大出力点で運転させようとする場合、発電機の機械的入力を制御し、風車の機械的出力に合わせる必要がある。 The mechanical output produced by the wind turbine is proportional to the cube of the rotational angular velocity, whereas the mechanical input of the synchronous generator that converts the mechanical energy into electrical energy is proportional to the square of the rotational angular velocity. In order to operate the turbine at the maximum output point, it is necessary to control the mechanical input of the generator to match the mechanical output of the wind turbine.

特願2018−142944Japanese Patent Application 2018-142944 特開平6−351206号公報JP-A-6-351206 特開2002−320364号公報JP, 2002-320364, A

永久磁石界磁型同期発電機を駆動するための入力トルクは回転角速度に比例する。一方風車のつくり出す動力の最大出力点のトルクは回転角速度の二乗に比例する。そのため、発電機のトルクと風車の最大出力時のトルクは一点でしか交わらず、それ以外の回転角速度においては風車の最大出力点で動作させることが出来ない。そのため、風力発電システム全体の効率を低減させる原因となっている。そこで、界磁に永久磁石の他に電磁石を併用し、界磁の磁束を永久磁石による磁束と電磁石による磁束が加算され合成磁束を形成するようにし、電磁石の直流励磁電流を制御することによって、合成磁束の大きさを制御し、発電機の機械的入力または発電機の電気的出力を制御できる発電機を得ることが課題となる。 The input torque for driving the permanent magnet field type synchronous generator is proportional to the angular velocity of rotation. On the other hand, the torque at the maximum output point of the power generated by the wind turbine is proportional to the square of the rotational angular velocity. Therefore, the torque of the generator and the torque at the maximum output of the wind turbine intersect at only one point, and at other rotational angular velocities, the maximum output point of the wind turbine cannot be operated. Therefore, it is a cause of reducing the efficiency of the entire wind power generation system. Therefore, by using an electromagnet in addition to the permanent magnet for the field, the magnetic flux of the field is added to the magnetic flux of the permanent magnet and the magnetic flux of the electromagnet to form a composite magnetic flux, and by controlling the DC exciting current of the electromagnet, An issue is to obtain a generator that can control the magnitude of the combined magnetic flux and control the mechanical input of the generator or the electrical output of the generator.

特許文献1におけるアキシャルギャップタイプの同期発電機は、界磁に電磁石を有するため、発電機の機械的入力を制御し、風車の機械的出力に合わせる機能を持っているが、磁石の配列がIPM方式であるため全体の構造が複雑となりコスト高となる欠点がある。 Since the axial gap type synchronous generator in Patent Document 1 has an electromagnet in the field, it has a function of controlling the mechanical input of the generator to match the mechanical output of the wind turbine, but the arrangement of the magnets is IPM. Since this is a system, there is a drawback that the entire structure is complicated and the cost is high.

特許文献2におけるアキシャルギャップタイプの同期電動機は、中央に界磁が配置されその外側に励磁用コイルが巻かれているので、コイルの周長が長くなり巻線抵抗が大きくなり励磁損失が増えるという欠点がある。また、ブラケットやフレームなどの外被は鋼鉄などの強磁性体の材料を使う必要があり、放熱に有利なアルミニウム合金を使えないため、電機子巻線の温度上昇が高くなるという欠点がる。 In the axial gap type synchronous motor in Patent Document 2, the field is arranged in the center and the exciting coil is wound on the outer side, so that the circumferential length of the coil is increased, the winding resistance is increased, and the excitation loss is increased. There are drawbacks. In addition, the jackets such as brackets and frames need to use a ferromagnetic material such as steel, and since aluminum alloy, which is advantageous for heat dissipation, cannot be used, there is a drawback that the temperature rise of the armature winding increases.

特許文献3は、小型風力発電用発電機として用いられている永久磁石界磁型同期発電機であり、低速回転に適した多極化が容易で、比較的少ない設備投資で製造可能な発電機であるが、永久磁石界磁であるので磁束が固定であり発電機の機械的入力を任意に制御できないため、風車の最大出力点で運転させることができない。また電機子は固定軸に接合されるためアウターロータ型となり、インナーロータ型にするのは複雑な構造となり、さらに電機子巻線で発生する抵抗損による発熱が外部へ逃げにくく、電機子巻線の温度上昇が高くなるという欠点もある。 Patent Document 3 is a permanent magnet field type synchronous generator used as a generator for small wind power generators, and is a generator that is suitable for low-speed rotation, can easily be multipolarized, and can be manufactured with a relatively small capital investment. However, since it is a permanent magnet field, the magnetic flux is fixed and the mechanical input of the generator cannot be controlled arbitrarily, so it cannot be operated at the maximum output point of the wind turbine. Since the armature is joined to the fixed shaft, it is an outer rotor type, and the inner rotor type has a complicated structure. Furthermore, the heat generated by the resistance loss generated in the armature winding does not easily escape to the outside. There is also a drawback that the temperature rise of the becomes high.

以上の欠点を改善するためには、界磁には永久磁石をSPM方式に配列すると共に磁束を自由に変えられるようにするために電磁石を併用し、その界磁は中央の回転軸に取り付けられてインナーロータ型とし、電磁石の励磁コイルは回転軸の近傍を巻回させて周長を短くして巻線抵抗が小さくなるようにするとともに、その巻線に発生する抵抗損による熱が外郭のアルミ製ブラケットに伝導しやすくし、巻線の温度上昇を低くする構造とすることが基本的な課題となる。 In order to improve the above-mentioned drawbacks, permanent magnets are arranged in the SPM method in the field, and an electromagnet is also used in order to freely change the magnetic flux, and the field is attached to the central rotating shaft. In the inner rotor type, the exciting coil of the electromagnet is wound in the vicinity of the rotating shaft to shorten the circumference to reduce the winding resistance, and the heat generated by the resistance loss generated in the winding is The basic issue is to make the structure easier to conduct to the aluminum bracket and reduce the temperature rise of the winding.

