JP2000058606A - Standard sample for inspection - Google Patents

Standard sample for inspection

Info

Publication number
JP2000058606A
JP2000058606A JP10222632A JP22263298A JP2000058606A JP 2000058606 A JP2000058606 A JP 2000058606A JP 10222632 A JP10222632 A JP 10222632A JP 22263298 A JP22263298 A JP 22263298A JP 2000058606 A JP2000058606 A JP 2000058606A
Authority
JP
Japan
Prior art keywords
pits
detection
wafer
standard sample
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10222632A
Other languages
Japanese (ja)
Inventor
Masayoshi Serizawa
正芳 芹澤
Minoru Noguchi
稔 野口
Yuichi Hamamura
有一 濱村
Shunichi Matsumoto
俊一 松本
Yukio Kenbo
行雄 見坊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10222632A priority Critical patent/JP2000058606A/en
Publication of JP2000058606A publication Critical patent/JP2000058606A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the yield of products by quantifying the depth and width of a scratch by the standard sample for a false machined trace, calibrating the detection of the scratch by the scattered-light detector of semiconductor inspection and feeding back the calibrated detection to a semiconductor-device manufacturing process. SOLUTION: A plurality of blocks of collective patterns 65 consisting of a plurality of rows of pits 70-119, in which width and depth in various size are combined on a substrate surface, are worded and arrayed. The longitudinal direction of the pits 70-119 of the collective pattern 65 is set in length of the size or more of irradiation beams, the collective pattern 65 is extended from a wafer center of the outer circumference, and a plurality of blocks of the collective patterns 65 are arranged at radiant arbitrary radial places at arbitrary angles. Regular pitches are formed among the pits 70-119, and square-shaped pits 70, 72... composed of the width and depth of each pit are formed at the heads of the pits 70-119. Standard flaws are machined and prepared to product wafers from the combination of width and depth in various size, and calibrated at all times by the detection of scattered light.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【発明の属する技術分野】本発明は、半導体工程中の傷
を散乱光検出する半導体検査の散乱光検出装置の校正に
用いる標準試料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a standard sample used for calibrating a scattered light detecting device for semiconductor inspection for detecting scattered light in a semiconductor process.

【従来の技術】従来技術では、特開平6−283593
号公報に開示されているように、種々のタイプの光学検
査装置の検出能力の較正とテストにおいては、ウエハ表
面上の点エレメントのテストパターンを配置し、エレメ
ントから散乱された光量をクラックのような欠陥または
粒子から散乱された光量にシュミレートする方法があ
る。図1は従来技術による参照基準の平面図を表す。光
を散乱するエレメントの規則正しいグループ(11,3
1,33,35,37,47,57)は各同心環状帯
(15,25,43,53)に配列され、かつそのグル
ープは各環状帯の周囲(17,39,49)に間隔を隔
てられた基準ウエハ(13)によって満たされる。同じ
寸法の光を散乱する特徴のグループは、同じ走査位置で
あるが、異なる走査で、走査ビームを受けるように整列
される。この配置によって、スキャナは異なる走査にお
いて同じ寸法の特徴のグループを見、同じ相対的な位置
で同量の光を散乱する。点エレメントの形状構造は所定
の深さと大きさのピットから成る。従来技術では光学検
査装置(特公平4−35025号公報に開示されている
ように)の粒子検出能力の検査、校正を以上のパターン
で実行していた。
2. Description of the Related Art The prior art is disclosed in Japanese Patent Application Laid-Open No. 6-283593.
In the calibration and testing of the detection capability of various types of optical inspection devices, a test pattern of a point element on a wafer surface is arranged, and the amount of light scattered from the element is cracked like a crack as disclosed in Japanese Patent Application Publication No. There is a method of simulating the amount of light scattered from various defects or particles. FIG. 1 shows a plan view of a reference according to the prior art. Regular groups of light-scattering elements (11,3
1, 33, 35, 37, 47, 57) are arranged in each concentric annular band (15, 25, 43, 53), and the groups are spaced around each annular band (17, 39, 49). Filled with the reference wafer (13). Groups of features that scatter light of the same size are aligned to receive the scanning beam at the same scan location, but at different scans. With this arrangement, the scanner sees the same group of features in different scans and scatters the same amount of light at the same relative position. The shape structure of the point element consists of pits of a predetermined depth and size. In the prior art, the inspection and calibration of the particle detection ability of an optical inspection apparatus (as disclosed in Japanese Patent Publication No. 4-35025) are executed in the above-described pattern.

