JP4621661B2 - Rotating machine - Google Patents

Rotating machine Download PDF

Info

Publication number
JP4621661B2
JP4621661B2 JP2006511108A JP2006511108A JP4621661B2 JP 4621661 B2 JP4621661 B2 JP 4621661B2 JP 2006511108 A JP2006511108 A JP 2006511108A JP 2006511108 A JP2006511108 A JP 2006511108A JP 4621661 B2 JP4621661 B2 JP 4621661B2
Authority
JP
Japan
Prior art keywords
rotating machine
rotor
stator
iron core
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006511108A
Other languages
Japanese (ja)
Other versions
JPWO2005091464A1 (en
Inventor
広泰 下地
厚 碇賀
Original Assignee
赤司電機株式会社
榎園 正人
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 赤司電機株式会社, 榎園 正人 filed Critical 赤司電機株式会社
Publication of JPWO2005091464A1 publication Critical patent/JPWO2005091464A1/en
Application granted granted Critical
Publication of JP4621661B2 publication Critical patent/JP4621661B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/22Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos
    • H02K21/222Flywheel magnetos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

本発明は、永久磁石を用いた発電機及び電動機に使用できる回転機に係り、より小型構成でき効率の良い回転機に関する。 The present invention relates to a rotary machine that can be used in the generator and the motor using permanent magnets, to be rotating machine efficiency that can be configured more compact.

例えば、特許文献である日本国特開2002−191155号に示すように、コイルを巻いた鉄心を有する固定子の内部に複数の永久磁石を有する回転子を配置した回転機が知られており、例えば、自動車やその他の工業機器に用いられている。この回転機においては、回転子を回転させて固定子のコイル内に誘導起電力を発生させる発電機としての用途と、固定子のコイルに回転子の回転角度に合わせて制御された交流を流して、回転子に回転動力を発生させる電動機としての用途が知られている。
しかしながら、従来の回転機においては、固定子の鉄心は、内側の回転子に向けて複数(前記特許文献では12)の磁極部を有し、この固定子鉄心は電磁鋼板(通常、珪素鋼板)をプレスによって打ち抜き形成されているので、一般に無方向性電磁鋼板(通常、無方向性珪素鋼板)が使用されている。更には、巻線が施される鉄心は中間部にヨーク部分を有し、このヨーク部分に交番磁界が発生するので、全体的に磁束が通る磁路長さが長く、これによって鉄損が大きいという問題があった。
For example, as shown in Japanese Patent Application Laid-Open No. 2002-191155, which is a patent document, a rotating machine in which a rotor having a plurality of permanent magnets is arranged inside a stator having an iron core wound with a coil is known, For example, it is used in automobiles and other industrial equipment. In this rotating machine, the generator is used to generate an induced electromotive force in the stator coil by rotating the rotor, and an alternating current controlled according to the rotation angle of the rotor is passed through the stator coil. Thus, the use as an electric motor for generating rotational power in a rotor is known.
However, in a conventional rotating machine, the stator iron core has a plurality of magnetic pole portions (12 in the patent document) facing the inner rotor, and the stator iron core is an electromagnetic steel plate (usually a silicon steel plate). In general, non-oriented electrical steel sheets (usually non-oriented silicon steel sheets) are used. Furthermore, the iron core to which the winding is applied has a yoke part in the middle part, and an alternating magnetic field is generated in this yoke part, so the overall magnetic path length through which the magnetic flux passes is long, which results in a large iron loss. There was a problem.

一方、回転機の出力を向上する場合には、鉄心を通過する磁束量を増やす必要があり、この場合、鉄心が前述のように無方向性電磁鋼板であるので、最大磁束密度はかなり低く、結局は、所定の磁束を通すためには、鉄心量(鉄心の体積をいう)を増やす必要があり、鉄心量を増やすと巻線量も増加して、小型化及び高効率化への障害となっていた。
本発明はかかる事情に鑑みてなされたもので、同一の出力に対して鉄心量を減少して小型化が可能な回転機を提供することを第1の目的とし、更には、巻線が施される各鉄心に最大磁束密度の高い方向性電磁鋼板を使用して、磁束密度を高め、より高効率で更に小型化が可能な回転機を提供できることを第2の目的とする。
On the other hand, in order to improve the output of the rotating machine, it is necessary to increase the amount of magnetic flux passing through the iron core. In this case, since the iron core is a non-oriented electrical steel sheet as described above, the maximum magnetic flux density is considerably low, Eventually, in order to pass a predetermined magnetic flux, it is necessary to increase the amount of iron core (referred to as the volume of the iron core). If the amount of iron core is increased, the amount of winding also increases, which is an obstacle to miniaturization and higher efficiency. It was.
The present invention has been made in view of such circumstances, and a first object of the present invention is to provide a rotating machine that can be reduced in size by reducing the amount of iron core with respect to the same output. It is a second object of the present invention to provide a rotating machine that can increase the magnetic flux density and can be further miniaturized with higher efficiency by using a directional electrical steel sheet having a high maximum magnetic flux density for each of the iron cores.