上述した課題を解決するため、本願の第1の発明は、界磁に直流電磁石と永久磁石を有し、回転軸方向の中央に電機子があり、その両側に二つの界磁と二つのアキシャルエアギャップを有するアキシャルエアギャップ型同期発電機において、電機子はバックヨークの両側に突極状の歯があり、いづれもSMC(軟磁性複合材料)などの強磁性体でできており、個々の歯には電機子巻線が施され、中央の電機子バックヨークはアルミブラケットに固定されて、電機子巻線において発生した抵抗損による熱を放散しやすくし、これらの電機子の歯はアキシャルエアギャップを介して、界磁の永久磁石および電磁石と対向し、その永久磁石と電磁石は円周方向に交互に取り付けられ、永久磁石はすべて同極とし、それらの間にはさまれる電磁石は永久磁石と異極の極性とし、電磁石群と永久磁石群はそれぞれコンセクエントポール(Consequent Pole)を形成し、界磁の毎極の磁束は電磁石と永久磁石のそれぞれの毎極の磁束の平均値をとることになり、電磁石の磁束を変えると界磁の毎極の平均磁束の値を変えることができるようになる。なお、界磁のバックヨークと電磁石は電磁鋼板やSMCなどの強磁性体でつくられている。
両側の二つの界磁バックヨークは強磁性体の回転軸に固定され、電機子の内径と回転軸の間の空間には電磁石を励磁するためのコイルが軸を巻回するように巻かれて電機子の内径側に電気絶縁物を介して固定される。このような構造にすることによって、磁束の流れが逆向きの永久磁石と電磁石の二つの直流磁気回路が形成される。すなわち永久磁石の磁束の流れは、N極永久磁石⇒アキシャルエアギャップ⇒電機子鉄心⇒アキシャルエアギャップ⇒S極永久磁石⇒界磁バックヨーク⇒回転軸⇒界磁バックヨーク⇒N極永久磁石、となるのに対し、一方の電磁石の磁束の流れは、回転軸のN極⇒界磁バックヨーク⇒S極界磁鉄心⇒アキシャルエアギャップ⇒電機子鉄心⇒アキシャルエアギャップ⇒N極界磁鉄心⇒界磁バックヨーク⇒回転軸のS極へと流れる。軸受はこれらの磁気回路の外側のブラケットと回転軸の間に設けられるので、電食などの弊害は発生しない。
In order to solve the above-mentioned problem, the first invention of the present application has a DC electromagnet and a permanent magnet in a field, an armature at the center in the rotation axis direction, and two fields and two axials on both sides thereof. In an axial air gap type synchronous generator with an air gap, the armature has teeth of salient poles on both sides of the back yoke, and each is made of a ferromagnetic material such as SMC (soft magnetic composite material). Armature windings are applied to the teeth, and the central armature back yoke is fixed to the aluminum bracket to facilitate the dissipation of heat due to resistance loss generated in the armature windings, and the teeth of these armatures are axial. Opposed to the permanent magnet and electromagnet of the field through the air gap, the permanent magnet and the electromagnet are alternately mounted in the circumferential direction, all the permanent magnets have the same pole, and the electromagnet sandwiched between them is permanent. The polarities of the magnet and the different poles are set, the electromagnet group and the permanent magnet group each form a consequent pole, and the magnetic flux of each pole of the field is the average value of the magnetic flux of each pole of the electromagnet and the permanent magnet. Therefore, if the magnetic flux of the electromagnet is changed, the average magnetic flux value of each pole of the field can be changed. The field back yoke and the electromagnet are made of a ferromagnetic material such as an electromagnetic steel plate or SMC.
The two field back yokes on both sides are fixed to the rotating shaft of the ferromagnetic material, and the coil for exciting the electromagnet is wound around the shaft in the space between the inner diameter of the armature and the rotating shaft. It is fixed to the inner diameter side of the armature via an electrical insulator. With such a structure, two DC magnetic circuits of a permanent magnet and an electromagnet whose magnetic flux flows are opposite to each other are formed. That is, the flow of magnetic flux of the permanent magnet is N pole permanent magnet ⇒ axial air gap ⇒ armature iron core ⇒ axial air gap ⇒ S pole permanent magnet ⇒ field back yoke ⇒ rotating shaft ⇒ field back yoke ⇒ N pole permanent magnet. On the other hand, the flow of the magnetic flux of one electromagnet is as follows: N pole of the rotating shaft ⇒ field back yoke ⇒ S pole field core ⇒ axial air gap ⇒ armature core ⇒ axial air gap ⇒ N pole field core ⇒ field Magnetic back yoke ⇒ Flows to the S pole of the rotating shaft. Since the bearing is provided between the bracket on the outer side of these magnetic circuits and the rotating shaft, no adverse effects such as electrolytic corrosion occur.

また、本願の第2の発明は、回転軸方向の中央に電機子があり、その両側に二つの界磁があり、電機子は鉄心のないコアレス巻線が施され電気絶縁物で保持されており、その電気絶縁物はアルミブラケットに固定されており、そのコアレス巻線はエアギャップを介して、永久磁石および電磁石と対向し、それらの反対側において界磁バックヨークに固定され、永久磁石はすべて同極でSPM状に取り付けられ、電磁石を形成する鉄心磁極は永久磁石と異極の磁極となるよう構成され、界磁バックヨークに固定され、二つの界磁バックヨークは鋼鉄からなる回転軸に固定され、電磁石用の励磁コイルは、回転軸を巻回するように巻まかれて、電機子の内径側に絶縁物を介して固定され、励磁コイルには電磁石の極性が永久磁石と逆になるように直流電流を流し、回転軸はブラケットの両側中央部近傍において軸受を介して支持され、永久磁石の磁束の流れは、N極永久磁石⇒アキシャルエアギャップ⇒電機子巻線⇒アキシャルエアギャップ⇒S極永久磁石⇒界磁バックヨーク⇒回転軸⇒界磁バックヨーク⇒N極永久磁石、となり、一方の電磁石の磁束の流れは永久磁石による磁束の流れと反対方向に流れ、回転軸のN極⇒界磁バックヨーク⇒S極界磁鉄心⇒アキシャルエアギャップ⇒電機子巻線⇒アキシャルエアギャップ⇒N極界磁鉄心⇒界磁バックヨーク⇒回転軸のS極、と流れ、毎極磁束量は永久磁石による毎極の磁束の量と電磁石による毎極の磁束の量の平均磁束となるようにしてなるアキシャルエアギャップ型インナーロータ式コアレス巻線界磁磁束可変型同期発電機 The second invention of the present application has an armature at the center in the rotation axis direction and two field magnets on both sides thereof, and the armature is provided with a coreless winding without an iron core and is held by an electrical insulator. The electrical insulator is fixed to the aluminum bracket, the coreless winding faces the permanent magnet and the electromagnet through the air gap, and is fixed to the field back yoke on the opposite side, and the permanent magnet is All the same poles are attached in the SPM shape, the iron core magnetic poles forming the electromagnet are configured to be magnetic poles of different poles with the permanent magnets, fixed to the field back yoke, and the two field back yokes are made of steel The excitation coil for the electromagnet is wound around the rotating shaft and fixed to the inner diameter side of the armature via an insulator.The polarity of the electromagnet is opposite to that of the permanent magnet in the excitation coil. , The rotating shaft is supported via bearings near the center of both sides of the bracket, and the magnetic flux of the permanent magnet flows from the N pole permanent magnet ⇒ axial air gap ⇒ armature winding ⇒ axial air. Gap ⇒ S pole permanent magnet ⇒ field back yoke ⇒ rotating shaft ⇒ field back yoke ⇒ N pole permanent magnet, and the magnetic flux flow of one electromagnet flows in the direction opposite to the magnetic flux flow of the permanent magnet, N pole ⇒ Field back yoke ⇒ S pole field iron core ⇒ Axial air gap ⇒ Armature winding ⇒ Axial air gap ⇒ N pole field magnetic core ⇒ Field back yoke ⇒ S pole of rotating shaft Axial air gap type inner rotor type coreless winding field magnetic flux variable type synchronous generator whose amount is the average magnetic flux of the magnetic flux of each pole by the permanent magnet and the magnetic flux of each pole by the electromagnet.

本願の第3の発明は、請求項1におけるように、電機子に鉄心がある場合、界磁の磁極との間にコギングトルクが発生し始動を妨げることがあるので、電機子の歯の数(n)と界磁の極数(2p)の最大公約数を極力大きく取るため、2p±1=3(2n+1)とし、最大公約数(n×2p)をn(6n+3±1)とする。 According to the third invention of the present application, when the armature has an iron core as in claim 1, cogging torque may be generated between the armature and the magnetic pole of the field to prevent the starting. In order to maximize the greatest common divisor of (n) and the number of poles of the field (2p), 2p±1=3 (2n+1), and the greatest common divisor (n×2p) is n(6n+3±1).