【発明が解決しようとする課題】半導体デバイスの高集
積化・微細化が進む中、その基礎技術であるデバイスプ
ロセス、回路設計、製造装置、材料等に大きな変革がな
されている。特に、半導体プロセスの多層化に伴う微細
パターン形成のリソグラフィの焦点深度は浅くなり、層
間絶縁膜や配線の微細RIE等のプロセスマージンはな
くなってきている。このため、ウエハ面内ではパターン
サイズレベルの部分的な平坦化と、リソグラフィの露光
領域レベルの全体的な平坦化の両立ができる技術の確立
が必要となってきている。このような状況の中、新たな
平坦化技術として、化学機械研磨法(CMP:Chem
ical Mechanical Polishin
g)が注目されている。半導体におけるCMP技術は古
くからウエハののミラー仕上げ等に用いられているが、
CMPの新規性とは、この技術をデバイス製造プロセス
に適用しようとするところにある。例えば、トレンチ
(素子分離やメモリーセルのために形成した溝)に埋め
込んだPoiySi、層間絶縁膜、メタル配線の平坦化
などに適用するものである。上記のCMP後のウエハ表
面の膜上には傷が発生する。原因としては、研磨パッド
のドレッサーに用いるダイヤモンドの脱落や、スラリー
中の異物等がある。例えば、メタルCMP後では、傷内
部に微量のメタルが残った場合、線間ショートが生じて
歩留まりが低下するという問題が生じる。そこで、CM
P加工により発生した傷を検査する必要がある。この傷
はスクラッチと呼ばれる深さが浅い微細な連続した加工
痕である。スクラッチによる半導体デバイス製造プロセ
スへのダメージを考えた場合、スクラッチの深さや幅を
明らかすることは重要である。一般に欠陥の確認にはS
EM(Scanning Electron Micr
oscopy)を用いるが、このスクラッチは、例え
ば、0.2μm以下の深さで幅は1μm以上となだらか
なため、SEMによる形状観察は困難である。また、従
来の点による標準試料は傷のような長い欠陥に対しては
使えなかった。本発明の目的は、以上のような状況を考
慮されてなされたもので、スクラッチの深さや幅を定量
的に検査して、半導体デバイス製造プロセスへフィード
バックすることで製品の歩留まりを向上することができ
る検査用標準試料を提供することにある。
With the progress of high integration and miniaturization of semiconductor devices, major changes have been made in basic technologies such as device processes, circuit designs, manufacturing apparatuses, and materials. In particular, the depth of focus of lithography for forming a fine pattern has become shallow with the increase in the number of layers in a semiconductor process, and the process margins such as the fine RIE of an interlayer insulating film and a wiring have been reduced. For this reason, it has become necessary to establish a technique that can achieve both the partial planarization at the pattern size level and the overall planarization at the lithography exposure area level within the wafer surface. Under such circumstances, as a new planarization technique, a chemical mechanical polishing method (CMP: Chem)
Ical Mechanical Polish
g) is attracting attention. CMP technology for semiconductors has been used for mirror finishing of wafers for a long time,
The novelty of CMP lies in the application of this technology to device manufacturing processes. For example, the present invention is applied to flattening of PoySi, an interlayer insulating film, and metal wiring buried in a trench (a groove formed for element isolation or a memory cell). A scratch is generated on the film on the wafer surface after the above-mentioned CMP. Causes include falling off of the diamond used for the dresser of the polishing pad and foreign matter in the slurry. For example, after metal CMP, if a small amount of metal remains inside the flaw, there is a problem that a short circuit occurs between lines and the yield is reduced. So, CM
It is necessary to inspect the flaw generated by the P processing. The scratch is a fine, continuous processing mark having a small depth called a scratch. When considering the damage to the semiconductor device manufacturing process due to scratching, it is important to clarify the depth and width of the scratch. In general, S
EM (Scanning Electron Micror)
oscopy) is used, and since the scratch has a depth of, for example, 0.2 μm or less and a width of 1 μm or more, it is difficult to observe the shape by SEM. Further, the standard sample according to the conventional point cannot be used for long defects such as scratches. The object of the present invention has been made in consideration of the above situation, and it is possible to improve the product yield by quantitatively inspecting the depth and width of the scratch and feeding it back to the semiconductor device manufacturing process. It is to provide a test standard sample that can be used.