前記目的に沿う第1の発明に係る回転機は、回転軸の周方向に均等に設けられそれぞれ異なる磁極(N、S)が、半径方向に一定の距離を有して対向して配置された回転子と、前記対向する磁極の間に形成される環状の空間部に、前記対向する磁極と隙間を有して周方向に並べて配置される複数の鉄心を備え、しかもそれぞれの前記鉄心の半径方向の内側及び外側にてそれぞれ第1及び第2の巻線が施された固定子とを有する回転機であって、
前記回転子のそれぞれの前記磁極は、半径方向に一定の距離を有して配置された対となる永久磁石によって形成され、該対となる永久磁石は磁気的にヨークによって連結され互いに反対の極性を有するとともに、円周方向に隣り合う前記永久磁石は、互いに反対の極性を有し、
前記回転子及び前記固定子のケーシングは、前記回転軸に第1の軸受を介して連結され、前記複数の鉄心をその円周方向に並べて固定する第1の固定フレームと、該第1の固定フレームと対となって、前記回転軸に第2の軸受を介して取付けられ前記回転子の周囲を覆うカップ状の第2の固定フレームとを有し、前記鉄心は、前記第1及び第2の巻線の間に設けられた取付け部材によって、前記第1の固定フレームに固定される。
なお、ここで、周方向に配置される複数の鉄心は周方向に均等に配置されるのが好ましいが、不均等であってもよい。
これによって、固定子の鉄心が実質直線状となって、鉄心の有効長さを小さくすることができ、これによって、磁束が通過する鉄心の体積を軽減することができ、結果として鉄損を減らすことができる。鉄損を減らすことによって回転機からの発熱量が減るの、回転機の小型化を図ることができる。なお、この発明において、巻線を回転しない構造とした場合は、スリップリング等が不要となり全体的構造は簡略化される。
In the rotating machine according to the first aspect of the present invention, the magnetic poles (N, S) that are equally provided in the circumferential direction of the rotating shaft are arranged opposite to each other with a certain distance in the radial direction. rotor and, in the space of the annular formed between the opposing magnetic poles, comprising a plurality of cores arranged side by side with a between the opposing magnetic pole and gap in the circumferential direction, yet each of said iron core a rotating machine that have a radial of the stator first and second windings, respectively inner and at the outer is applied,
Each of the magnetic poles of the rotor is formed by a pair of permanent magnets arranged at a certain distance in the radial direction, and the pair of permanent magnets are magnetically connected by a yoke and have opposite polarities. And the permanent magnets adjacent in the circumferential direction have opposite polarities,
A casing of the rotor and the stator is connected to the rotating shaft via a first bearing, and a first fixing frame that fixes the plurality of iron cores side by side in the circumferential direction, and the first fixing And a cup-shaped second fixed frame attached to the rotary shaft via a second bearing and covering the periphery of the rotor, and the iron core includes the first and second cores. It is fixed to the first fixed frame by an attachment member provided between the windings.
Here, the plurality of iron cores arranged in the circumferential direction are preferably arranged evenly in the circumferential direction, but may be unequal.
As a result, the iron core of the stator becomes substantially linear, and the effective length of the iron core can be reduced, thereby reducing the volume of the iron core through which the magnetic flux passes, resulting in a reduction in iron loss. be able to. Iron loss than reducing the amount of heat generated from the rotary machine by reducing the can to reduce the size of the rotating machine. In the present invention, when the winding does not rotate, a slip ring or the like is not required, and the overall structure is simplified.

第1の発明に係る回転機は、前記回転子のそれぞれの前記磁極は、半径方向に一定の距離を有して配置された強力な永久磁石によって形成され、該対となる永久磁石を磁気的にヨークによって連結されているので、固定子鉄心を通過する磁束量を高めることができる。なお、ヨークを通過する磁束は脈動はするが交番磁界ではないので、鉄損や渦電流損は少ない。  In the rotating machine according to the first invention, each of the magnetic poles of the rotor is formed by a strong permanent magnet arranged at a certain distance in the radial direction, and the pair of permanent magnets is magnetically Are connected by the yoke, the amount of magnetic flux passing through the stator core can be increased. The magnetic flux passing through the yoke pulsates but is not an alternating magnetic field, so there is little iron loss or eddy current loss.
また、第1の発明に係る回転機は、前記回転子及び前記固定子のケーシングは、前記回転軸に第1の軸受を介して連結され、前記複数の鉄心をその円周方向に並べて固定する第1の固定フレームと、該第1の固定フレームと対となって、前記回転軸に第2の軸受を介して取付けられ前記回転子の周囲を覆うカップ状の第2の固定フレームとを有するので、固定子の組立及び分解が簡略される。  In the rotating machine according to the first invention, the casing of the rotor and the stator is connected to the rotating shaft via a first bearing, and the plurality of iron cores are arranged side by side in the circumferential direction and fixed. A first fixed frame; and a cup-shaped second fixed frame that is attached to the rotary shaft via a second bearing and covers the periphery of the rotor in pairs with the first fixed frame. Therefore, the assembly and disassembly of the stator are simplified.