本願の第4の発明は、請求項2において、コアレス電機子巻線の外周部および各コイル間に、その内周部を除き、アルミニウムや銅などの保持部材を取り付け、電機子巻線およびそれを保持する電気絶縁物を保持し、その外周外径部を外被のアルミブラケットに接合固定することによって、電機子巻線に発生した熱を近傍の電気絶縁物を通る距離を短くし熱伝導のよいアルミニウムなどの保持部材そしてアルミブラケットに逃がしやすくし、巻線内部に発生した熱を外気に伝達し易くして、電機子巻線の温度上昇を低くしたことを特徴とするアキシャルエアギャップ型インナーロータ式コアレス巻線界磁磁束可変型同期発電機 According to a fourth aspect of the present invention, in claim 2, a holding member made of aluminum, copper or the like is attached between the outer peripheral portion of the coreless armature winding and each coil, except for the inner peripheral portion thereof. By holding the electrical insulator that holds the outer periphery of the armature and fixing the outer diameter of the outer periphery to the aluminum bracket of the jacket, the heat generated in the armature winding can be shortened by passing through the nearby electrical insulator. Axial air gap type characterized in that the temperature rise of the armature winding is reduced by making it easier to escape to the holding member such as aluminum and the aluminum bracket, and easily transfer the heat generated inside the winding to the outside air. Inner rotor coreless winding field magnetic flux variable type synchronous generator

第1の発明を実施することにより、界磁には、直流電磁石による磁極と永久磁石による磁極がそれぞれ独立してコンセクエントポール(Consequent Pole)を形成し、双方の磁束は二つのエアギャップにおいてお互いに反対の方向に流れ所定の極数を形成し、合成磁束はそれぞれの磁束の平均値となるので、直流励磁電流を制御することによって直流電磁石の磁束を制御し、合成磁束を制御することができるので、発電機の機械的入力あるいは電気的出力を制御することができる。また、電機子鉄心に発生した鉄損や電機子巻線に発生した抵抗損による発熱は電機子鉄心を通って外殻のアルミブラケットに伝達され外気に放出され、電機子巻線の温度上昇は低く抑えることができる。
電磁石の直流励磁巻線は、電機子の内径と回転軸の間の広い空間に納められ、回転軸を巻回するように巻かれているので、巻数が多くても、周長が短く、かつ断面積を大きくとれるので、巻線抵抗を小さくでき、電磁石の磁束を大きくとっても励磁損失を小さくすることができる。
また、直流電磁石の磁束は軸受の内輪を通らないので、リップル電流などによる軸受の電食は発生しない。
By implementing the first invention, in the field, the magnetic poles of the direct current electromagnet and the magnetic poles of the permanent magnet independently form a consequent pole, and both magnetic fluxes are mutually separated in the two air gaps. Flow in the opposite direction to form a predetermined number of poles, and the combined magnetic flux is the average value of each magnetic flux.Therefore, by controlling the DC exciting current, the magnetic flux of the DC electromagnet can be controlled and the combined magnetic flux can be controlled. Therefore, the mechanical input or electrical output of the generator can be controlled. Also, the heat generated by the iron loss generated in the armature core and the resistance loss generated in the armature winding is transmitted to the aluminum bracket of the outer shell through the armature core and released to the outside air, so that the temperature rise of the armature winding does not occur. It can be kept low.
Since the DC excitation winding of the electromagnet is housed in a wide space between the inner diameter of the armature and the rotating shaft and wound so as to wind the rotating shaft, the circumference is short even if the number of windings is large, and Since the cross-sectional area can be increased, the winding resistance can be reduced, and the excitation loss can be reduced even if the magnetic flux of the electromagnet is increased.
Further, since the magnetic flux of the DC electromagnet does not pass through the inner ring of the bearing, electrolytic corrosion of the bearing due to ripple current does not occur.

第2の発明を実施することにより、電機子に鉄心(コア)のないコアレス巻線を施したアキシャルエアギャップ型インナーロータ式コアレス巻線界磁磁束可変型同期発電機においても同様の効果が得られる。 By implementing the second invention, the same effect can be obtained in an axial air gap type inner rotor type coreless winding variable field magnetic flux variable type synchronous generator in which an armature is provided with a coreless winding without an iron core. Be done.

第3の発明を実施することにより、電機子に鉄心(コア、歯)のあるアキシャルエアギャップ型インナーロータ式界磁磁束可変型同期発電機においても、コギングトルクが小さく低風速においても始動回転可能となる。 By carrying out the third invention, even in the axial air gap type inner rotor type variable field magnetic flux variable type synchronous generator having the iron core (core, teeth) in the armature, the cogging torque is small and the starting rotation is possible even at a low wind speed. Becomes

第4の発明を実施することにより、アキシャルエアギャップ型インナーロータ式コアレス巻線界磁磁束可変型同期発電機における電機子巻線の温度上昇を低減することができる。 By carrying out the fourth invention, the temperature rise of the armature winding in the axial air gap type inner rotor type coreless winding variable field magnetic flux variable type synchronous generator can be reduced.

可変磁束界磁型同期発電機を用いて、風速の広い変動巾において、風車の機械的最大出力点で発電機を動作させることが出来るので、同じ風車を使用しても、従来の永久磁石同期発電機を使用するよりも、年間の発電電力量を増やすことができる効果がある。そのことは、設備投資資金の回収期間を短縮する効果を生み出すことにもなる。
また、界磁に永久磁石と電磁石を利用出来るため永久磁石にコストの安いフェライト磁石を利用しても電磁石で磁束を補うことが出来るとともに、永久磁石を全く使用せず電磁石だけで界磁を形成することも出来るので、コスト低減の効果も期待できる。
多極化に適しているので、低速風車にあっては増速機が不要となるので、コストの低減が出来るとともに、高信頼性となり故障が少なくなって、保守サービス費用も軽減されるという経済的効果がある。
このアキシャルエアギャップ式可変磁束界磁型発電機を電動機として使用する場合、始動時には励磁電流を増やして始動トルクを大きくすることができ、高速運転時には、永久磁石電動機の場合弱め界磁のための電流を流す必要があるが、界磁磁束可変型の場合は励磁電流を減らすことによって高速化が可能となるので、効率の高い同期電動機として機能させることができる。
By using the variable magnetic flux field type synchronous generator, the generator can be operated at the maximum mechanical output point of the wind turbine over a wide fluctuation range of wind speed. It has the effect of increasing the amount of power generated per year, rather than using a generator. This also has the effect of shortening the recovery period of capital investment funds.
Also, since permanent magnets and electromagnets can be used for the field, the magnetic flux can be supplemented by the electromagnets even if inexpensive ferrite magnets are used for the permanent magnets, and the field is formed only by the electromagnets without using any permanent magnets. It is also possible to expect cost reduction effects.
Since it is suitable for multiple poles, a speed increaser is not required for low-speed wind turbines, so it is possible to reduce costs, improve reliability, reduce failures, and reduce maintenance service costs. There is.
When using this axial air gap type variable magnetic flux field generator as an electric motor, it is possible to increase the exciting current at the time of starting to increase the starting torque, and at the time of high speed operation, in the case of a permanent magnet electric motor, for weakening the field. It is necessary to pass a current, but in the case of the variable field magnetic flux type, the speed can be increased by reducing the exciting current, so that it can function as a highly efficient synchronous motor.