【課題を解決するための手段】上記目的を達成するた
め、本発明では半導体検査の散乱光検出装置において、
基板表面に種々の寸法の幅や深さを組み合わせた複数個
の列(長いライン状)なるピットから成る集合パターン
を、複数ブロック加工・配列し、集合パターンのそれぞ
れの列なるピットの長手方向は照射ビームの寸法以上の
長さとし、集合パターンはウエハ中心からウエハ外周に
延び、任意の角度の放射状の任意の半径位置に複数ブロ
ック配列し、集合パターン内のそれぞれの列なるピット
間には一定の間隔があり、それぞれの列なるピットの先
頭には、各ピットの幅と深さから成る正方形のピットを
形成し、種々の寸法の幅や深さの組み合わせからなる標
準傷を製品ウエハに加工作製し、散乱光検出で常時校正
し、種々の寸法の幅や深さの組み合わせからなる標準傷
はベアウエハの他、半導体製造の各プロセス工程のウエ
ハに加工作製することによって達成される。即ち本発明
においては、イオンビーム等の加工法により作製した疑
似加工痕の標準試料でスクラッチの深さや幅を定量化し
て、半導体検査の散乱光検出装置でのスクラッチの検出
能力を校正することができる。
In order to achieve the above object, the present invention provides a scattered light detecting device for semiconductor inspection,
A set pattern consisting of a plurality of rows (long lines) of pits combining various widths and depths on the substrate surface is processed and arranged in a plurality of blocks, and the longitudinal direction of the pits in each row of the set pattern is The length of the irradiation pattern should be longer than the dimension of the irradiation beam, the set pattern extends from the center of the wafer to the outer periphery of the wafer, and a plurality of blocks are arranged at any radial position at an arbitrary angle in a radial direction. There are intervals, and at the beginning of each row of pits, square pits consisting of the width and depth of each pit are formed, and standard scratches consisting of combinations of widths and depths of various dimensions are processed and manufactured on product wafers Then, it is constantly calibrated by scattered light detection, and standard scratches consisting of combinations of widths and depths of various dimensions are processed and manufactured on bare wafers and wafers in each process step of semiconductor manufacturing. It is achieved by the. That is, in the present invention, it is possible to quantify the depth and width of a scratch with a standard sample of a simulated processing mark manufactured by a processing method such as an ion beam, and to calibrate the scratch detection ability in a scattered light detection device for semiconductor inspection. it can.