また、第2の発明に係る回転機は、第1の発明に係る回転機において、前記鉄心は前記回転軸に対して放射状に設けられ、前記それぞれの鉄心は半径方向に透磁率の高い方向性電磁鋼板の積層体からなる。これによって、巻線が施される鉄心の磁束密度を高めることができ、鉄心の体積を減少させることができる。鉄心(即ち、磁束が通過する鉄心)の体積が減ると鉄損が減少し、更に鉄心の断面積が減少すると巻線の量が減るので、銅損も合わせて減少する。   A rotating machine according to a second invention is the rotating machine according to the first invention, wherein the iron cores are provided radially with respect to the rotating shaft, and each of the iron cores has a directionality having a high magnetic permeability in a radial direction. It consists of a laminate of electromagnetic steel sheets. Thereby, the magnetic flux density of the iron core on which the winding is applied can be increased, and the volume of the iron core can be reduced. When the volume of the iron core (that is, the iron core through which the magnetic flux passes) is reduced, the iron loss is reduced, and when the cross-sectional area of the iron core is further reduced, the amount of winding is reduced, so that the copper loss is also reduced.

また、第3の発明に係る回転機は、第1及び第2の発明に係る回転機において、前記回転子の回転角度を検知するセンサーが前記固定子に設けられ、別に設けられた電源によって、前記センサーからの信号に基づき、前記固定子の前記第1及び第2の巻線に、前記回転子の回転位相に合わせた所定の交流電力を送って、特に、前記回転軸からの回転動力を得る電動機として用いる。なお、前記センサーとしては例えば、磁気の強さを検知するホール素子センサーを採用するのが好ましい Further, the rotating machine according to the third invention is the rotating machine according to the first and second inventions, wherein a sensor for detecting the rotation angle of the rotor is provided in the stator, and by a power source provided separately, Based on a signal from the sensor, a predetermined AC power that matches a rotational phase of the rotor is sent to the first and second windings of the stator, and in particular, rotational power from the rotating shaft is transmitted. Use as a motor to obtain. As the sensor, for example, it is preferable to employ a Hall element sensor that detects magnetic strength .

本発明の一実施例に係る回転機の下半分を省略した側断面図である。It is the sectional side view which abbreviate | omitted the lower half of the rotary machine which concerns on one Example of this invention. 同回転機の下半分を省略した正断面図である。It is the front sectional view which omitted the lower half of the rotation machine. 電磁鋼板の磁束密度と鉄損との関係を示すグラフである。It is a graph which shows the relationship between the magnetic flux density of an electromagnetic steel plate, and an iron loss.

図1に示すように、本発明の一実施例に係る回転機10は、ケーシングを構成する第1の固定フレーム11及び第2の固定フレーム12と、第1の固定フレーム11に取付けられた固定子13と、固定子13の構成要素であって円周上に並べて配置された複数の鉄心14に移動磁界を与える回転子15とを有している。以下、これらについて詳しく説明する。   As shown in FIG. 1, a rotating machine 10 according to an embodiment of the present invention includes a first fixed frame 11 and a second fixed frame 12 constituting a casing, and a fixed attached to the first fixed frame 11. It has the child 13, and the rotor 15 which gives a moving magnetic field to the some iron core 14 which is the component of the stator 13, and was arrange | positioned along the circumference. These will be described in detail below.

第1、第2の固定フレーム11、12は鉄や鋳物等の磁性金属又はその他の非磁性金属、場合によっては非金属材料からなって、それぞれ底部に図示しない脚部を有する。図1において、第1の固定フレーム11の右端にフランジ16を、第2の固定フレーム12の左端にフランジ17を備え、複数のねじ18によってフランジ16、17を強固に連結するようになっている。第1の固定フレーム11の中心には回転軸19が挿通する段付き孔20が設けられている。段付き孔20の内側の大径孔21には第1の軸受の一例である回転ころ軸受22が設けられて、回転軸19を回転自在に支持している。   The first and second fixed frames 11 and 12 are made of a magnetic metal such as iron or casting, or other nonmagnetic metal, and in some cases, a nonmetallic material, and each has a leg portion (not shown) at the bottom. In FIG. 1, a flange 16 is provided at the right end of the first fixed frame 11 and a flange 17 is provided at the left end of the second fixed frame 12, and the flanges 16 and 17 are firmly connected by a plurality of screws 18. . A stepped hole 20 through which the rotation shaft 19 is inserted is provided at the center of the first fixed frame 11. The large-diameter hole 21 inside the stepped hole 20 is provided with a rotary roller bearing 22 which is an example of a first bearing, and rotatably supports the rotary shaft 19.