アキシャルエアギャップ式可変磁束界磁型同期発電機の断面図を示す。The sectional view of the axial air gap type variable magnetic flux field type synchronous generator is shown. アキシャルエアギャップ式可変磁束界磁型同期発電機のA矢視図を示す。A矢視は図1による。The A arrow arrow view of an axial air gap type variable magnetic flux field type synchronous generator is shown. The arrow A is according to FIG. アキシャルエアギャップ式可変磁束界磁型同期発電機のB矢視図を示す。B矢視は図1による。The arrow B figure of the axial air gap type|mold variable magnetic flux field type synchronous generator is shown. The arrow B is according to FIG. アキシャルエアギャップ式可変磁束界磁型同期発電機のC―O断面図を示す。The CO sectional view of an axial air gap type|mold variable magnetic flux field type synchronous generator is shown. アキシャルエアギャップ式可変磁束界磁型同期発電機の磁気回路の模式図を示す。The schematic diagram of the magnetic circuit of the axial air gap type|mold variable magnetic flux field type synchronous generator is shown. アキシャルエアギャップ式コアレス巻線型可変磁束界磁型同期発電機の断面図を示す。The sectional view of the axial air gap type coreless winding type variable magnetic flux field type synchronous generator is shown. アキシャルエアギャップ式コアレス巻線型可変磁束界磁型同期発電機の熱伝導改良型の断面図を示す。The sectional view of the heat conduction improvement type of the axial air gap type coreless winding type variable magnetic flux field type synchronous generator is shown. アキシャルエアギャップ式コアレス巻線型可変磁束界磁型同期発電機のA―O断面図を示す。A―O断面は図5(1)による。FIG. 3 shows an AO cross-sectional view of an axial air gap type coreless winding type variable magnetic flux field type synchronous generator. AO cross section is according to FIG. アキシャルエアギャップ式コアレス巻線型可変磁束界磁型同期発電機の熱伝導改良型のB―O断面図を示す。B―O断面は図5(2)による。FIG. 3 is a cross-sectional view of the axial air gap type coreless winding type variable magnetic flux field type synchronous generator with improved heat conduction, taken along the line BO. The cross section B--O is according to FIG. コアレス型アキシャルエアギャップ式可変磁束界磁型同期発電機の磁気回路の模式図を示す。The schematic diagram of the magnetic circuit of the coreless type axial air gap type variable magnetic flux field type synchronous generator is shown.

次に図1〜7を参照して,本発明のいくつかの実施形態について説明するが,本発明はこれに限定されるものではない。 Some embodiments of the present invention will now be described with reference to FIGS. 1 to 7, but the present invention is not limited thereto.

図1にもとづいて、第1の発明のアキシャルエアギャップ式可変磁束界磁型同期発電機について説明する。
軸方向に2分割された非磁性体からなるブラケット12の両端中心部には軸受14を介して強磁性体からなる回転軸13を通し、ブラケットの中央部には固定子となる電機子2を取り付け、その両側の二つのアキシャルエアギャップ11を介してそれぞれ回転子となる界磁を対向させ、界磁は回転軸に接合されて、風力など外部の回転力によって、回転軸と一体となって回転し電機子の巻線23に電圧を誘起し発電機として機能する。電機子の内径側には直流励磁巻線34が施され、界磁の磁極はN極又はS極が永久磁石33のよって形成され、異極のS極又はN極は電磁石32によって形成されている。
The axial air gap type variable magnetic flux field type synchronous generator of the first invention will be described with reference to FIG.
A rotating shaft 13 made of a ferromagnetic material is passed through a bearing 14 at the center of both ends of a bracket 12 made of a non-magnetic material divided into two in the axial direction, and an armature 2 serving as a stator is provided at the center of the bracket. The magnetic field is attached to the rotary shaft via two axial air gaps 11 on both sides, and the magnetic field is joined to the rotary shaft and integrated with the rotary shaft by an external rotary force such as wind force. It rotates and induces a voltage in the winding 23 of the armature and functions as a generator. A direct current excitation winding 34 is provided on the inner diameter side of the armature, the magnetic pole of the field is formed by the N pole or S pole by the permanent magnet 33, and the S pole or N pole of the different pole is formed by the electromagnet 32. There is.

図2(1)は一方の左側の界磁を表し、図2(2)は他方の右側の界磁を表していて、強磁性体からなるバックヨークの片側にはそれぞれ永久磁石と電磁石の磁極がSPM状に交互に貼り付けられており、その永久磁石と電磁石がアキシャルエアギャップを介してそれぞれ電機子と対向させ、永久磁石については一方の界磁の極性はすべてN極とし、他方の界磁の極性はすべてS極となるように配列し、電磁石についてはすべて永久磁石の間に位置し、一方の磁極はすべて永久磁石と逆のS極となるようにし他方の磁極はすべて永久磁石と逆のN極となるように配置させて、永久磁石と電磁石が逆極性のコンセクエントポール(Consequent Pole)を形成し、一つのエアギャップにおける極数は永久磁石の数と電磁石の磁極の数の和すなわち永久磁石の数又は電磁石の磁極の数の2倍となり、毎極の磁束の量は永久磁束による磁束の量と電磁石による磁束の量の平均値の量に相当する。 2(1) shows the field on the left side of one side, and FIG. 2(2) shows the field on the right side of the other side. One side of the back yoke made of a ferromagnetic material has magnetic poles of a permanent magnet and an electromagnet, respectively. Are alternately attached in the form of SPM, and their permanent magnets and electromagnets are opposed to the armatures via the axial air gaps. For the permanent magnets, the polarity of one field is the N pole and the other field is the N pole. The polarities of the magnets are arranged so that they are all S poles, all the electromagnets are located between the permanent magnets, one magnetic pole is the S pole opposite to the permanent magnet, and the other magnetic pole is the permanent magnet. The permanent magnet and the electromagnet form a consequent pole of opposite polarity by arranging so as to have the opposite N pole, and the number of poles in one air gap is equal to the number of permanent magnets and the number of magnetic poles of the electromagnet. That is, it is twice the number of the permanent magnets or the number of the magnetic poles of the electromagnet, and the amount of the magnetic flux of each pole corresponds to the average value of the amount of the magnetic flux of the permanent magnetic flux and the amount of the magnetic flux of the electromagnet.

図3は電機子を表しあり、強磁性体からなるバックヨークの両側には左右対称の位置に強磁性体からなる磁極すなわち歯があり、それらの歯には電気絶縁物を介して電機子巻線が巻かれており、その巻線の巻き方向は左右両側で同一である。さらにこの電機子の内径側には、回転軸を巻回するように巻かれた直流励磁巻線が電気絶縁物を介して固定されている。 FIG. 3 shows an armature, and there are magnetic poles or teeth made of a ferromagnetic material at symmetrical positions on both sides of a back yoke made of a ferromagnetic material, and those teeth are wound with an armature winding through an electric insulator. The wire is wound, and the winding direction of the winding is the same on both the left and right sides. Further, on the inner diameter side of this armature, a DC excitation winding wound so as to wind the rotary shaft is fixed via an electrical insulator.

