JPS5999713A - Manufacture of substrate for thin-film transistor - Google Patents

Manufacture of substrate for thin-film transistor

Info

Publication number
JPS5999713A
JPS5999713A JP57208639A JP20863982A JPS5999713A JP S5999713 A JPS5999713 A JP S5999713A JP 57208639 A JP57208639 A JP 57208639A JP 20863982 A JP20863982 A JP 20863982A JP S5999713 A JPS5999713 A JP S5999713A
Authority
JP
Japan
Prior art keywords
film
substrate
glass substrate
silicon nitride
nitride film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57208639A
Other languages
Japanese (ja)
Inventor
Keiji Kobayashi
啓二 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP57208639A priority Critical patent/JPS5999713A/en
Publication of JPS5999713A publication Critical patent/JPS5999713A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02595Microstructure polycrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02683Continuous wave laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02691Scanning of a beam

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To allow large crystals to be uniformly obtained, by providing a silicon oxide film on a transparent glass substrate, and implanting nitrogen ions into the film to form a silicon nitride film. CONSTITUTION:Nitrogen ions are implanted into a transparent borosilicate substrate 1 and reacted on heating to provide an Si3N4 film 2. The film 2 is provided with stripe grooves. A poly-Si film 3 is deposited thereon. After a necessary portion is irradiated with an ion beam, a necessary pattern scanning is further effected with a laser beam. The film 3 is annealed at a temperature lower than the glass softening point so as to be recrystallized. Thus, large crystals can uniformly be obtained, and the Si3N4 film can be formed at a low temperature. Further, it is possible to employ a glass substrate which is low in cost and high in mechanical accuracy.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は薄膜トランジスタ用基板の1.製造方法C二線
り1.特(二窒素イオン注入による窒化胆ユ形、成を用
、IJまた薄膜トランジスタ用基板の製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to 1. a substrate for a thin film transistor; Manufacturing method C double line 1. In particular, the present invention relates to a method for manufacturing substrates for IJ and thin film transistors using nitrided bilayer formation by dinitrogen ion implantation.

[従来技術とその間照点〕 従来、厚さ1μ程度のポリシリコン等の半導体掩に¥4
膜トランジスタ等液晶テレビ用素子を形成する事が知ら
れていた。しかし、移動度が0.1i/l、1000程
度と悪く、性能が悪かった。この理由はボ刃シリコンの
粒径が小さい7i径を大きくスる仏法としてレーザーア
ニールが馬えられていた。
[Prior art and its highlights] Conventionally, a semiconductor cover made of polysilicon or the like with a thickness of about 1 μm costs ¥4.
It has been known to form elements for liquid crystal televisions such as film transistors. However, the mobility was poor at 0.1 i/l, about 1000, and the performance was poor. The reason for this is that laser annealing was considered a Buddhist method to greatly reduce the 7i diameter, which has a small grain size.

その方法は、耐熱性を持つ石英ガラス基板上5二酸化珪
素(S10g)膜を被着し、周期的な溝切りを行なって
ポリシリコンを被着し、レーザーアニールにより再結晶
化する方法であった○ しかしながら、5i02は溝切部の耗′度が悪く、かつ
耐熱、性が恋いため、アニールのしλ結晶成長が不均質
であった。父、アニールの際・ポリ・シリコンCコクラ
ンクが匈、数に生して、基板の歩留りが低下すること・
があった。これに対しh’ 51o2fiりの代わりに
懐化珪累膜を用いる事が本発明者によって考えられたが
、その膜形成泥層が、630℃程度等高いため石英ガラ
ス等高’miiで機械加工性が蝋しい基板を用いなけれ
ばならないという問題があった。
The method was to deposit a silicon dioxide (S10g) film on a heat-resistant quartz glass substrate, make periodic grooves, deposit polysilicon, and recrystallize it by laser annealing. ○ However, 5i02 had poor wear of the grooved portion and poor heat resistance and properties, resulting in non-uniform λ crystal growth during annealing. During annealing, polysilicon C cracks form in large numbers, reducing the yield of the substrate.
was there. In response to this, the present inventor considered using a silica film instead of h'51o2fi, but since the film-forming mud layer was at a high temperature of about 630°C, it was difficult to machine the silica glass with a height of 'mii'. There was a problem in that a substrate with low properties had to be used.

〔発明の目的〕[Purpose of the invention]

このような欠点を改良するために本発明がなさVt、た
も、のであり、結晶の成長を歩留り良く行なうと−に、
安価で加工精度の良いガラス基板を用いることができる
ようにする事を目的とするものである。
The present invention was developed to improve these drawbacks, and in order to grow crystals with high yield,
The purpose is to make it possible to use a glass substrate that is inexpensive and has good processing precision.

〔発明の概要〕[Summary of the invention]

本発明は透明ガラス基板又はその表面に酸化珪素膜が設
けられた基板に窒素のイオン注入を行なって窒化珪素膜
を形成し、この窒化珪素膜上に半導体膜な被着し、ガラ
ス軟化点より低い温度(二於加この半導体膜なアニール
して再結晶化させ層口1〔発明の効果〕 本発明によれは従来のものよりも大きな結晶が均−f二
得られる。又、窒素イオン注入により窒化珪素膜を得る
ようにしているので、低温で窒化珪素膜が形成出来、ガ
ラス基板として安価で機械的精度の良いものを使用でき
るようC二なる。
In the present invention, a silicon nitride film is formed by implanting nitrogen ions into a transparent glass substrate or a substrate having a silicon oxide film on its surface, and a semiconductor film is deposited on the silicon nitride film, and the glass softening point is [Effects of the Invention] According to the present invention, larger crystals can be uniformly obtained than in the conventional method. Since the silicon nitride film is obtained by using C2, the silicon nitride film can be formed at a low temperature, and a glass substrate that is inexpensive and has good mechanical precision can be used.

〔発明の実施例〕[Embodiments of the invention]

第1図、第2図はこの発明の一実施例であり、透明ホウ
珪酸ガラス基板1上の飴化珪素膜(sigN4)2にレ
ジストハターンを用いたフレオンガスによるプラズマエ
ソナングによりストンイブ状の肩(深さ−0,2μ9幅
−2μ)を設けた。これは例えば透明ホウ珪酸ガラス基
板1に窒素のイオン注入(30KeV、 10”、/c
J)を行い400°C20分加熱反応させて(SiとN
とが反応する)窒化珪素膜2を設ける。溝切りは精度良
く行なうことかで@た。さらにポリシリコン膜3をLP
C!VD法で被着して、所要部【ニイオンビーム(ψり
えばP+ )を照射した後〜コW−Arレーザービーム
な、ここではスポット四rr。
FIGS. 1 and 2 show an embodiment of the present invention, in which stone-ive shaped shoulders are formed by plasma ethoning with Freon gas using a resist pattern on a candied silicon film (sigN4) 2 on a transparent borosilicate glass substrate 1. (depth -0, 2μ9 width -2μ) was provided. For example, nitrogen ion implantation (30KeV, 10", /c
J) and heated to react at 400°C for 20 minutes (Si and N
A silicon nitride film 2 is provided. Groove cutting must be done with precision. Furthermore, polysilicon film 3 is LP
C! After applying the film using the VD method and irradiating the desired area with a two-ion beam (P+ if ψ), a W-Ar laser beam (here, spot 4) is applied.

1→m走五幅50μmで所望のパターンで走査田る。Scan the desired pattern in a 1->m scan with a width of 50 μm.

アニール時のガラス基板温度はヒーターで加譜すること
(二より500℃f二する。イオン注入を全面に行ない
、全面Cニレーザーピームを走査するよう(二してもよ
い。これ(二よりポリシリコン膜のレーザー照射部C:
l−は大きなドープ再結酩が生じる。結晶粒径は約10
μであった。第2図はガラス基板1′に5io22’を
つけ、この上から窒素のイオン注入を20KeV、 1
0 ” /crlのドーズ倹で打こみ、後400℃20
分加熱し、窒化膜を形成する。この膜に溝切り(深10
.2μ、ri]2μ)を設は上からLP−CVD法Cよ
ってポリシリコン3′をつける。そして第1図と同様(
二この上から10wアルゴンレーザーでアニールし、結
晶成長させる。
The temperature of the glass substrate during annealing must be increased with a heater (500°C from Laser irradiation part C of silicon film:
l- causes large dope reconsolidation. The grain size is approximately 10
It was μ. In Figure 2, 5io22' is attached to a glass substrate 1', and nitrogen ions are implanted from above at 20 KeV, 1
0”/crl dose sparingly, then heated to 400℃20
The nitride film is formed by heating for 10 minutes. Cut a groove in this membrane (depth 10
.. 2μ, ri]2μ), polysilicon 3' is applied from above by LP-CVD method C. And similar to Figure 1 (
Second, annealing is performed from above using a 10W argon laser to grow crystals.

従来のグラフオエビにょる粒径が2〜3μに対し、本ポ
リシリコンの粒径は10−12μm+二も達した。而る
後このグラフエピタキシャルガラス基板のドーピング領
域l二P−チャンネルFETを製作した。この素子のホ
ール移動度はμH= 85crl/v・seeであり、
グラフオエピタキシャルガラス基板の比抵抗は800傷
であり比抵抗のばらつきも±5係以内(二納まっていた
。アニール時の基板上のポリシリコンのクラックは全く
なく、はぼ均質f二粒径の1゛ろった多結晶が多数成長
していた0又基板の辿−17りも90%以上でめった。
While the grain size of conventional graphite shrimp is 2 to 3 μm, the grain size of this polysilicon has reached 10-12 μm+2. Thereafter, a P-channel FET was fabricated using the doped region of this graph epitaxial glass substrate. The Hall mobility of this element is μH = 85 crl/v·see,
The resistivity of the graphite epitaxial glass substrate was 800 scratches, and the variation in resistivity was within ±5 coefficients (within 2).There were no cracks in the polysilicon on the substrate during annealing, and it was almost homogeneous with two grain sizes. More than 90% of traces of the zero-shaped substrate on which a large number of polycrystals of 100% were grown were also unsuccessful.

従ってこの基板はFE’l’作製のための半導体グラフ
オエピタキシー基板と〕て工業的にすぐれたものである
ということがで艷る。
Therefore, it can be concluded that this substrate is industrially excellent as a semiconductor graphoepitaxy substrate for producing FE'l'.

上記実施ψりではホウ珪酸ガラスを用いたが、アルミシ
リケートガラス又は半硬質ガラスを使用し刊る。
Although borosilicate glass was used in the above implementation, aluminum silicate glass or semi-hard glass may also be used.

これらは安ijt+で機械的加工精度も良い。又、窒し
なくても窒化珪素膜を作成する事が可能である。
These are cheap and have good mechanical processing accuracy. Furthermore, it is possible to form a silicon nitride film without nitriding.

又、レーザービーム(二よるアニールの他に全体を加熱
炉中でアニールするようにしてもよい。
In addition to laser beam annealing, the entire structure may be annealed in a heating furnace.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の入流Vすを説明する断面図
で4うる。図において、 1、1′・−・ホウ珪酸ガラス基板 2・・・窒化珪素膜   2・・・5io2膜3.3′
・・ポリシリコン膜
FIGS. 1 and 2 are cross-sectional views illustrating the inflow valve of the present invention. In the figure, 1, 1' -- Borosilicate glass substrate 2... Silicon nitride film 2... 5io2 film 3.3'
・Polysilicon film

Claims (1)

【特許請求の範囲】 透明カラス基板又はその表面に酸化珪素膜が設けられた
基板【二窒素のイオン注入を行なって窒化珪素膜、を形
成し、この窒化珪素膜上に半導体鰹を被着し、ガラス軟
化点より低い温度に於てこの半
[Claims] A transparent glass substrate or a substrate on which a silicon oxide film is provided [a silicon nitride film is formed by ion implantation of dinitrogen, and a semiconductor bonito is deposited on this silicon nitride film. , at a temperature lower than the glass softening point.
JP57208639A 1982-11-30 1982-11-30 Manufacture of substrate for thin-film transistor Pending JPS5999713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57208639A JPS5999713A (en) 1982-11-30 1982-11-30 Manufacture of substrate for thin-film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57208639A JPS5999713A (en) 1982-11-30 1982-11-30 Manufacture of substrate for thin-film transistor

Publications (1)

Publication Number Publication Date
JPS5999713A true JPS5999713A (en) 1984-06-08

Family

ID=16559565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57208639A Pending JPS5999713A (en) 1982-11-30 1982-11-30 Manufacture of substrate for thin-film transistor

Country Status (1)

Country Link
JP (1) JPS5999713A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01157437A (en) * 1987-12-15 1989-06-20 Nippon Sheet Glass Co Ltd Method for modifying surface of glass
FR2648454A1 (en) * 1989-06-19 1990-12-21 Nippon Sheet Glass Co Ltd METHOD FOR MODIFYING THE SURFACE OF A GLASS SUBSTRATE
US7226817B2 (en) 2001-12-28 2007-06-05 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01157437A (en) * 1987-12-15 1989-06-20 Nippon Sheet Glass Co Ltd Method for modifying surface of glass
FR2648454A1 (en) * 1989-06-19 1990-12-21 Nippon Sheet Glass Co Ltd METHOD FOR MODIFYING THE SURFACE OF A GLASS SUBSTRATE
US7226817B2 (en) 2001-12-28 2007-06-05 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing

Similar Documents

Publication Publication Date Title
KR970007839B1 (en) Fabricating method of semiconductor device
JPS63142655A (en) Manufacture of device containing buried sio2 layer
JPH0377329A (en) Manufacture of semiconductor device
JPH01187814A (en) Manufacture of thin film semiconductor device
JPS6178120A (en) Manufacture of thin film single crystal
JP3359670B2 (en) Method for manufacturing semiconductor device
JPS5999713A (en) Manufacture of substrate for thin-film transistor
JPS60189922A (en) Method of producing single crystal layer
JP2534980B2 (en) Method for manufacturing crystalline semiconductor thin film
JPS58190020A (en) Epitaxial growth method
JPS62104021A (en) Formation of silicon semiconductor layer
JP3203706B2 (en) Method for annealing semiconductor layer and method for manufacturing thin film transistor
JPS621220A (en) Manufacture of defect localized orientation silicon monocrystalline film on insulation support
JP3146702B2 (en) Method for manufacturing thin film transistor
JPS58182816A (en) Recrystallizing method of silicon family semiconductor material
JPS5994829A (en) Manufacture of semiconductor device
JP2000068518A (en) Manufacture of thin-film transistor
JPH03227525A (en) Manufacture of thin film transistor
JPH03292719A (en) Silicon semiconductor layer forming method
JPH05343685A (en) Manufacture of silicon thin film transistor
JPS6231111A (en) Manufacture of crystalline semiconductor thin film
JPH10223913A (en) Manufacture of thin film semiconductor device
JPH06236894A (en) Manufacture of thin film transistor
JPH0254538A (en) Manufacture of p-channel thin film transistor
JPS6134921A (en) Manufacture of semiconductor device