第1の固定フレーム11の内側部には鉄心取付け部23を有し、図2に示すように、軸心mを中心にして、放射状に複数(この実施例では12)の鉄心14が固定されている。それぞれの鉄心14は、金属製(非磁性金属の方が好ましい)又は硬質プラスチック製の取付け部材24によって固定されている。この取付け部材24はバンドであってもよいし、鉄心14を貫通するねじであってもよい。取付け部材24を金属によって構成する場合には、高抵抗の材料(例えば、オーステナイト系ステンレス)を使用するのが渦電流の発生を抑える上で好ましい。   An inner portion of the first fixed frame 11 has an iron core mounting portion 23, and as shown in FIG. 2, a plurality (12 in this embodiment) of iron cores 14 are fixed radially around the axis m. ing. Each iron core 14 is fixed by a mounting member 24 made of metal (nonmagnetic metal is preferred) or hard plastic. The attachment member 24 may be a band or a screw that penetrates the iron core 14. When the attachment member 24 is made of metal, it is preferable to use a high-resistance material (for example, austenitic stainless steel) in order to suppress the generation of eddy currents.

この鉄心14は、短冊状(即ち、長方形状)に切断された薄い方向性電磁鋼板の積層体からなって、図2に示すように、回転軸19を中心に同一半径で放射状に配置されている。それぞれの鉄心14の両側には巻線25、26が施され、各鉄心14に巻かれている巻線25、26は、所定の結線(例えば、単相結線、デルタ結線又はスター結線)を経て図示しない外部の2本又は3本の導線に接続されている。放射状に配置されてそれぞれ巻線25、26が施された鉄心14が前記した固定子13を構成している。   The iron core 14 is composed of a laminate of thin grain-oriented electrical steel sheets cut into strips (that is, a rectangular shape), and is arranged radially with the same radius around the rotating shaft 19 as shown in FIG. Yes. Windings 25 and 26 are provided on both sides of each iron core 14, and the windings 25 and 26 wound around each iron core 14 pass through a predetermined connection (for example, a single-phase connection, a delta connection, or a star connection). It is connected to two or three external conductors (not shown). The iron cores 14 arranged radially and provided with the windings 25 and 26 constitute the stator 13 described above.

この巻線25、26はこの回転機10発電機として使用する場合には、誘導起電力が発生するコイルとなり、この回転機10を電動機として使用する場合には、外部から例えば回転子の回転位相に合わせた交流電力を送ることによって、固定子13と回転子15の磁極間に吸引力又は反発力が発生する。 When the rotating machine 10 is used as a generator, the windings 25 and 26 become coils that generate an induced electromotive force. When the rotating machine 10 is used as an electric motor, for example, the rotation of a rotor is externally applied. By sending AC power in accordance with the phase, an attractive force or a repulsive force is generated between the magnetic poles of the stator 13 and the rotor 15.

第1の固定フレーム11に対向する第2の固定フレーム12は、その中心に回転軸19が挿通する段付き孔39が設けられ、また、カップ状となって一端に前記したフランジ17が設けられ、他端は段付き孔39の内側の大径孔27に装着された第2の軸受の一例である回転ころ軸受28を介して回転軸19に回転自在に装着されている。この実施例では、第1、第2の固定フレーム11、12は脚部を有して固定であるから、第1、第2の固定フレーム11、12からなるケーシングに回転ころ軸受22、28を介して回転軸19が自由回転可能に取付けられていることになる。   The second fixed frame 12 facing the first fixed frame 11 is provided with a stepped hole 39 through which the rotary shaft 19 is inserted at the center, and the cup 17 is provided with the flange 17 described above at one end. The other end is rotatably mounted on the rotary shaft 19 via a rotary roller bearing 28 which is an example of a second bearing mounted in the large-diameter hole 27 inside the stepped hole 39. In this embodiment, since the first and second fixed frames 11 and 12 are fixed with legs, the rotary roller bearings 22 and 28 are attached to the casing formed of the first and second fixed frames 11 and 12. Thus, the rotary shaft 19 is attached so as to be freely rotatable.

以上のことより、複数の鉄心14は、片持ち構造で第1の固定フレーム11に放射状に取付けられているので、回転軸19と鉄心14の半径方向内側端部との間、及び第2の固定フレーム12の内側壁と鉄心14の半径方向外側端部との間には、それぞれ環状の空間部29、30が形成される。そして、片持ち取付けされた固定子13の開放側(即ち、軸方向)端部と第2の固定フレーム12との間にも、空間部29、30に連通する空間部31が形成され、この空間部29〜31に、回転軸19を除く回転子15が配置されている。   As described above, since the plurality of iron cores 14 are radially attached to the first fixed frame 11 in a cantilever structure, between the rotary shaft 19 and the radially inner end of the iron core 14, and the second Between the inner wall of the fixed frame 12 and the radially outer end of the iron core 14, annular space portions 29 and 30 are formed, respectively. A space portion 31 communicating with the space portions 29 and 30 is also formed between the open end (that is, the axial direction) end of the cantilevered stator 13 and the second fixed frame 12, and this space portion 31 is formed. The rotor 15 excluding the rotating shaft 19 is disposed in the space portions 29 to 31.