図4は発電機全体の磁気回路の模式図である。ブラケットは非磁性体たとえばアルミニウムなどからなり、電機子のバックヨークを支持し、電機子巻線に発生する抵抗損や歯に発生する鉄損による発熱を外部に逃がす機能を有するが、磁気回路には直接関与しない。
左の界磁には永久磁石のS又はN極の隣に電磁石のn又はs極、その隣は永久磁石のS又はN極の隣に電磁石のn又はs極、以下同様に配置され、右の界磁に電機子を挟んで、円周方向の同じ位置に、永久磁石のN又はS極の隣に電磁石のs又はn極、その隣は永久磁石のN又はS極の隣に電磁石のs又はn極、以下同様に配置されている。永久磁石による磁束の流れは
右の永久磁石N極→右のアキシャルエアギャップ→右の歯→電機子バックヨーク→左の歯→左のアキシャルエアギャップ→左の永久磁石S極→左の界磁バックヨーク→回転軸→右の界磁バックヨーク→右の永久磁石N極となる。
一方、電磁石による磁束の流れは直流励磁巻線に直流励磁電流を流すことにより発生し、左の電磁石n極→左のアキシャルエアギャップ→左の歯→電機子バックヨーク→右の歯→右のアキシャルエアギャップ→右の電磁石s極→右の界磁バックヨーク→回転軸→左の界磁バックヨーク→左の電磁石n極となる。
FIG. 4 is a schematic diagram of a magnetic circuit of the entire generator. The bracket is made of a non-magnetic material such as aluminum, supports the back yoke of the armature, and has the function of releasing heat generated by resistance loss generated in the armature winding and iron loss generated in the teeth to the outside. Is not directly involved.
In the left field, n or s pole of the electromagnet is next to the S or N pole of the permanent magnet, next to it is the n or s pole of the electromagnet next to the S or N pole of the permanent magnet, and so on. S or n pole of the electromagnet next to the N or S pole of the permanent magnet at the same position in the circumferential direction with the armature sandwiched in the field of The s or n pole, and so on, are similarly arranged. The flow of the magnetic flux by the permanent magnet is the right permanent magnet N pole → right axial air gap → right tooth → armature back yoke → left tooth → left axial air gap → left permanent magnet S pole → left field. Back yoke→rotary shaft→right field back yoke→right permanent magnet N pole.
On the other hand, the flow of magnetic flux by the electromagnet is generated by applying a DC excitation current to the DC excitation winding, and the left electromagnet n pole → left axial air gap → left tooth → armature back yoke → right tooth → right Axial air gap→right electromagnet s pole→right field back yoke→rotation shaft→left field back yoke→left electro magnet n pole.

このように永久磁石と電磁石はそれぞれコンセクエントポール(Consequent Pole)を形成し、毎極の合成磁束Φtは、永久磁石の毎極の磁束Φp、電磁石の毎極の磁束Φeとすると、Φt=(Φp+Φe)/2となる。
それぞれのアキシャルエアギャップにおける極数は永久磁石の数と電磁石の数の和すなわち永久磁石の数又は電磁石の数の2倍となり、毎極の磁束の量は永久磁束による磁束の量と電磁石による磁束の量の平均値の量に相当する。
また、電磁石の磁束の量は、アキシャルエアギャップにおける磁気抵抗によりほぼ決まるので、次のように求められる。
Φe≒N×I/(2g/μ・S)
ここで、Φe:電磁石の磁束の総量
N:直流励磁巻線の巻数
I:直流励磁電流
g:アキシャルエアギャップの長さ
μ:空気の透磁率
S:一つのアキシャルエアギャップに面した電磁石と電機子鉄心(歯)が対 向する総面積
In this way, the permanent magnet and the electromagnet each form a consequent pole, and the combined magnetic flux Φt of each pole is the magnetic flux Φp of each pole of the permanent magnet and the magnetic flux Φe of each pole of the electromagnet, Φt=( Φp+Φe)/2.
The number of poles in each axial air gap is the sum of the number of permanent magnets and the number of electromagnets, that is, twice the number of permanent magnets or electromagnets, and the amount of magnetic flux for each pole is the amount of magnetic flux due to the permanent magnetic flux and the magnetic flux due to the electromagnet. Equivalent to the amount of the average value of.
Further, the amount of magnetic flux of the electromagnet is almost determined by the magnetic resistance in the axial air gap, and thus is obtained as follows.
Φe≒N×I/(2g/μ・S)
Where Φe: total amount of magnetic flux of electromagnet
N: Number of turns of DC excitation winding
I: DC excitation current
g: Length of axial air gap
μ: Permeability of air
S: Total area where the electromagnet facing one axial air gap faces the armature core (teeth)

次に、図5(1)にもとづいて、アキシャルエアギャップ型インナーロータ式コアレス巻線界磁磁束可変型同期発電機について説明する。
軸方向に2分割された非磁性体からなるブラケット12の両端中心部には軸受14を介して強磁性体からなる回転軸13を通し、ブラケットの中央部には固定子となる電機子2を取り付け、その両側の二つのアキシャルエアギャップ11を介してそれぞれ界磁を対向させ、界磁は回転軸に接合されて、風力など外部の回転力によって、回転軸と一体となって回転し電機子の巻線に電圧を誘起し発電機として機能する。電機子の内径側には直流励磁巻線34が施され、界磁の磁極はN極又はS極が永久磁石33のよって形成され、異極のS極又はN極は電磁石32によって形成されている。電機子巻線23は電気絶縁物の支持部材25で支持されているが、図5(2)のように非鉄金属の支持部材26で支持してもよい。
Next, an axial air gap type inner rotor type coreless winding field magnetic flux variable type synchronous generator will be described with reference to FIG.
A rotating shaft 13 made of a ferromagnetic material is passed through a bearing 14 at the center of both ends of a bracket 12 made of a non-magnetic material divided in two in the axial direction, and an armature 2 serving as a stator is provided at the center of the bracket. The magnetic field is attached and the fields are opposed to each other through the two axial air gaps 11 on both sides thereof, and the field is joined to the rotary shaft and rotated integrally with the rotary shaft by an external rotary force such as wind force. It induces a voltage in the winding and functions as a generator. A direct current excitation winding 34 is provided on the inner diameter side of the armature, the magnetic pole of the field is formed by the N pole or S pole by the permanent magnet 33, and the S pole or N pole of the different pole is formed by the electromagnet 32. There is. Although the armature winding 23 is supported by the supporting member 25 made of an electrically insulating material, it may be supported by the supporting member 26 made of a non-ferrous metal as shown in FIG.

アキシャルエアギャップ型インナーロータ式コアレス巻線界磁磁束可変型同期発電機は図1に示すアキシャルエアギャップ式可変磁束界磁型同期発電機と界磁の構造は同じであるので、図2にもとづいて説明する。
図2(1)は一方の左側の界磁を表し、図2(2)は他方の右側の界磁を表していて、強磁性体からなるバックヨークの片側にはそれぞれ永久磁石と電磁石の磁極がSPM状に交互に貼り付けられており、その永久磁石と電磁石がアキシャルエアギャップを介してそれぞれ電機子と対向させ、永久磁石については一方の界磁の極性はすべてN極とし、他方の界磁の極性はすべてS極となるように配列し、電磁石についてはすべて永久磁石の間に位置し、一方の磁極はすべて永久磁石と逆のS極となるようにし他方の磁極はすべて永久磁石と逆のN極となるように配置させて、永久磁石と電磁石が逆極性のコンセクエントポール(Consequent Pole)を形成し、一つのエアギャップにおける極数は永久磁石の数と電磁石の磁極の数の和すなわち永久磁石の数又は電磁石の磁極の数の2倍となり、毎極の磁束の量は永久磁束による磁束の量と電磁石による磁束の量の平均値の量に相当する。
The axial air gap type inner rotor type coreless winding field magnetic flux variable type synchronous generator has the same field structure as that of the axial air gap type variable magnetic flux field type synchronous generator shown in FIG. Explain.
2(1) shows the field on the left side of one side, and FIG. 2(2) shows the field on the right side of the other side. One side of the back yoke made of a ferromagnetic material has magnetic poles of a permanent magnet and an electromagnet, respectively. Are alternately attached in the form of SPM, and their permanent magnets and electromagnets are opposed to the armatures via the axial air gaps. For the permanent magnets, the polarity of one field is the N pole and the other field is the N pole. The polarities of the magnets are arranged so that they are all S poles, all the electromagnets are located between the permanent magnets, one magnetic pole is the S pole opposite to the permanent magnet, and the other magnetic pole is the permanent magnet. The permanent magnet and the electromagnet form a consequent pole of opposite polarity by arranging so as to have the opposite N pole, and the number of poles in one air gap is equal to the number of permanent magnets and the number of magnetic poles of the electromagnet. That is, it is twice the number of the permanent magnets or the number of the magnetic poles of the electromagnet, and the amount of the magnetic flux of each pole corresponds to the average value of the amount of the magnetic flux of the permanent magnetic flux and the amount of the magnetic flux of the electromagnet.