【発明の実施の形態】図2に本発明の1実施例を示す。
半導体製造工程中の基板表面に種々の寸法の深さや幅を
組み合わせた、例えば、縦5ヶ(深さ)、横5ヶ(幅)
の計25ヶ(71〜119の奇数)の列なるピットの配
列群の集合パターン(基本形)を形成する。それぞれの
列なるピットの種々の深さや幅は0.025μm以上
0.4μm以下の範囲内の組み合わせである。また、そ
れぞれの列なるピットの長手方向は検査装置結像方式で
は検出分解能、又光量検出方式では照明範囲の照射ビー
ムの寸法(例えば、一般にサイズの大きな方の光量検出
方式では200μm)以上の長さを持つ。そして、それ
ぞれの列なるピットの先頭には各ピットの深さや幅を表
す1ヶの正方形のピット(70〜118の偶数)を形成
する。集合パターン内のそれぞれの列なるピット間は分
解能より広くしてあり、1ヶのピットのみを検出できる
よう一定な間隔を持つ。列なるピット間の一定な間隔は
長手方向及び隣接する平行な方向が例えば、それぞれ
0.2mm以上である。本発明による集合パターンの基
本形は以上のような構成である。図3は本発明による集
合パターンの基本形をウエハ面内に配列した標準サンプ
ルである。それぞれの列なるピットの集合パターンはウ
エハ中心からウエハ外周に延び、任意の角度、且つ放射
状の任意の半径位置、例えばウエハサイズの中心部付
近、外周部付近、その中間部付近の交点に鉛直方向に複
数ブロック配置する。図3では5インチウエハの場合、
図中の水平軸となす角度が0°,45°,90°,12
0°,150°と交差する直径30mm,70mm,1
05mmの位置に集合パターンを8ヶ配置した。このよ
うすることで、ウエハを回転させながら検査する場合、
照明側から見ればあらゆる角度にも傷が変化しうる状態
が実現できたことになる。CMP加工により発生した傷
は方向性がない。一方、傷のようなラインパターンから
の散乱光は、照明方式によらず方向性を有しており、C
MPの傷検出のための検査能力を校正するには、点欠陥
あるいは異物と違い検出方向に対し、角度を持たせたこ
のような集合パターン配置となる。図4は本発明による
集合パターンの基本形をウエハ面内に配列した別のタイ
プの標準サンプルである。このタイプは、ウエハ中心か
らウエハ外周に延び任意の角度(10°)置きに集合パ
ターンを1列に配列したものである。図5は本発明によ
る集合パターンの基本形をウエハ面内に配列したもう1
つの別のタイプの標準サンプルである。ウエハ中心から
ウエハ外周に延び任意の角度(36°)置きに集合パタ
ーンを1列、且つウエハに対してそれぞれ異なった傾斜
角度に配列したものである。図3の標準サンプルはθ回
転ステージ走査の検査装置に、図4及び図5の標準サン
プルはXYステージ走査の検査装置に好適である。尚、
集合パターンの位置探索を容易にするために各集合パタ
ーンの端部には20μm□のピット(66)を1ヶ形成
した。本標準試料により検査装置の能力を以下のように
校正する。通常のウエハを同様にセットし検出すると、
先に述べたパターン配置よりウエハ上の配置あるいは、
20μm□の目印ピットにより角度毎、あるいは深さ
毎、あるいは幅と深さの関数(例えば積)毎に検出値を
まとめることができる。図6の本発明の標準サンプルに
よる検出結果例では、検出能力は0.025μm深さ、
幅は0.5μmが最大感度とわかる。パターン角度と検
出能力もわかり、実ウエハの傷の検査データにおいて、
検出されたマップから方向が判明すれば傷のサイズの推
定も可能となる。この正方形のピット及び列なるピット
は凹みに限らず凸でもあることは言うまでもない。この
様にして作られた複数個の正方形のピットと列なるピッ
トは、方向性のない傷に相当する凹みをウエハ面内に形
成することになり、上記のように疑似欠陥の標準サンプ
ルとして使用するこができる。本発明による疑似傷の標
準サンプルはイオンビーム加工法(特公平4−2753
9号公報)で作製できる。イオンビーム加工法は、傷の
大きさ(特に凹みの深さ)が列なるピットごとそれぞれ
異なったものをつくるのに最適である。傷の大きさは断
面SEMの形状観察で確認するが、ウエハ面内の疑似傷
の配列寸法・位置関係が判っているので形状観察は容易
である。更に微細(数nm)な形状の疑似痕を加工する
方法としては、EBAE(電子ビームアシストエッチン
グ)がある。イオンビーム加工法の他、リソグラフィに
よる異方性エッチング加工でもよい。この標準サンプル
はベアウエハにとどまらず、実際の半導体デバイス製造
プロセスウエハ上のチップに加工してもよい。実際の製
品ウエハにおいては、膜厚下地等で傷からの検査出力が
変化する。このため、製品ウエハのTEG部分やスクラ
イブエリアや、周辺部に上記ピット列を加工することに
より、ウエハ上の傷を常時校正をすることも本発明によ
ってなされる。これにより、半導体デバイス製造プロセ
ス(層間絶縁膜、ダマシン、プラグ、スルホール完、S
GI等)に悪影響を及ぼす傷のレベルはどの程度から
か、検出すべき傷は何かを確認することができる。本発
明の対象は、半導体基板のみならず磁気ディクスやガラ
ス基板等にも適用できることは言うまでもない。
FIG. 2 shows an embodiment of the present invention.
Combination of depth and width of various dimensions on the substrate surface during the semiconductor manufacturing process, for example, 5 vertical (depth), 5 horizontal (width)
A set pattern (basic form) of an array group of pits in a total of 25 (odd numbers from 71 to 119) is formed. Various depths and widths of the pits in each row are combinations in a range of 0.025 μm or more and 0.4 μm or less. Further, the longitudinal direction of the pits in each row is longer than the detection resolution in the inspection system imaging system, and longer than the size of the irradiation beam in the illumination range (for example, generally 200 μm in the larger size light amount detection system) in the light amount detection system. Have a One square pit (even number from 70 to 118) representing the depth and width of each pit is formed at the head of each row of pits. The interval between pits in each row in the set pattern is wider than the resolution, and has a constant interval so that only one pit can be detected. The constant spacing between the pits in the row is, for example, 0.2 mm or more in the longitudinal direction and the adjacent parallel direction, respectively. The basic form of the collective pattern according to the present invention has the above configuration. FIG. 3 is a standard sample in which the basic form of the collective pattern according to the present invention is arranged in a wafer plane. The set pattern of the pits in each row extends from the center of the wafer to the outer periphery of the wafer and extends at an arbitrary angle and at an arbitrary radial position radially, for example, at an intersection near the center of the wafer size, near the outer periphery, or near the middle thereof. Arrange multiple blocks. In FIG. 3, in the case of a 5-inch wafer,
The angles with the horizontal axis in the figure are 0 °, 45 °, 90 °, 12 °.
Diameter 30mm, 70mm, 1 that intersects 0 ° and 150 °
Eight aggregate patterns were arranged at a position of 05 mm. In this way, when inspecting while rotating the wafer,
When viewed from the lighting side, a state in which the flaw can be changed at any angle has been realized. The scratches generated by the CMP process have no direction. On the other hand, scattered light from a line pattern such as a scratch has directionality regardless of the illumination method, and C
In order to calibrate the inspection capability for MP flaw detection, unlike a point defect or foreign matter, such an aggregate pattern arrangement having an angle with respect to the detection direction is provided. FIG. 4 shows another type of standard sample in which the basic form of the collective pattern according to the present invention is arranged in a wafer plane. In this type, a set pattern is arranged in a line extending at an arbitrary angle (10 °) from the center of the wafer to the outer periphery of the wafer. FIG. 5 shows another example in which the basic form of the collective pattern according to the present invention is arranged in the wafer plane.
Two other types of standard samples. A set pattern is arranged in a line extending at an arbitrary angle (36 °) from the center of the wafer to the outer periphery of the wafer and arranged at different inclination angles with respect to the wafer. The standard sample shown in FIG. 3 is suitable for an inspection apparatus for scanning a θ-rotation stage, and the standard samples shown in FIGS. 4 and 5 are suitable for an inspection apparatus for scanning an XY stage. still,
One 20 μm square pit (66) was formed at the end of each set pattern to facilitate the search of the set pattern position. Calibrate the performance of the inspection device using this standard sample as follows. When a normal wafer is set and detected in the same way,
Arrangement on the wafer from the pattern arrangement described above, or
The detection values can be summarized for each angle, for each depth, or for each function (for example, product) of width and depth by the mark pit of 20 μm square. In the detection result example using the standard sample of the present invention in FIG. 6, the detection capability is 0.025 μm depth,
It can be understood that the width is 0.5 μm as the maximum sensitivity. We also know the pattern angle and the detection capability, and in the inspection data of scratches on the actual wafer,
If the direction is found from the detected map, the size of the flaw can be estimated. It goes without saying that the square pits and the pits in a row are not only concave but also convex. The pits arranged in a row with a plurality of square pits formed in this way will form dents in the wafer surface corresponding to non-directional scratches, and are used as standard samples of pseudo defects as described above. Can do it. The standard sample of the pseudo flaw according to the present invention is an ion beam processing method (Japanese Patent Publication No. 4-2753).
No. 9). The ion beam processing method is most suitable for producing different pits having different flaw sizes (particularly, the depth of the dents). The size of the flaw is checked by observing the shape of the cross-sectional SEM, but the shape observation is easy because the arrangement size and positional relationship of the pseudo flaws in the wafer surface are known. As a method of processing a pseudo mark having a finer (several nm) shape, there is EBAE (Electron Beam Assisted Etching). Anisotropic etching by lithography may be used instead of the ion beam processing. This standard sample is not limited to a bare wafer, and may be processed into chips on an actual semiconductor device manufacturing process wafer. In an actual product wafer, an inspection output from a scratch changes due to a film thickness underlayer or the like. For this reason, the present invention can also constantly calibrate the scratches on the wafer by processing the pit row in the TEG portion, the scribe area, and the peripheral portion of the product wafer. Thereby, the semiconductor device manufacturing process (interlayer insulating film, damascene, plug, through hole complete, S
GI) can be checked from what level of flaws adversely affect GI and the type of flaw to be detected. It goes without saying that the object of the present invention can be applied not only to semiconductor substrates but also to magnetic disks and glass substrates.

【発明の効果】以上説明したように、標準サンプルを参
照することでスクラッチの深さや幅を定量化できたこと
で、微細な傷の検査が可能となった、半導体デバイス製
造プロセスへフィードバックすることができ製品の歩留
まり向上に寄与できる。
As described above, since the depth and width of the scratch can be quantified by referring to the standard sample, it is possible to inspect the fine scratches. Can contribute to the improvement of product yield.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来技術による参照基準の平面図。FIG. 1 is a plan view of a reference standard according to the prior art.

【図2】本発明による集合パターンを示す図。FIG. 2 shows an aggregation pattern according to the present invention.

【図3】本発明による集合パターンの基本形をウエハ面
内に配列した標準サンプルを示す平面図。
FIG. 3 is a plan view showing a standard sample in which basic shapes of an aggregate pattern according to the present invention are arranged in a wafer plane.

【図4】本発明による集合パターンの基本形をウエハ面
内に配列した別のタイプの標準サンプルを示す平面図。
FIG. 4 is a plan view showing another type of standard sample in which basic shapes of an aggregate pattern according to the present invention are arranged in a wafer plane.

【図5】本発明による集合パターンの基本形をウエハ面
内に配列したもう1つの別のタイプの標準サンプルを示
す平面図。
FIG. 5 is a plan view showing another standard sample of another type in which the basic shape of the collective pattern according to the present invention is arranged in the plane of the wafer.

【図6】本発明の標準サンプルによる検出結果を示す特
性図。
FIG. 6 is a characteristic diagram showing a detection result using a standard sample of the present invention.

【符号の説明】[Explanation of symbols]

13…基準ウエハ、11,31,33,35,37,4
7,57…同心環状帯グループ、15,25,43,5
3…同心環状帯、 17,39,49…間隔、60…標
準ウエハ、 65…集合パターン
(基本形)、71〜119の奇数…列なるピットの配列
群、70〜118の偶数…正方形のピット。
13. Reference wafer, 11, 31, 33, 35, 37, 4
7,57… Concentric annular band group, 15,25,43,5
3, concentric annular band, 17, 39, 49, interval, 60, standard wafer, 65, collective pattern (basic form), odd number of 71 to 119, array group of pits in rows, even number of 70 to 118, square pits.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 濱村 有一 神奈川県横浜市戸塚区吉田町292番地株式 会社日立製作所生産技術研究所内 (72)発明者 松本 俊一 神奈川県横浜市戸塚区吉田町292番地株式 会社日立製作所生産技術研究所内 (72)発明者 見坊 行雄 神奈川県横浜市戸塚区吉田町292番地株式 会社日立製作所生産技術研究所内 Fターム(参考) 2F065 AA18 AA22 AA25 BB18 BB28 CC19 FF41 FF61 PP12 2G051 AA51 AA90 AB20 CB05 DA07 4M106 AA01 AA07 AB17 AB18 BA02 BA03 CA38 CA48 CB20 DB18 DH60  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yuichi Hamamura 292 Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Prefecture Inside of Hitachi, Ltd. (72) Inventor Yukio Mibo 292 Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Prefecture F-term (reference) 2F065 AA18 AA22 AA25 BB18 BB28 CC19 FF41 FF61 PP12 2G051 AA51 AA90 AB20 CB05 DA07 4M106 AA01 AA07 AB17 AB18 BA02 BA03 CA38 CA48 CB20 DB18 DH60