回転子15は、回転軸19とこれに固着されるヨーク32とヨーク32の両端部に取付ける永久磁石33、34とを有している。ヨーク32は透磁率の高い材質を使用するのが好ましいが、場合によっては、通常の鉄、鉄鋳物であってもよく、内部を通過する磁束は変動はするが交番はしないので、鉄損は少なく更には渦電流の発生も少なく、積層鉄心のみならず通常の塊状の磁性体も適用できる。永久磁石33、34は、例えば、ネオジウム・鉄・ボロン系の強力磁石を使用するのが好ましいが、強力磁石であれば、必ずしも磁石の種類に本発明は限定されない。なお、図2において、2点鎖線は交番磁束の流れを示す。   The rotor 15 includes a rotating shaft 19, a yoke 32 fixed to the rotating shaft 19, and permanent magnets 33 and 34 attached to both ends of the yoke 32. The yoke 32 is preferably made of a material having high magnetic permeability, but in some cases, it may be normal iron or iron casting, and the magnetic flux passing through the inside fluctuates but does not alternate. In addition, the generation of eddy current is small and not only the laminated iron core but also a normal massive magnetic body can be applied. The permanent magnets 33 and 34 are preferably, for example, neodymium / iron / boron strong magnets, but the present invention is not necessarily limited to the type of magnets as long as they are strong magnets. In FIG. 2, a two-dot chain line indicates a flow of alternating magnetic flux.

一つの鉄心14を中央にして半径方向に一定の距離を有して向かい合う永久磁石33、34は必ずS極とN極が向かい合う必要がある。そして、円周方向に隣り合う永久磁石33、33及び34、34もそれぞれS極とN極とするのが好ましい。これによって、永久磁石33、34から発する磁束の磁気抵抗が減少し、より効率の高い回転機10となる。この実施例においては、永久磁石33は回転軸19に装着されたボス35の半径方向外側に位置する部分に放射状にその一部又は全部が埋め込まれている。また、永久磁石34はボス35に円板状部材37を介して連結される筒体38の内側にその一部又は全部を埋設して固定されている。ここで、ボス35、円板状部材37及び筒体38はヨーク32の構成要素であり、磁性体(例えば、鉄)によって構成されている。従って、永久磁石33、34は磁気的にヨーク32によって連結されることになる。   Permanent magnets 33 and 34 facing each other with a certain distance in the radial direction centered on one iron core 14 must always face the south and north poles. And it is preferable that the permanent magnets 33, 33 and 34, 34 adjacent to each other in the circumferential direction have an S pole and an N pole, respectively. As a result, the magnetic resistance of the magnetic flux generated from the permanent magnets 33 and 34 is reduced, and the rotating machine 10 becomes more efficient. In this embodiment, the permanent magnet 33 is radially or partially embedded in a portion located radially outside the boss 35 attached to the rotary shaft 19. Further, the permanent magnet 34 is fixed by burying a part or all of it inside a cylindrical body 38 connected to the boss 35 via a disk-shaped member 37. Here, the boss 35, the disk-shaped member 37, and the cylindrical body 38 are constituent elements of the yoke 32, and are configured by a magnetic body (for example, iron). Therefore, the permanent magnets 33 and 34 are magnetically connected by the yoke 32.

以上のように固定子13と回転子15を構成することによって、固定子13の鉄心14を通過する磁束が半径方向に直線状となり、結果として永久磁石33、34によって発生する磁束をより効率的に(即ち、より低い磁気抵抗で)通過させることができる。また、この鉄心14に方向性電磁鋼板を使用することによって、更に鉄心14を通過する磁束が増加すると共に鉄損が減少し、これによって、回転機10の効率が向上する。この理由について以下に説明する。例えば、一般の筒状の固定子とその内部を回転する回転子を有する発電機(電動機でも同じ)の場合のその出力Poは以下のように表される。
即ち、Po∝(Bg)・(ac)・(D2・L)・(N)
ここで、(Bg)は固定子と回転子との空隙の平均磁束密度(磁気装荷)、(ac)はアンペアコンダクター(電気装荷)、(D2・L)は機器サイズで詳細には、Dは固定子鉄心内径、Lは鉄心層厚、(N)は回転数となる。従って、鉄心の透磁率が増加すると磁気抵抗が小さくなり、磁気装荷(Bg)は大きくなる。また、鉄心の断面積が減少し、これに巻かれる巻線の抵抗の内部抵抗も小さくなって、内部抵抗が小さくなると共に銅損も減少し、回転機の出力が大きくなる。
By configuring the stator 13 and the rotor 15 as described above, the magnetic flux passing through the iron core 14 of the stator 13 becomes linear in the radial direction, and as a result, the magnetic flux generated by the permanent magnets 33 and 34 is more efficient. (Ie, with a lower reluctance). Further, by using the grain-oriented electrical steel sheet for the iron core 14, the magnetic flux passing through the iron core 14 is further increased and the iron loss is reduced, whereby the efficiency of the rotating machine 10 is improved. The reason for this will be described below. For example, the output Po in the case of a generator having a general cylindrical stator and a rotor rotating inside thereof (the same applies to an electric motor) is expressed as follows.
That is, Po∝ (Bg) ・ (ac) ・ (D2 ・ L) ・ (N)
Here, (Bg) is the average magnetic flux density (magnetic loading) of the gap between the stator and the rotor, (ac) is the ampere conductor (electric loading), (D2 · L) is the equipment size, and in detail, D is The inner diameter of the stator core, L is the thickness of the core layer, and (N) is the rotational speed. Therefore, when the magnetic permeability of the iron core increases, the magnetic resistance decreases and the magnetic load (Bg) increases. In addition, the cross-sectional area of the iron core is reduced, the internal resistance of the winding wound around this is also reduced, the internal resistance is reduced, the copper loss is reduced, and the output of the rotating machine is increased.