図6(1)は電機子を表し、電気絶縁物からなる電機子巻線支持部材25に電機子巻線23を固定し、その巻線の巻き方向は左右両側で同一である。また、図6(2)に示すように電機子巻線23の周囲を非鉄金属の支持部材26とし、絶縁物を介して電機子巻線を支持することによって、電機子巻線に発生する抵抗損による発熱を外部に放出しやすくしてもよい。
さらにこの電機子の内径側には、回転軸13を巻回するように巻かれた直流励磁巻線34が電気絶縁物24を介して固定されている。
FIG. 6(1) shows an armature, in which the armature winding 23 is fixed to an armature winding supporting member 25 made of an electrical insulator, and the winding directions of the windings are the same on the left and right sides. Further, as shown in FIG. 6B, a non-ferrous metal support member 26 is provided around the armature winding 23, and the armature winding is supported through an insulator, so that the resistance generated in the armature winding is increased. The heat generated by the loss may be easily released to the outside.
Further, on the inner diameter side of this armature, a DC excitation winding 34 wound so as to wind the rotary shaft 13 is fixed via an electric insulator 24.

図7は発電機全体の磁気回路の模式図である。ブラケットは非磁性体たとえばアルミニウムなどからなり、電機子の支持部材を支持し、電機子巻線に発生する抵抗損による発熱を外部に逃がす機能を有するが、磁気回路には直接関与しない。
左の界磁には永久磁石のS又はN極の隣に電磁石のn又はs極、その隣は永久磁石のS又はN極の隣に電磁石のn又はs極、以下同様に配置され、右の界磁に電機子を挟んで、円周方向の同じ位置に、永久磁石のN又はS極の隣に電磁石のs又はn極、その隣は永久磁石のN又はS極の隣に電磁石のs又はn極、以下同様に配置されている。永久磁石による磁束の流れは
右の永久磁石N極→右のアキシャルエアギャップ→電機子→左のアキシャルエアギャップ→左の永久磁石S極→左の界磁バックヨーク→回転軸→右の界磁バックヨーク→右の永久磁石N極となる。
一方、電磁石による磁束の流れは直流励磁巻線に直流励磁電流を流すことにより発生し、左の電磁石n極→左のアキシャルエアギャップ→電機子→右のアキシャルエアギャップ→右の電磁石s極→右の界磁バックヨーク→回転軸→左の界磁バックヨーク→左の電磁石n極となる。
FIG. 7 is a schematic diagram of a magnetic circuit of the entire generator. The bracket is made of a non-magnetic material such as aluminum and has a function of supporting a supporting member of the armature and releasing heat generated by resistance loss generated in the armature winding to the outside, but is not directly involved in the magnetic circuit.
In the left field, n or s pole of the electromagnet is next to the S or N pole of the permanent magnet, next to it is the n or s pole of the electromagnet next to the S or N pole of the permanent magnet, and so on. S or n pole of the electromagnet next to the N or S pole of the permanent magnet at the same position in the circumferential direction with the armature sandwiched in the field of The s or n pole, and so on, are similarly arranged. The flow of magnetic flux by the permanent magnet is the right permanent magnet N pole → the right axial air gap → the armature → the left axial air gap → the left permanent magnet S pole → the left field back yoke → the rotating shaft → the right field magnet. The back yoke becomes the right permanent magnet north pole.
On the other hand, the flow of magnetic flux by the electromagnet is generated by applying a DC excitation current to the DC excitation winding, and the left electromagnet n pole → left axial air gap → armature → right axial air gap → right electromagnet s pole → The right field back yoke→rotation shaft→left field back yoke→left electromagnet n pole.

このように永久磁石と電磁石はそれぞれコンセクエントポール(Consequent Pole)を形成し、毎極の合成磁束Φtは、永久磁石の毎極の磁束Φp、電磁石の毎極の磁束Φeとすると、Φt=(Φp+Φe)/2となる。
それぞれのアキシャルエアギャップにおける極数は永久磁石の数と電磁石の数の和すなわち永久磁石の数又は電磁石の数の2倍となり、毎極の磁束の量は永久磁束による磁束の量と電磁石による磁束の量の平均値の量に相当する。
また、電磁石の磁束の量は、アキシャルエアギャップにおける磁気抵抗によりほぼ決まるので、次のように求められる。

Figure 2020092585
ここで、Φe:電磁石の磁束の総量
N:直流励磁巻線の巻数
I:直流励磁電流
Figure 2020092585
μ:空気の透磁率
Sc:一つのアキシャルエアギャップに面した電磁石の総面積In this way, the permanent magnet and the electromagnet each form a consequent pole, and the combined magnetic flux Φt of each pole is the magnetic flux Φp of each pole of the permanent magnet and the magnetic flux Φe of each pole of the electromagnet, Φt=( Φp+Φe)/2.
The number of poles in each axial air gap is the sum of the number of permanent magnets and the number of electromagnets, that is, twice the number of permanent magnets or electromagnets, and the amount of magnetic flux for each pole is the amount of magnetic flux due to the permanent magnetic flux and the magnetic flux due to the electromagnet. Equivalent to the amount of the average value of.
Further, the amount of magnetic flux of the electromagnet is almost determined by the magnetic resistance in the axial air gap, and is thus calculated as follows.
Figure 2020092585
Where Φe: total amount of magnetic flux of electromagnet
N: Number of turns of DC excitation winding
I: DC excitation current
Figure 2020092585
μ: Permeability of air
Sc: Total area of the electromagnet facing one axial air gap

以上、説明したように、この発電機には、次のような特長がある。
界磁に電磁石を有するため、トルクと角速度の勾配を変えることができるので、簡単な制御方法で、風車の最大出力点を風速の広い範囲において追跡でき、風車の効率を高めることができる。
この同期発電機は、永久磁石に安価なフェライト磁石を利用し、磁力低下分を電磁石で補うことも出来る。また、永久磁石を全く使用せず、電磁石だけで運転させることも出来、それらの場合でも風車の最大出力点において幅広く運転させることが出来るので、大幅な原価低減が可能となる。
また、アキシャルエアギャップ式発電機は多極化に適しているので、低速風車において増速機が不要となるので、コスト低減が可能となるとともに、高信頼性となり故障が少なく保守サービス費用も軽減されるという経済的効果がある。
このアキシャルエアギャップ式可変磁束界磁型発電機を電動機として使用する場合、始動時には励磁電流を増やして始動トルクを大きくすることができ、高速運転時には弱め界磁の電流が不要の上、励磁電流を減らすので効率の高い同期電動機として機能させることができる。
As described above, this generator has the following features.
Since the field magnet has an electromagnet, the gradient of the torque and the angular velocity can be changed, so that the maximum output point of the wind turbine can be tracked in a wide range of wind speeds by a simple control method, and the efficiency of the wind turbine can be improved.
In this synchronous generator, an inexpensive ferrite magnet is used as a permanent magnet, and the decrease in magnetic force can be compensated for by an electromagnet. In addition, it is possible to operate only the electromagnet without using the permanent magnet at all, and even in those cases, it is possible to widely operate at the maximum output point of the wind turbine, so that the cost can be significantly reduced.
In addition, since the axial air gap generator is suitable for multi-polarization, a speed increaser is not required for low-speed wind turbines, so costs can be reduced, reliability is high, and there are few failures, and maintenance service costs are also reduced. There is an economic effect.
When using this axial air gap type variable magnetic flux field generator as an electric motor, the exciting current can be increased at the time of starting to increase the starting torque. Therefore, it can be made to function as a highly efficient synchronous motor.

