JPS5998532A - Preparation of reference defect sample - Google Patents

Preparation of reference defect sample

Info

Publication number
JPS5998532A
JPS5998532A JP20769382A JP20769382A JPS5998532A JP S5998532 A JPS5998532 A JP S5998532A JP 20769382 A JP20769382 A JP 20769382A JP 20769382 A JP20769382 A JP 20769382A JP S5998532 A JPS5998532 A JP S5998532A
Authority
JP
Japan
Prior art keywords
sample
flat
standard
penetrator
indenter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20769382A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamaji
山地 廣
Shigeru Ogawa
茂 小川
Mitsuyuki Takahashi
高橋 光之
Masaaki Ueda
植田 正昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP20769382A priority Critical patent/JPS5998532A/en
Publication of JPS5998532A publication Critical patent/JPS5998532A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PURPOSE:To make plural reference defects having various sizes by forming a flat on a sample and pressing a penetrator having a peaked end on plural positions of the flat with various pressure. CONSTITUTION:A plate sample 20 which is a silicon wafer having a main surface made to be a flat is put on an upper surface of a Y stage 3 with making an orientation flat plane 21 and X direction parallel. Adjustment is made so as to put a part 22 right under a penetrator 12 and as a sinker 13, what weighes W1 to form a pyramidal dent having a diagonal of 20mum is selected. When a cutout 16b of a cam becomes parallel to a sliding contact plane 14, a lever 7 rotates to lower the penetrator 12 in a direction of an arrow 24a thereby pressing the plate sample 20 by a predetermined pressure. When the weight of the sinker 13 decreases to W3, W4, W5 in turn, dents 26..., 27..., 28... having diagonals of 5mum, 2mum, 1mum respectively are formed by the similar process as for dents 23... and 25..., in a line on crossings of a lattice whose spaces are 10mm..

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、半導体ウェハ上の欠陥を検出する装置におい
て校正用に使用される標準欠陥試料を作るための標準欠
陥試料作製方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a standard defect sample preparation method for making a standard defect sample used for calibration in an apparatus for detecting defects on semiconductor wafers.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

半導体ウェハ(以下、たんにウェハと記す。)の製造プ
ロセスにおいて、ウェハ上のゴミ、ホコリ、傷等は製品
の不良の原因となるので、各プロセスにおいては、これ
らの有無の検査が厳重に実施されている。これにともな
い近時、この種の検査を自動的かつ定量的に行うことの
できる主として光学的手段による光散乱を利用した表向
欠陥検出装置が開発されている。ところで、このような
表面欠陥検出装置においては、校正用の標準欠陥試料を
必要とする。そこで現在、種々の方法により上記校正用
の標準欠陥試料が作られている。たとえば、最も多く使
用されている方法として、クエハ表向上に標準粒径粒子
(ポリマ粒子、商品名「ラテックス」)を散布する方法
がある。また、高度の技術を要する方法として、フォト
エツチング法によシ、ウニ凸表面上に微小な段差を利用
して、標準欠陥として用1いる方法がある。しかるに、
上記標準粒子を用いる方法による標準欠陥試料の場合、
粒子を散布する位置を任意に制御することができず、そ
の位置を検出するのがすこぶる困難であシ、検査装置で
その標準欠陥試料を検査した結果が標準粒子によるもの
か、その他のゴミ、ホコリ等によるものか判定がつかな
かった。また、フォトエツチング法による標準欠陥試料
は、段差を形成するためのレジストa布、露光、エツチ
ングのための専用装置が必要となり、容易にかつ安価に
標準試料を製作することができない不都合があった。
In the manufacturing process of semiconductor wafers (hereinafter simply referred to as wafers), dirt, dust, scratches, etc. on the wafers can cause product defects, so inspections for the presence of these items are strictly carried out in each process. has been done. In line with this, recently, surface defect detection apparatuses have been developed that mainly utilize light scattering by optical means and can perform this type of inspection automatically and quantitatively. Incidentally, such a surface defect detection device requires a standard defect sample for calibration. Therefore, standard defect samples for the above-mentioned calibration are currently being produced using various methods. For example, the most commonly used method is to spray standard size particles (polymer particles, trade name "Latex") on the surface of the surface. Further, as a method that requires a high level of technology, there is a method using a photoetching method to utilize a minute step on the convex surface of the sea urchin and use it as a standard defect. However,
In the case of a standard defect sample obtained by the method using the above standard particles,
It is not possible to arbitrarily control the position where the particles are dispersed, and it is extremely difficult to detect the position, and the results of inspecting the standard defect sample with an inspection device do not show whether it is due to standard particles or other dust, etc. It was not possible to determine whether it was caused by dust, etc. In addition, the standard defect sample produced by the photoetching method requires a resist cloth for forming the step, and special equipment for exposure and etching, which has the disadvantage that it is not possible to easily and inexpensively produce the standard sample. .