また、鉄心14に方向性電磁鋼板を使用すると、図3に示すように磁束密度を高めて使用することができる他、無方向性電磁鋼板に比較して鉄損が少なく(例えば、1/2.5〜1/4.5に減少する)、これによって、発熱が少なくなるので、効率が向上すると共に、機器の小型化が可能となる。なお、図3において、k1は方向性電磁鋼板の磁束密度を、k2は無方向性電磁鋼板の磁束密度、w1は方向性電磁鋼板の鉄損を、w2は無方向性電磁鋼板の鉄損を示す。   In addition, when a grain-oriented electrical steel sheet is used for the iron core 14, it can be used with an increased magnetic flux density as shown in FIG. 3, and there is less iron loss than a non-oriented electrical steel sheet (for example, 1/2 This reduces heat generation, thereby improving efficiency and reducing the size of the device. In FIG. 3, k1 represents the magnetic flux density of the grain-oriented electrical steel sheet, k2 represents the magnetic flux density of the non-oriented electrical steel sheet, w1 represents the iron loss of the directional magnetic steel sheet, and w2 represents the iron loss of the non-oriented electrical steel sheet. Show.

この実施例においては、鉄心14の長さ方向両端に少しの隙間を設けて永久磁石33、34を設け、しかも、鉄心14には半径方向の内側と外側の2か所に巻線25、26が設けられている。そして、同一の鉄心14に対する巻線25、26には、巻き回数が同じであれば、同一及び同相の起電力が発生するので、巻線25、26を並列又は直列接続することによって、巻線25、26のインピーダンスを変えることができ、これによって電圧や電流を変えることができる。また、各鉄心14の巻線に1又は2以上の中間タップを設け、その接続方法(例えば、直接、並列又はこれらを組み合わせて)を変えて、回路のインピーダンスを変えることもできる。   In this embodiment, the permanent magnets 33 and 34 are provided by providing a small gap at both ends in the length direction of the iron core 14, and the windings 25 and 26 are provided on the iron core 14 at two locations inside and outside in the radial direction. Is provided. If the windings 25 and 26 for the same iron core 14 have the same number of turns, the same and in-phase electromotive forces are generated. Therefore, the windings 25 and 26 are connected in parallel or in series. The impedance of 25 and 26 can be changed, whereby the voltage and current can be changed. In addition, it is possible to change the circuit impedance by providing one or more intermediate taps in the windings of each iron core 14 and changing the connection method (for example, directly, in parallel or in combination thereof).

この回転機10を発電機として使用する場合には、回転軸に風車、エンジン、水車等の回転動力を連結し、電動機として使用する場合には、回転子15の回転角度を検出するセンサー(例えば、ホールセンサー)を固定子13に設け、センサーからの信号に基づき、回転子15の磁極に対してその回転方向進み位相側に逆極性の磁極が発生し、回転子15の磁極に対して遅れ位相側に同極性の磁極が形成できるように固定子13の巻線25、26に別に設けられた電源によって電流を流すことになる。   When the rotating machine 10 is used as a generator, a rotational power of a windmill, an engine, a water turbine or the like is connected to a rotating shaft, and when the rotating machine 10 is used as an electric motor, a sensor (for example, a rotation angle of the rotor 15 is detected. , A Hall sensor) is provided in the stator 13, and a magnetic pole having a reverse polarity is generated on the phase advance side in the rotation direction with respect to the magnetic pole of the rotor 15 based on a signal from the sensor, and is delayed from the magnetic pole of the rotor 15 A current is supplied by a power source provided separately in the windings 25 and 26 of the stator 13 so that magnetic poles of the same polarity can be formed on the phase side.

更には、本発明は前記実施例に限定されるものではなく、回転子及び固定子の磁極の数を変更する場合や、回転子及び固定子、並びにこれらに合わせてケーシングの形状や寸法を変える場合も本発明は適用される。   Furthermore, the present invention is not limited to the above-described embodiments, and the number of rotor and stator magnetic poles is changed, or the rotor and stator, and the casing shape and dimensions are changed in accordance with these. The present invention also applies to cases.