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】半導体検査の散乱光検出装置において、基
板表面に種々の寸法の幅や深さを組み合わせた複数個の
列なるピットから成る集合パターンを、複数ブロック加
工・配列したことを特徴とする検出用標準試料。
1. A scattered light detecting device for semiconductor inspection, wherein a plurality of blocks of pits in a plurality of rows each having a combination of widths and depths of various dimensions are processed and arranged in a plurality of blocks on a substrate surface. Standard sample for detection.
【請求項2】半導体検査の散乱光検出装置において、集
合パターンのそれぞれの列なるピットの長手方向は照射
ビームの寸法以上の長さを持ち、該集合パターンはウエ
ハ中心からウエハ外周に延び、任意の角度の放射状の任
意の半径位置に複数ブロック配列することを特徴とする
請求項1の検出用標準試料。
2. A scattered light detecting device for semiconductor inspection, wherein the longitudinal direction of each row of pits of the aggregate pattern has a length equal to or larger than the dimension of the irradiation beam, and the aggregate pattern extends from the center of the wafer to the outer periphery of the wafer. 2. The detection standard sample according to claim 1, wherein a plurality of blocks are arranged at an arbitrary radial position radially at an angle.
【請求項3】集合パターン内のそれぞれの列なるピット
間には一定の間隔があり、それぞれの列なるピットの先
頭には各ピットの幅と深さから成る正方形のピットを形
成したことを特徴とする請求項2の検出用標準試料。
3. The method according to claim 1, wherein there is a certain interval between the pits in each row in the set pattern, and square pits having the width and depth of each pit are formed at the head of each pit in each row. The standard sample for detection according to claim 2, wherein
【請求項4】集合パターン内のそれぞれの列なるピット
の種々幅と深さ、及び長さはμmオーダーの範囲内の組
み合わせであり、長手方向及び隣接する平行な方向はμ
mオーダー以上であることを特徴とする請求項3の検出
用標準試料。
4. The various widths, depths, and lengths of the pits in each row in the aggregate pattern are combinations within the range of μm, and the longitudinal direction and the adjacent parallel direction are μm.
4. The standard sample for detection according to claim 3, wherein the standard sample is at least m order.
【請求項5】集合パターン内のそれぞれの列なるピット
の種々幅や深さは0.025μm以上0.4μm以下の
範囲内の組み合わせと長さは50μm以上、それぞれの
列なるピット間の一定な間隔として、長手方向及び隣接
する平行な間隔が0.2mm以上の寸法で形成された複
数個の列なるピットであることを特徴とする請求項4の
検出用標準試料。
5. A combination of pits of various rows and depths within a set pattern within a range of not less than 0.025 μm and not more than 0.4 μm and a length of not less than 50 μm. The standard sample for detection according to claim 4, wherein the interval is a plurality of rows of pits formed in the longitudinal direction and adjacent parallel intervals having a dimension of 0.2 mm or more.
【請求項6】半導体検査の散乱光検出装置において、種
々の寸法の幅や深さの組み合わせからなる標準傷を製品
ウエハに加工作製し、散乱光検出で常時校正することを
特徴とするもう一つの検出用標準試料。
6. A scattered light detection apparatus for semiconductor inspection, wherein a standard flaw having a combination of widths and depths of various dimensions is processed and manufactured on a product wafer, and is constantly calibrated by scattered light detection. Standards for detection.
【請求項7】請求項6の種々の寸法の幅や深さの組み合
わせからなる標準傷はベアウエハの他半導体製造の各プ
ロセス工程のウエハに加工作製することを特徴とするも
う一つの検出用標準試料。
7. The other detection standard according to claim 6, wherein the standard flaw having a combination of widths and depths of various sizes is processed and formed on a wafer in each process step of semiconductor manufacturing in addition to a bare wafer. sample.
JP10222632A 1998-08-06 1998-08-06 Standard sample for inspection Pending JP2000058606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10222632A JP2000058606A (en) 1998-08-06 1998-08-06 Standard sample for inspection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10222632A JP2000058606A (en) 1998-08-06 1998-08-06 Standard sample for inspection

Publications (1)

Publication Number Publication Date
JP2000058606A true JP2000058606A (en) 2000-02-25

Family

ID=16785504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10222632A Pending JP2000058606A (en) 1998-08-06 1998-08-06 Standard sample for inspection

Country Status (1)

Country Link
JP (1) JP2000058606A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006220560A (en) * 2005-02-10 2006-08-24 Sii Nanotechnology Inc Substrate, minute structure, reference scale manufacturing method, and minute structure length measuring method
JP2007304054A (en) * 2006-05-15 2007-11-22 Nikon Corp Surface inspection method and device
US7817264B2 (en) 2006-04-03 2010-10-19 Nec Electronics Corporation Method for preparing focus-adjustment data for focusing lens system of optical defect-inspection apparatus, and focus adjustment wafer used in such method
WO2016084124A1 (en) * 2014-11-25 2016-06-02 株式会社日立ハイテクノロジーズ Sample for coordinate calibration and method of producing same
WO2023008143A1 (en) 2021-07-26 2023-02-02 コニカミノルタ株式会社 Reference sample for coating defects and method for producing same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006220560A (en) * 2005-02-10 2006-08-24 Sii Nanotechnology Inc Substrate, minute structure, reference scale manufacturing method, and minute structure length measuring method
US7817264B2 (en) 2006-04-03 2010-10-19 Nec Electronics Corporation Method for preparing focus-adjustment data for focusing lens system of optical defect-inspection apparatus, and focus adjustment wafer used in such method
JP2007304054A (en) * 2006-05-15 2007-11-22 Nikon Corp Surface inspection method and device
JP4622933B2 (en) * 2006-05-15 2011-02-02 株式会社ニコン Surface inspection method and surface inspection apparatus
WO2016084124A1 (en) * 2014-11-25 2016-06-02 株式会社日立ハイテクノロジーズ Sample for coordinate calibration and method of producing same
US10444011B2 (en) 2014-11-25 2019-10-15 Hitachi High-Technologies Corporation Sample for coordinates calibration and method for fabricating the same
WO2023008143A1 (en) 2021-07-26 2023-02-02 コニカミノルタ株式会社 Reference sample for coating defects and method for producing same

Similar Documents

Publication Publication Date Title
US7700944B2 (en) Semiconductor wafer, semiconductor chip, and semiconductor chip inspection method
US7474967B2 (en) Computer-implemented methods, carrier media, and systems for detecting defects on a wafer based on multi-core architecture
US7728965B2 (en) Systems and methods for inspecting an edge of a specimen
US4512659A (en) Apparatus for calibrating a surface scanner
US8736832B2 (en) Method of detecting specific defect, and system and program for detecting specific defect
US5198869A (en) Reference wafer for haze calibration
US8460946B2 (en) Methods of processing and inspecting semiconductor substrates
TW201708811A (en) Semiconductor wafer evaluation method
US20160307810A1 (en) Method of evaluating epitaxial wafer
TW200534423A (en) Semiconductor wafer inspection device and method
JPH06295945A (en) Method and device for evaluating semiconductor manufacturing process
CN1520348A (en) End point detection system for mechanical polishing applications
JP2000058606A (en) Standard sample for inspection
TWI829958B (en) System and method for inspecting semiconductor devices
CN110197797B (en) Standard sheet for defect detection
JP2007053249A (en) Inspection method, inspection device and manufacturing method of semiconductor device
JP2001015567A (en) Device and method for evaluating semiconductor substrate
US5448650A (en) Thin-film latent open optical detection with template-based feature extraction
JP2018146531A (en) Substrate inspection device, substrate polishing device, substrate inspection method, and substrate polishing method
US7547979B2 (en) Semiconductor device and method of locating a predetermined point on the semiconductor device
US6333785B1 (en) Standard for calibrating and checking a surface inspection device and method for the production thereof
US6122064A (en) Method for measuring thickness of films
JPH1164239A (en) Standard sample for calibrating foreign matter detecting sensitivity and its manufacture
EP1056127A2 (en) Method and apparatus for correlating data from a semiconductor wafer process
JP2010153455A (en) Semiconductor device and method of inspecting the same