〔発明の、目的〕[Object of the invention]

本発明は、上記事情を参酌してなされたもので、試料の
所定位置にS準欠陥を6易にかつ正確に形成することの
できる標準欠陥試料作製方法を提供することを目的とす
る。
The present invention has been made in consideration of the above-mentioned circumstances, and an object of the present invention is to provide a standard defect specimen manufacturing method that can easily and accurately form S quasi-defects at predetermined positions on a specimen.

〔発明の概要〕[Summary of the invention]

試料に平坦部を形成したのち、先端が錐状の圧子を上記
平坦部の復数位置にて種々の荷重で押圧することにより
、種々の大きさの複数個の41!準欠/陥を形成するよ
うにしたものである。
After forming a flat portion on the sample, by pressing an indenter with a conical tip with various loads at multiple positions on the flat portion, a plurality of 41! It is designed to form semi-defects/defects.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を回向を参照して、実施例に基づいて詳述
する。
Hereinafter, the present invention will be described in detail based on examples with reference to the present invention.

第1図は、本実施例の標準欠陥試料作製方法に用いられ
る標準欠陥作製装置を示している。Xステージ(1)は
、このXステージ(1)に連設されたXマイクロメータ
(2)のつまみ(21)の回動によりX方向第1図紙面
垂直方向に微動できるように設けられている。このXス
テージ(1)上には、Xステージ(3)が、このXステ
ージ(3)に連設されたYマイクロメータ(4)のつま
み(4a)の回動により第1図矢印(5)方向に摺接し
て微動できるように載設されている。
FIG. 1 shows a standard defect manufacturing apparatus used in the standard defect sample manufacturing method of this embodiment. The X stage (1) is provided so that it can be slightly moved in the X direction in the direction perpendicular to the plane of the paper in Figure 1 by rotating the knob (21) of the X micrometer (2) connected to the X stage (1). . On this X stage (1), the X stage (3) is moved as indicated by the arrow (5) in Figure 1 by turning the knob (4a) of the Y micrometer (4) connected to this X stage (3). It is mounted so that it can slide in the direction and move slightly.

そして、Xステージ(1)とXステージ(3)とは、位
置決め機構であるXXステージ(6)を構成している。
The X stage (1) and the X stage (3) constitute a XX stage (6) which is a positioning mechanism.

一方、とのXXステージ(6)の上方には、レバー(7
)がレバー軸(8)に軸支され、矢印(9a)、 (9
b)方向に回動自在となっている。そして、レバー(7
)の一端部には支持体a〔が取付けられている。この支
持体α呻の下面には、圧子ホルダ←υが設けられている
On the other hand, above the XX stage (6) is a lever (7).
) is pivotally supported on the lever shaft (8), and arrows (9a), (9
b) It is rotatable in the direction. And lever (7
) is attached to one end of the support body a [. An indenter holder ←υ is provided on the lower surface of the support α.

この圧子ホルダ(1])の下端部には、先端が四角錐状
老 の例えばダイヤモンド製の圧子aりが螺着されている。
An indenter a made of, for example, diamond and having a square pyramid-shaped tip is screwed onto the lower end of the indenter holder (1).