本発明に係る回転機は、巻線が施される鉄心を直線状にして最小限度に短くすることができるので、鉄損を少なくすることができ、これによって、小型で高効率の回転機を提供できる。そして、特に、鉄心を方向性電磁鋼板とした場合には、各鉄心の透磁率を飛躍的に高めることができ、これによって、同一電力に対して鉄心断面積を減らし、更には鉄心の断面積が減ると巻線量も減るので、更に小型で高い効率の回転機を提供できる。
従って、電動機として使用する場合には、小型軽量であることを必要とする電動自転車、自動車、船舶、飛行機、列車等の交通機関用として最適である。また、発電機として利用する場合も、小型軽量でしかも高効率であるので、風力発電に限らず通常の発電所用の発電機としても使用できる。
The rotating machine according to the present invention can reduce the iron loss by minimizing the iron core on which the windings are made straight, thereby reducing the size and efficiency of the rotating machine. Can be provided. In particular, when the iron core is a grain-oriented electrical steel sheet, the permeability of each iron core can be dramatically increased, thereby reducing the cross-sectional area of the iron core for the same power, and further, the cross-sectional area of the iron core. Since the amount of windings is reduced as the number of turns decreases, a smaller and more efficient rotating machine can be provided.
Therefore, when used as an electric motor, it is optimal for transportation such as electric bicycles, automobiles, ships, airplanes, trains and the like that need to be small and light. In addition, when it is used as a generator, it is small, light and highly efficient, so it can be used not only for wind power generation but also as a generator for ordinary power plants.

Claims (4)

回転軸の周方向に均等に設けられそれぞれ異なる磁極が、半径方向に一定の距離を有して対向して配置された回転子と、前記対向する磁極の間に形成される環状の空間部に、前記対向する磁極と隙間を有して周方向に並べて配置される複数の鉄心を備え、しかもそれぞれの前記鉄心の半径方向の内側及び外側にてそれぞれ第1及び第2の巻線が施された固定子とを有する回転機であって、
前記回転子のそれぞれの前記磁極は、半径方向に一定の距離を有して配置された対となる永久磁石によって形成され、該対となる永久磁石は磁気的にヨークによって連結され互いに反対の極性を有するとともに、円周方向に隣り合う前記永久磁石は、互いに反対の極性を有し、
前記回転子及び前記固定子のケーシングは、前記回転軸に第1の軸受を介して連結され、前記複数の鉄心をその円周方向に並べて固定する第1の固定フレームと、該第1の固定フレームと対となって、前記回転軸に第2の軸受を介して取付けられ前記回転子の周囲を覆うカップ状の第2の固定フレームとを有し、前記鉄心は、前記第1及び第2の巻線の間に設けられた取付け部材によって、前記第1の固定フレームに固定されることを特徴とする回転機。
Different magnetic poles that are equally provided in the circumferential direction of the rotating shaft are arranged in an annular space formed between the rotor arranged opposite to each other with a certain distance in the radial direction and the opposing magnetic poles. the a between the opposing magnetic pole and gap comprising a plurality of cores arranged side by side in the circumferential direction, moreover the first and second windings respectively at the radially inner and outer respectively the iron core facilities a rotating machine that have a and are stator,
Each of the magnetic poles of the rotor is formed by a pair of permanent magnets arranged at a certain distance in the radial direction, and the pair of permanent magnets are magnetically connected by a yoke and have opposite polarities. And the permanent magnets adjacent in the circumferential direction have opposite polarities,
A casing of the rotor and the stator is connected to the rotating shaft via a first bearing, and a first fixing frame that fixes the plurality of iron cores side by side in the circumferential direction, and the first fixing And a cup-shaped second fixed frame attached to the rotary shaft via a second bearing and covering the periphery of the rotor, and the iron core includes the first and second cores. The rotating machine is fixed to the first fixed frame by an attachment member provided between the windings .
請求項1記載の回転機において、前記複数の鉄心は周方向に均等に配置されていることを特徴とする回転機。The rotating machine according to claim 1, wherein the plurality of iron cores are arranged uniformly in a circumferential direction. 請求項1又は2記載の回転機において、前記鉄心は前記回転軸に対して放射状に設けられ、前記それぞれの鉄心は半径方向に透磁率の高い方向性電磁鋼板の積層体からなることを特徴とする回転機。 3. The rotating machine according to claim 1, wherein the iron cores are provided radially with respect to the rotating shaft, and each of the iron cores is formed of a laminated body of directional electrical steel sheets having a high magnetic permeability in a radial direction. Rotating machine. 請求項1〜のいずれか1項に記載の回転機において、前記回転子の回転角度を検知するセンサーが前記固定子に設けられ、別に設けられた電源によって、前記センサーからの信号に基づき、前記固定子の前記第1及び第2の巻線に、前記回転子の回転位相に合わせた所定の交流電力を送って、特に、前記回転軸からの回転動力を得る電動機として用いることを特徴とする回転機。The rotating machine according to any one of claims 1 to 4 , wherein a sensor for detecting a rotation angle of the rotor is provided in the stator, and a power source provided separately is based on a signal from the sensor, The first and second windings of the stator are used as an electric motor that sends a predetermined AC power in accordance with the rotational phase of the rotor, and in particular, obtains rotational power from the rotating shaft. Rotating machine.
JP2006511108A 2004-03-22 2004-03-22 Rotating machine Expired - Fee Related JP4621661B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/003879 WO2005091464A1 (en) 2004-03-22 2004-03-22 Rotating machine