1 発電機
11 アキシャルエアギャップ
12 ブラケット(非鉄金属)
13 回転軸(強磁性体)
14 軸受
2 電機子
21 電機子バックヨーク
22 電機子歯(磁極)
23 電機子巻線
24 電気絶縁部材
25 電機子支持部材(電気絶縁部材)
26 電機子支持部材(非鉄金属部材)
3 界磁
31 界磁バックヨーク
32 界磁磁極
321 界磁磁極(N極)
322 界磁磁極(S極)
33 永久磁石
331 永久磁石(N極)
332 永久磁石(S極)
34 直流励磁巻線
N 永久磁石(N極)
S 永久磁石(S極)
n 界磁磁極(N極)
s 界磁磁極(S極)
1 Generator 11 Axial air gap 12 Bracket (non-ferrous metal)
13 Rotation axis (ferromagnetic material)
14 bearing 2 armature 21 armature back yoke 22 armature tooth (magnetic pole)
23 Armature Winding 24 Electrical Insulation Member 25 Armature Support Member (Electrical Insulation Member)
26 Armature support member (non-ferrous metal member)
3 field 31 field back yoke 32 field magnetic pole 321 field magnetic pole (N pole)
322 Field magnetic pole (S pole)
33 permanent magnet 331 permanent magnet (N pole)
332 Permanent magnet (S pole)
34 DC excitation winding N Permanent magnet (N pole)
S Permanent magnet (S pole)
n field magnetic pole (N pole)
s Field magnetic pole (S pole)

Claims (5)

回転軸方向の中央に電機子があり、その両側に二つの界磁があり、電機子には電機子バックヨークの両側に突極状の磁極(歯)があり、個々の磁極(歯)には電機子巻線が施され、電機子バックヨークはアルミブラケットに固定されており、両側の電機子鉄心はエアギャップを介して、永久磁石および電磁石と対向し、それらの反対側において界磁バックヨークに固定され、永久磁石はすべて同極でSPM状に取り付けられ、電磁石を形成する鉄心磁極は永久磁石と異極の極性となるよう界磁バックヨークに固定され、界磁バックヨークは強磁性体からなる回転軸に固定され、電磁石用の直流励磁コイルは回転軸を巻回するように巻き電機子鉄心の内径側に絶縁物を介して固定され、直流励磁コイルには電磁石の極性が永久磁石と逆になるように直流励磁電流を流し、回転軸はブラケットの両側中央部近傍において軸受を介して支持され、永久磁石の磁束の流れは、N極永久磁石⇒アキシャルエアギャップ⇒電機子鉄心⇒アキシャルエアギャップ⇒S極永久磁石⇒界磁バックヨーク⇒回転軸⇒界磁バックヨーク⇒N極永久磁石となり、一方の電磁石の磁束の流れは永久磁石による磁束の流れと反対方向に流れ、回転軸のN極⇒界磁バックヨーク⇒S極界磁鉄心⇒アキシャルエアギャップ⇒電機子鉄心⇒アキシャルエアギャップ⇒N極界磁鉄心⇒界磁バックヨーク⇒回転軸のS極となるように流し、毎極の磁束量は永久磁石による毎極の磁束の量と電磁石による毎極の磁束の量の平均磁束となるようにしたアキシャルエアギャップ型インナーロータ式界磁磁束可変型同期発電機There is an armature in the center of the rotation axis direction, there are two fields on both sides of it, and the armature has salient pole-shaped magnetic poles (teeth) on both sides of the armature back yoke. Has an armature winding, and the armature back yoke is fixed to an aluminum bracket.The armature cores on both sides face the permanent magnets and electromagnets through the air gap, and the field back on the other side. The permanent magnets are fixed to the yoke and all the permanent magnets are attached in an SPM shape with the same poles. The iron core magnetic poles forming the electromagnets are fixed to the field back yoke so as to have polarities different from those of the permanent magnets, and the field back yoke is ferromagnetic. The DC excitation coil for the electromagnet is fixed on the inner side of the winding armature core through an insulator so that the rotation axis is wound, and the polarity of the electromagnet is permanently attached to the DC excitation coil. A DC excitation current is applied so that it is opposite to the magnet, the rotating shaft is supported via bearings near the center of both sides of the bracket, and the flux of the magnetic flux of the permanent magnet is N-pole permanent magnet ⇒ axial air gap ⇒ armature core. ⇒ Axial air gap ⇒ S pole permanent magnet ⇒ Field back yoke ⇒ Rotating shaft ⇒ Field back yoke ⇒ N pole permanent magnet The magnetic flux of one electromagnet flows in the direction opposite to that of the permanent magnet and rotates. Axis N pole ⇒ Field back yoke ⇒ S pole field iron core ⇒ Axial air gap ⇒ Armature iron core ⇒ Axial air gap ⇒ N pole field magnet core ⇒ Field back yoke ⇒ S pole of the rotating shaft The magnetic flux amount of each pole is the average magnetic flux amount of the magnetic flux of each pole by the permanent magnet and the magnetic flux of each pole by the electromagnet. 回転軸方向の中央に電機子があり、その両側に二つの界磁があり、電機子には鉄心のないコアレス巻線が施され電気絶縁物で保持されており、その電気絶縁物はアルミブラケットに固定されており、そのコアレス巻線はエアギャップを介して、永久磁石および電磁石と対向し、それらの反対側において界磁バックヨークに固定され、永久磁石はすべて同極でSPM状に取り付けられ、電磁石を形成する鉄心磁極は永久磁石と異極の極性となるよう界磁バックヨークに固定されて、界磁バックヨークは強磁性体からなる回転軸に固定され、電磁石用の直流励磁コイルは回転軸を巻回するように巻まかれて、電機子の内径側に絶縁物を介して固定され、直流励磁コイルには電磁石の極性が永久磁石と逆になるように直流励磁電流を流し、回転軸はブラケットの両側中央部近傍において軸受を介して支持され、永久磁石の磁束の流れは、N極永久磁石⇒アキシャルエアギャップ⇒電機子巻線⇒アキシャルエアギャップ⇒S極永久磁石⇒界磁バックヨーク⇒回転軸⇒界磁バックヨーク⇒N極永久磁石となり、一方の電磁石の磁束の流れは永久磁石による磁束の流れと反対方向に流れ、回転軸のN極⇒界磁バックヨーク⇒S極界磁鉄心⇒アキシャルエアギャップ⇒電機子巻線⇒アキシャルエアギャップ⇒N極界磁鉄心⇒界磁バックヨーク⇒回転軸のS極となるように流し、毎極の磁束量は永久磁石による毎極の磁束の量と電磁磁石による毎極の磁束の量の平均磁束となるようにしたアキシャルエアギャップ型インナーロータ式コアレス巻線界磁磁束可変型同期発電機There is an armature in the center of the rotation axis direction, there are two fields on both sides of it, and a coreless winding without iron core is applied to the armature and it is held by an electrical insulator, which is an aluminum bracket. Fixed to the field magnet, the coreless winding faces the permanent magnet and the electromagnet through the air gap, and is fixed to the field back yoke on the opposite side of the permanent magnet and the electromagnet. , The iron magnetic pole forming the electromagnet is fixed to the field back yoke so as to have a polarity different from that of the permanent magnet, the field back yoke is fixed to the rotating shaft made of a ferromagnetic material, and the DC exciting coil for the electro magnet is It is wound so as to wind the rotary shaft, and is fixed to the inner diameter side of the armature via an insulator, and a DC exciting current is applied to the DC exciting coil so that the polarity of the electromagnet is opposite to that of the permanent magnet. The rotating shaft is supported via bearings near the center of both sides of the bracket, and the magnetic flux of the permanent magnet flows from the N pole permanent magnet ⇒ axial air gap ⇒ armature winding ⇒ axial air gap ⇒ S pole permanent magnet ⇒ field magnet. Back yoke ⇒ rotating shaft ⇒ field back yoke ⇒ N pole It becomes a permanent magnet, and the flow of magnetic flux of one electromagnet flows in the opposite direction to the flow of magnetic flux by the permanent magnet, and N pole of rotating shaft ⇒ field back yoke ⇒ S pole. Field core ⇒ Axial air gap ⇒ Armature winding ⇒ Axial air gap ⇒ N pole Field magnet core ⇒ Field back yoke ⇒ Flow so that it becomes the S pole of the rotating shaft, and the amount of magnetic flux of each pole is per pole by a permanent magnet Axial air gap type inner rotor type coreless winding field magnetic flux variable type synchronous generator in which the average magnetic flux of the magnetic flux of each pole by the electromagnetic magnet 請求項1において、電機子の歯の数を界磁の極数より1多いか1少ない3の倍数の数とし、三相巻線を施した電機子を有するアキシャルエアギャップ型インナーロータ式界磁磁束可変型同期発電機The axial air gap type inner rotor type field magnet according to claim 1, wherein the number of teeth of the armature is a number that is one more or one less than the number of poles of the field, and is a multiple of three. Variable magnetic flux synchronous generator 請求項2において、コアレス電機子巻線の外周部および各巻線間に、電気絶縁物を介してアルミニウムの保持部材を取り付け、その外径部を外被のアルミブラケットに接合固定し、巻線の発熱を外部に逃がしやすくしたアキシャルエアギャップ型インナーロータ式コアレス巻線界磁磁束可変型同期発電機 The core holding armature winding according to claim 2, wherein an aluminum holding member is mounted between the winding and the outer peripheral portion of the coreless armature winding, and an outer diameter portion of the holding member is joined and fixed to an aluminum bracket of the outer cover. Axial air gap type inner rotor type coreless winding field magnetic flux variable type synchronous generator that makes it easy to release heat to the outside. 請求項1、2,3および4において、界磁、電機子および全体構造が、これらの発電機と同一構造のアキシャルエアギャップ型インナーロータ式界磁磁束可変型同期電動機 The axial air gap type inner rotor type variable field magnetic flux variable type synchronous motor according to any one of claims 1, 2, 3 and 4, wherein the field, armature and overall structure are the same as those of the generator.
JP2018237750A 2018-12-04 2018-12-04 Hybrid field type axial air gap type synchronous generator and synchronous motor Pending JP2020092585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018237750A JP2020092585A (en) 2018-12-04 2018-12-04 Hybrid field type axial air gap type synchronous generator and synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018237750A JP2020092585A (en) 2018-12-04 2018-12-04 Hybrid field type axial air gap type synchronous generator and synchronous motor

Publications (1)

Publication Number Publication Date
JP2020092585A true JP2020092585A (en) 2020-06-11

Family

ID=71013935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018237750A Pending JP2020092585A (en) 2018-12-04 2018-12-04 Hybrid field type axial air gap type synchronous generator and synchronous motor

Country Status (1)

Country Link
JP (1) JP2020092585A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112870459A (en) * 2021-01-19 2021-06-01 温州医科大学附属第一医院 Portable drainage bag
CN113437850A (en) * 2021-07-09 2021-09-24 沈阳工业大学 Double-stator single-rotor axial magnetic flux hybrid excitation motor
JP7011108B1 (en) 2020-08-19 2022-01-26 株式会社ソシオリカ Vertical axis type Magnus wind power generation system
CN111953161B (en) * 2020-08-11 2023-06-30 哈尔滨工业大学 Double-winding axial magnetic field multiphase flywheel pulse generator system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111953161B (en) * 2020-08-11 2023-06-30 哈尔滨工业大学 Double-winding axial magnetic field multiphase flywheel pulse generator system
JP7011108B1 (en) 2020-08-19 2022-01-26 株式会社ソシオリカ Vertical axis type Magnus wind power generation system
JP2022035890A (en) * 2020-08-19 2022-03-04 株式会社ソシオリカ Vertical axis type Magnus wind power generation system
CN112870459A (en) * 2021-01-19 2021-06-01 温州医科大学附属第一医院 Portable drainage bag
CN113437850A (en) * 2021-07-09 2021-09-24 沈阳工业大学 Double-stator single-rotor axial magnetic flux hybrid excitation motor
CN113437850B (en) * 2021-07-09 2023-11-24 沈阳工业大学 Double-stator single-rotor axial magnetic flux hybrid excitation motor

Similar Documents

Publication Publication Date Title
US11532963B2 (en) Torque tunnel Halbach Array electric machine
US20160380496A1 (en) Multi-tunnel electric motor/generator
JP2020092585A (en) Hybrid field type axial air gap type synchronous generator and synchronous motor
WO2009119333A1 (en) Rotating electrical machine
JP2004032984A (en) Induction motor
JP2018033250A (en) Synchronous motor
JP5272831B2 (en) Rotating electric machine
US6833647B2 (en) Discoid machine
JP6388611B2 (en) Hybrid field double gap synchronous machine
CN107078617B (en) Bimorph transducer type rotator
JP2009136046A (en) Toroidally-wound dynamo-electric machine
JP2012182945A (en) Rotary electric machine
JP2015511811A (en) Power motor generator excited by magnetic transfer
JP7047337B2 (en) Permanent magnet type rotary electric machine
CN106100272B (en) A kind of double-salient-pole magnetic flux controllable motor of few rare earth tooth yoke complementation
JP5582149B2 (en) Rotor, rotating electric machine and generator using the same
JP6561693B2 (en) Rotating electric machine
JP5903510B2 (en) Rotating electrical equipment
EP2806546A1 (en) Partitioned stator permanent magnet machine
JP6443848B1 (en) Wind power generation system having variable magnetic flux field type synchronous generator
WO2012121685A2 (en) Low-speed multipole synchronous generator
EP2894772A1 (en) Electromechanical converter
JP2013099007A (en) Power generator
JP7475676B2 (en) Rotating Electric Machine
WO2024084900A1 (en) Synchronous machine