また、支持体α〔の上面には、円柱状のおもシ(13が
載置されている。このおもシα騰は、支持体α呻の上部
に突設された円環状の周壁部(10a)に嵌合されるよ
うになっていて、落下や位置ずれが防止されている。こ
のおもb (131の重さを任意に設定することにより
、圧子a湯による圧痕の大きさを変化させることができ
る。さらに、レバー(7)の他端部には、斜面となって
いる摺接面Iを有する係合体u1が取付けられている。
In addition, a cylindrical weight (13) is placed on the upper surface of the support α. (10a) to prevent it from falling or shifting its position.By arbitrarily setting the weight of this weight (131), the size of the indentation made by the indenter (a) can be adjusted. Furthermore, an engaging body u1 having a sliding surface I that is an inclined surface is attached to the other end of the lever (7).

この係合体(IF5の摺接面[4)に近接して、カム(
IIが図示せぬ回転駆動機構によシ矢印面方向に回転す
る回転軸(2)に固定されている。上記カムulは、円
周部分(16a)と欠切部分(16b)とからなってい
て、欠切部分(16b)は平面となりている。そうして
、カム四は、円周部分(16al)が摺接面Iに1ll
llllz摺接したときにl圧子14がXステージ(3
)の上面から離間するように設定されている。したがっ
て、カムu61が回転して欠切部分(16b)が摺接面
Iに対向したときに両者間に間隙が生じ、レバー(7)
が矢印(9a)方向に回転し、圧子α邊が降下するよう
になっている。しかして、おも13.支持体−,レバー
(力、カム(1[9,保合体重っは、加圧機構四を構成
している。
The cam (
II is fixed to a rotating shaft (2) that rotates in the direction of the arrow by a rotational drive mechanism (not shown). The cam ul consists of a circumferential portion (16a) and a cutout portion (16b), and the cutout portion (16b) is a flat surface. Then, the cam 4 has a circumferential portion (16al) in contact with the sliding surface I.
lllllz When the lllllz sliding contact occurs, the l indenter 14 moves to the X stage (3
) is set so that it is spaced from the top surface. Therefore, when the cam u61 rotates and the cutout portion (16b) faces the sliding surface I, a gap is created between the two, and the lever (7)
rotates in the direction of arrow (9a), and the indenter α side descends. However, 13. The support body, the lever (force), the cam (1 [9, and the holding weight constitute the pressurizing mechanism 4).

つぎに、上記構成の標準欠陥試料作製装置を用いた標準
欠陥作製方法について説明する。まず、Xステージ(3
)の上面上にラッピングによる仕上げ研磨直後の主面が
平坦部となっているシリコン・ウェハである板状試料(
2)を、オリ72面01)と前記X方向とが平行になる
ように載置する。このとき、試料しlに形成される圧子
1湯による圧機の大きさとおもD Q31の重さとの関
係をあらかじめ求めておく。
Next, a standard defect manufacturing method using the standard defect sample manufacturing apparatus having the above configuration will be explained. First, X stage (3
A plate-shaped sample (
2) is placed so that the surface 01) of the cage 72 is parallel to the X direction. At this time, the relationship between the size of the indenter formed on the sample plate 1 and the weight of the main DQ31 is determined in advance.

そして、Xlイクロメータ(2)及びYマイクロメータ
(4)のそれぞれのつまみ(2a)、 (4m)を回動
して、圧子Q4の直下に部分(2功がくるように調節す
る(第2図参照)。しかして、おもD C1mとして、
部分(2榎に対角線の長さが20μmの四角錐状の圧痕
(至)が形成される重さWlのものを選定する。このと
き、カムtteの円周部分(16a)をレバー(力の摺
接面に接触させて、圧子(1りを試料(2)から離間さ
せておく。しかして、カム四を矢印婦方向に回動させ、
カムの欠切部分(16b)が摺接面Iに平行になると、
レバー(7)が矢印(9a)方向に回動し、これにとも
なって圧子0が矢印(24a)方向に降下し所定の荷重
で圧子住りが板状の試料(至)を加圧する。さらに、カ
ム(1eが回転して円周部分(16Jl)が摺接面(1
4)に接触すると、レバー(7)は矢印(9b)方向に
回動し、圧子a4は矢印(24b)方向に上昇して定位
置に復帰する。圧子〔4が上昇したあとの試料四には圧
痕(至)が形成される。
Then, turn the respective knobs (2a) and (4m) of the Xl micrometer (2) and Y micrometer (4) to adjust the part (2nd stroke) directly below the indenter Q4 (see Figure 2). ).However, as the main D C1m,
Select a part (2) with a weight Wl that will form a square pyramid-shaped indentation with a diagonal length of 20 μm. At this time, move the circumferential part (16a) of the cam tte to the lever (force Keep the indenter (1) in contact with the sliding surface and separate it from the sample (2). Then, rotate the cam 4 in the direction of the arrow,
When the cutout part (16b) of the cam becomes parallel to the sliding surface I,
The lever (7) rotates in the direction of the arrow (9a), and accordingly, the indenter 0 descends in the direction of the arrow (24a), and the indenter housing presses the plate-shaped sample (to) with a predetermined load. Furthermore, the cam (1e) rotates and the circumferential portion (16Jl) changes to the sliding surface (1
4), the lever (7) rotates in the direction of the arrow (9b), and the indenter a4 rises in the direction of the arrow (24b) and returns to its home position. After the indenter [4 has been raised, an indentation is formed on the sample 4.

つぎに、Yマイクロメ−り(4)のつまみ(4a)を回
動して、Xステージ(3)をY方向に10uずつ移動さ
せ、前と同様にして、対角線の長さが20 pmの四角
錐状の圧痕0漕・・・を−列に10朋ごとの等間隔で形
成する。さらに、対角線の長さが10μmの正方形状の
圧痕(251が形成される重さWt (ただし、W2 
< W+ )のおもり(131に交換するとともに、X
マイクロメータ(2)のつまみ(2a)を回動して、X
ステージ(1)をX方向に10IllIずつ移動させた
のち、再びY方向に10闘ずつXステージ(3)を移動
させ、前記圧痕c!J・・・と同様にして、対角線の長
さが10μmの四角錐状の圧痕Q[有]・・・を形成す
る。以下、おもすu31の重さをW3. W、 。
Next, turn the knob (4a) of the Y micrometer (4) to move the X stage (3) in the Y direction by 10 u, and do the same as before to set a square with a diagonal length of 20 pm. Pyramid-shaped indentations (0 rows) are formed in - rows at equal intervals of every 10 rows. Furthermore, the weight Wt (however, W2
< W + ) weight (131) and X
Rotate the knob (2a) of the micrometer (2) to
After moving the stage (1) in the X direction by 10 IllI, the X stage (3) is moved again in the Y direction by 10 IllI, and the impression c! In the same manner as J..., a quadrangular pyramid-shaped indentation Q [with] having a diagonal length of 10 μm is formed. Below, the weight of Omosu U31 is W3. W.

WIと次第に減少させることによシ、圧痕(ハ)・・・
、(2!19・・・と同様の手順で、対角線の長さが、
それぞれ5μm。
By gradually decreasing WI, the impression (c)...
, (2!19...), the length of the diagonal is
5 μm each.

2μm、1μmの圧痕(イ)・・・、@・・・、@・・
・を、格子間隔lOImの格子の交点上に1列に形成す
る。このようにして得られた圧痕(ハ)・・・、Q最・
・・、cA・・・、(5)・・・、(ハ)・・・は、半
導体ウェハ上のホコリ、ゴミ、傷等の欠陥部位を自動検
出する検出装置の校正に使用される標準欠陥となる。
2 μm, 1 μm indentation (a)..., @..., @...
. is formed in one row on the intersection points of the lattice with the lattice spacing lOIm. Indentations obtained in this way (c)...,Q...
..., cA..., (5)..., (c)... are standard defects used to calibrate a detection device that automatically detects defective areas such as dust, dirt, and scratches on semiconductor wafers. becomes.

かくて、本実施例によシ、得られたこれら圧痕12階・
・・、I251・・・、Qe・・・、(5)・・・は、
所定位置に規則的に配置されているので、容易に所要の
標準欠陥部位を特定することができ、校正能率及び精度
が向上する。また、フォトエツチング法による標準欠陥
試料に比べ、安価に、かつ簡便に製作できる利点を有し
ている。
Thus, according to this example, these indentations obtained on the 12th floor.
..., I251..., Qe..., (5)... are,
Since they are regularly arranged at predetermined positions, a required standard defect site can be easily identified, improving calibration efficiency and accuracy. Moreover, it has the advantage that it can be manufactured at a lower cost and more easily than a standard defect sample produced by photoetching.

なお、上記実施例においては、圧子(Iりの先端形状は
四角錐状としたが、円錐状でありてもよい。
In the above embodiment, the tip of the indenter (I) has a quadrangular pyramid shape, but it may have a conical shape.

また、標準欠陥は、上記実施例のように格子状に配列す
ることに制約されることはなく、要するにその位置を特
定できるのであれば、放射状に標準欠陥を形成してもよ
い。のみならず、たんに−直線上において等間隔で異な
る大きさの標準欠陥を形成してもよい。さらに、上記例
においては、試料−として仕上げ研磨直後のシリコン・
ウェハを用いているが、各製造プロセスにおけるウェハ
の表面状態(膜形成面、エツチングによシバターン形成
された曲等)と同一性状の表面状態を有する、りまシ被
検物体と光反射特性かはぼ同一のフェノ1に対して本発
明の方法によシ標準欠陥を形成すれば、佼正楕匿が一段
と向上する。
Further, the standard defects are not limited to being arranged in a grid pattern as in the above embodiments, and in short, the standard defects may be formed radially as long as their positions can be specified. Alternatively, standard defects of different sizes may be formed at equal intervals simply on a straight line. Furthermore, in the above example, the sample is silicon immediately after final polishing.
Although a wafer is used, the surface condition of the wafer in each manufacturing process (film formation surface, pattern formed by etching, etc.) is the same as the surface condition of the wafer. If a standard defect is formed using the method of the present invention for the same phenol 1, the Gosho ellipse can be further improved.

〔発明の効果〕〔Effect of the invention〕

本発明の標準欠陥試料作製方法は、試料の平坦部に対し
て圧子を各徨荷重によシ押圧し校正基準となる標準欠陥
を得るもので、所要の大きさの標準欠陥を所定位置に迅
速かつ正確に形成することができる。また、大がかりな
装置を必要とせず安価かつ簡便に標準欠陥試料を作製で
きる利点を有する。しかも、所要の標準欠陥部位を容易
に特定することができるので、校正能率及び精度が向上
する。
The method for preparing a standard defect sample of the present invention is to press an indenter against the flat part of the sample with each residual load to obtain a standard defect that will serve as a calibration reference. and can be formed accurately. It also has the advantage that a standard defect sample can be produced easily and inexpensively without requiring a large-scale device. Moreover, since a required standard defect site can be easily specified, calibration efficiency and accuracy are improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の標準欠陥試料作製方法に用
いられる標準欠陥試料作製装置の安部説明図、第2図は
第1図に示す標準欠陥試料作製装置によシ得られた標準
欠陥試料の平面図である。 翰・・・試 料、(L′lJ・・・圧 子、(23)、
 (25)、 (26)、 (27)、 (28)・・
・圧痕(標準欠陥)。 代理人 弁理士  則 近 憲 佑 (を丘か1名)
Fig. 1 is an explanatory diagram of the standard defect sample preparation apparatus used in the standard defect sample preparation method of one embodiment of the present invention, and Fig. 2 is a standard defect sample preparation apparatus obtained by the standard defect sample preparation apparatus shown in Fig. 1. FIG. 3 is a plan view of a defective sample. Kan...sample, (L'lJ...indenter, (23),
(25), (26), (27), (28)...
- Indentation (standard defect). Agent: Patent attorney Noriyuki Chika (Oka or one other person)

Claims (1)

【特許請求の範囲】[Claims] 試料に標準欠陥が設けられる平坦部を形成する工程と、
上記平坦部の複数位置において異なる大きさの荷重によ
)先端が錐状の圧子を上記試料に対して押圧させ異なる
大きさの複数個の上記標準欠陥を設ける方法とを具備す
ることを特徴とする標準欠陥試料作製方法。
forming a flat portion on the sample in which a standard defect is provided;
A method for forming a plurality of standard defects of different sizes by pressing an indenter with a conical tip against the sample using loads of different sizes at a plurality of positions on the flat part. Standard defect sample preparation method.
JP20769382A 1982-11-29 1982-11-29 Preparation of reference defect sample Pending JPS5998532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20769382A JPS5998532A (en) 1982-11-29 1982-11-29 Preparation of reference defect sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20769382A JPS5998532A (en) 1982-11-29 1982-11-29 Preparation of reference defect sample

Publications (1)

Publication Number Publication Date
JPS5998532A true JPS5998532A (en) 1984-06-06

Family

ID=16544005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20769382A Pending JPS5998532A (en) 1982-11-29 1982-11-29 Preparation of reference defect sample

Country Status (1)

Country Link
JP (1) JPS5998532A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6038827A (en) * 1983-08-12 1985-02-28 Hitachi Ltd Calibration for sensitivity of automatic foreign substance inspecting device
JP2009156574A (en) * 2007-12-25 2009-07-16 Hitachi High-Technologies Corp Inspection apparatus and inspection method
WO2019087229A1 (en) * 2017-10-30 2019-05-09 株式会社日立ハイテクノロジーズ Semiconductor substrate for evaluation and method for using same to evaluate defect detection sensitivity of inspection device
KR20210020596A (en) * 2019-08-16 2021-02-24 한국항공우주산업 주식회사 Defect specimen production method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6038827A (en) * 1983-08-12 1985-02-28 Hitachi Ltd Calibration for sensitivity of automatic foreign substance inspecting device
JPH0352219B2 (en) * 1983-08-12 1991-08-09 Hitachi Seisakusho Kk
JP2009156574A (en) * 2007-12-25 2009-07-16 Hitachi High-Technologies Corp Inspection apparatus and inspection method
WO2019087229A1 (en) * 2017-10-30 2019-05-09 株式会社日立ハイテクノロジーズ Semiconductor substrate for evaluation and method for using same to evaluate defect detection sensitivity of inspection device
JPWO2019087229A1 (en) * 2017-10-30 2020-11-26 株式会社日立ハイテク Defect detection sensitivity evaluation method for evaluation semiconductor substrates and inspection equipment using them
US11193895B2 (en) 2017-10-30 2021-12-07 Hitachi High-Tech Corporation Semiconductor substrate for evaluation and method using same to evaluate defect detection sensitivity of inspection device
KR20210020596A (en) * 2019-08-16 2021-02-24 한국항공우주산업 주식회사 Defect specimen production method

Similar Documents

Publication Publication Date Title
US4512659A (en) Apparatus for calibrating a surface scanner
US6730444B2 (en) Needle comb reticle pattern for critical dimension and registration measurements using a registration tool and methods for using same
KR960043072A (en) Apparatus and method for semiconductor wafer edge inspection
JP2016014674A (en) Angle-resolved antisymmetric light wave scatterometry
JPH11274073A (en) Lithography process for manufacturing device using multilayer mask
CN112602184A (en) Determining tilt angles in an array of patterned high aspect ratio structures
JPS5998532A (en) Preparation of reference defect sample
US5078492A (en) Test wafer for an optical scanner
US20040090639A1 (en) Method and apparatus for quantitative quality inspection of substrate such as wafer
JPS5898941A (en) Wafer chuck
US7034930B1 (en) System and method for defect identification and location using an optical indicia device
EP3364445B1 (en) A method and apparatus for transmission for transmission electron
US5453830A (en) Spatially isolated diffractor on a calibration substrate for a pellicle inspection system
US6813376B1 (en) System and method for detecting defects on a structure-bearing surface using optical inspection
US6333785B1 (en) Standard for calibrating and checking a surface inspection device and method for the production thereof
CN101706592B (en) Method for manufacturing Moire grating by directly copying metal mother set
JPH05126981A (en) Inspecting device for cell size of support grid for nuclear fuel assembly
JP2849553B2 (en) Photomask provided with pattern for measuring development degree and method for measuring development degree
JP2000058606A (en) Standard sample for inspection
JP3412852B2 (en) Single crystal ingot marking device
CN218767796U (en) Photoetching plate inspection device
JPH0743323B2 (en) Surface foreign matter inspection device
CN100377305C (en) Method for producing semiconductor integrated circuit
JPS5862544A (en) Device for checking foreign matter
US6797981B2 (en) Test wafer and method for producing the test wafer