Publications (2)

Publication Number Publication Date
JPWO2005091464A1 JPWO2005091464A1 (en) 2008-02-07
JP4621661B2 true JP4621661B2 (en) 2011-01-26

Family

ID=34994025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006511108A Expired - Fee Related JP4621661B2 (en) 2004-03-22 2004-03-22 Rotating machine

Country Status (2)

Country Link
JP (1) JP4621661B2 (en)
WO (1) WO2005091464A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7880355B2 (en) * 2006-12-06 2011-02-01 General Electric Company Electromagnetic variable transmission

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS533604A (en) * 1976-06-30 1978-01-13 Hitachi Ltd Electric motor of duplicated rotor type
JPS5450806A (en) * 1977-09-30 1979-04-21 Hitachi Ltd Revolving electrical machinery
JP2003264942A (en) * 2002-03-08 2003-09-19 Nippon Steel Corp Stator iron core of motor
JP2003274583A (en) * 2002-03-13 2003-09-26 Yaskawa Electric Corp Stator core structure of rotating motor, and manufacturing method for the stator
JP2004048920A (en) * 2002-07-12 2004-02-12 Denso Corp Double-sided gap type electric rotary machine
JP2005521378A (en) * 2002-06-26 2005-07-14 アモテック・カンパニー・リミテッド Radial core type double rotor type BLDC motor and manufacturing method thereof (BrushlessDirectCurrentMotorofRadioCoreTypeHavingaStructureofDoubleRotorMandformMakingTheSame)

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS533604A (en) * 1976-06-30 1978-01-13 Hitachi Ltd Electric motor of duplicated rotor type
JPS5450806A (en) * 1977-09-30 1979-04-21 Hitachi Ltd Revolving electrical machinery
JP2003264942A (en) * 2002-03-08 2003-09-19 Nippon Steel Corp Stator iron core of motor
JP2003274583A (en) * 2002-03-13 2003-09-26 Yaskawa Electric Corp Stator core structure of rotating motor, and manufacturing method for the stator
JP2005521378A (en) * 2002-06-26 2005-07-14 アモテック・カンパニー・リミテッド Radial core type double rotor type BLDC motor and manufacturing method thereof (BrushlessDirectCurrentMotorofRadioCoreTypeHavingaStructureofDoubleRotorMandformMakingTheSame)
JP2004048920A (en) * 2002-07-12 2004-02-12 Denso Corp Double-sided gap type electric rotary machine

Also Published As

Publication number Publication date
WO2005091464A1 (en) 2005-09-29
JPWO2005091464A1 (en) 2008-02-07

Similar Documents

Publication Publication Date Title
TWI420783B (en) Axial motor
US7595575B2 (en) Motor/generator to reduce cogging torque
US7973444B2 (en) Electric machine and rotor for the same
JP2007074776A (en) Rotating electric machine
KR20090079777A (en) Permanent magnet synchronous motor
CN110268610B (en) Synchronous machine with magnetic rotating field reduction and flux concentration
US20100123364A1 (en) Substantially parallel flux uncluttered rotor machines
JP2009136046A (en) Toroidally-wound dynamo-electric machine
US9515524B2 (en) Electric motor
KR102156481B1 (en) An axial motor including a magnetic levitation rotary body
JP2004274998A (en) Single-phase induction motor
US20220085674A1 (en) Rotary electric machine
WO2011089797A1 (en) Rotor, rotating electrical machine using same, and power generator
JP4621661B2 (en) Rotating machine
JPWO2019008930A1 (en) Stator and motor
US9755465B2 (en) Method for manufacturing a rotor of a synchronous reluctance motor, a rotor of a synchronous reluctance motor, and a synchronous reluctance motor
JP2018108007A (en) Generator decreasing magnetic force resistance
JP5128800B2 (en) Hybrid permanent magnet rotating electric machine
JP2010141991A (en) Rotating motor
WO2012121685A2 (en) Low-speed multipole synchronous generator
JP6088465B2 (en) Drive unit
US20230103227A1 (en) Modular axial flux motor
JP2019022428A (en) Series strong induction DC motor
JP2019058039A (en) Rotary electric machine
JP4607823B2 (en) AC rotating electric machine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101101

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees