JPS5995452A - Oxygen sensor - Google Patents
Oxygen sensorInfo
- Publication number
- JPS5995452A JPS5995452A JP57205455A JP20545582A JPS5995452A JP S5995452 A JPS5995452 A JP S5995452A JP 57205455 A JP57205455 A JP 57205455A JP 20545582 A JP20545582 A JP 20545582A JP S5995452 A JPS5995452 A JP S5995452A
- Authority
- JP
- Japan
- Prior art keywords
- solid electrolyte
- sensor
- pump
- cell
- oxygen chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/403—Cells and electrode assemblies
- G01N27/406—Cells and probes with solid electrolytes
- G01N27/407—Cells and probes with solid electrolytes for investigating or analysing gases
- G01N27/4071—Cells and probes with solid electrolytes for investigating or analysing gases using sensor elements of laminated structure
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Measuring Oxygen Concentration In Cells (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、自動車エンジンの空燃比制御や一般工業用炉
内の酸素分圧制御、或いは家庭用暖房器等の燃焼制御に
使用される、酸素イオン伝導性の固体電解質を用いた酸
素センサの改良に係シ、基準酸素室の容積変化をなくシ
、ポンプ機能を安定化した酸素センサに関する。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an oxygen control system used for air-fuel ratio control in automobile engines, oxygen partial pressure control in general industrial furnaces, or combustion control in home heaters, etc. The present invention relates to an improvement in an oxygen sensor using an ion-conducting solid electrolyte, and relates to an oxygen sensor that eliminates changes in the volume of a reference oxygen chamber and stabilizes the pump function.
現在実用化されている酸素センサの基本は、固体重解質
を挾んで設けた電極のうち一方の電極を被測定ガス(酸
素分圧をpgとする)に曝露し、もう一方の電極を基準
ガス(酸素分圧をPrとする)に曝露したものであJ)
% PgとPrの差をネルンストg
の式(V8 QCtHPr)で表わされる信号電圧(v
8)で検出するものである。The basis of the oxygen sensor currently in practical use is to expose one electrode to the gas to be measured (oxygen partial pressure is pg) between electrodes sandwiching a solid polymer, and use the other electrode as a reference. It is exposed to gas (oxygen partial pressure is Pr)
% The difference between Pg and Pr is the signal voltage (v
8).
しかしながら、一方の電極を被測定ガスに、他方の電極
を基準ガスに曝露して検出する型式の酸素センサでは、
検出可能な酸素分圧領域がせまく、時代の趨勢に合わな
くなってきている。However, in the type of oxygen sensor that detects by exposing one electrode to the gas to be measured and the other electrode to the reference gas,
The detectable oxygen partial pressure range is becoming narrower, and it is no longer in line with the trends of the times.
例えば自動車について説明すると、自動車の排気ガス中
に含まれているco、炭化水素及びNOxを浄化する三
元危媒型浄化装置の浄化効率を最大に保つために、自動
車エンジンは、空燃比キ14.5で運転する必要がある
。For example, in the case of automobiles, in order to maintain the maximum purification efficiency of the three-way hazardous substance purification device that purifies CO, hydrocarbons, and NOx contained in automobile exhaust gas, the automobile engine has an air-fuel ratio of 14 I need to drive at .5.
この空燃比制御には、基準ガス側を大気とし、被測定ガ
ス側を排気ガスとし、固体電解質として安定化ZrO2
を用いた酸素センナが多用されている。For this air-fuel ratio control, the reference gas side is the atmosphere, the measured gas side is the exhaust gas, and stabilized ZrO2 is used as the solid electrolyte.
Oxygen senna using senna is widely used.
この酸素センサは、空燃比14.5を境にして出力電圧
VSがステップ状に変化するものである。In this oxygen sensor, the output voltage VS changes stepwise with the air-fuel ratio reaching 14.5.
の観点から、自動車のエンジンは、高出力を満足させる
と共により低い燃料消費を実現させるために、稀薄燃料
システムが実用化されっりあシ、空燃比が14.5〜2
2といったa薄混合気を確実に検知して制御できる酸素
センサが必要になってきている。From this point of view, lean fuel systems have been put into practical use in automobile engines in order to achieve high output and lower fuel consumption, with air-fuel ratios ranging from 14.5 to 2.
There is a growing need for an oxygen sensor that can reliably detect and control lean mixtures such as 2.
この必要性を満足させる酸素センサとしては、酸素セン
サ内部に基準ガスを有し、この基準ガスの分圧Prを任
意に調整しながら酸素センサ全体を被測定ガス中に晒露
して使用する酸素センサ(以下リーン02センサという
)が望ましい。An oxygen sensor that satisfies this need has a reference gas inside the oxygen sensor, and the oxygen sensor is used by exposing the entire oxygen sensor to the gas to be measured while arbitrarily adjusting the partial pressure Pr of this reference gas. A sensor (hereinafter referred to as Lean 02 sensor) is desirable.
このリーン02センサは、第1図に示す如く第1電極1
と第2電杼2の間に固体電解質5を挾んで酸素ポンプセ
ルを構成し、一方第2電極2と第3電極4との間に固体
電解質6を挾んでセンサセルを構成した形になっている
。This Lean 02 sensor has a first electrode 1 as shown in FIG.
A solid electrolyte 5 is sandwiched between the electrode 2 and the second electric shuttle 2 to constitute an oxygen pump cell, and a solid electrolyte 6 is sandwiched between the second electrode 2 and the third electrode 4 to constitute a sensor cell. .
この場合、第2電極2は、Pt等金属の多孔質膜とし、
この孔を一種の基至り素室として形成している。In this case, the second electrode 2 is a porous film of metal such as Pt,
This hole is formed as a kind of base cell.
このように構成したリーン02センサを、被測定ガス中
に曝し、第1電極1がマイナス、第2電極2がプラスに
なるように直流電流Ip(以下ポンプ電流という)を供
給すると、被測定ガス中の酸素が第1電極1よシ固体電
解M5を通って第2電極2へ運ばれ、第2電極2の孔部
の酸素分圧Prを増大する。又ポンプ電流Ipの方向を
逆にすると、第2電極2の孔部の酸素分圧Prが減少す
ることから、ポンプ電流Ipを調節することにより、酸
素分圧Prを任意に設定することができる。When the Lean 02 sensor configured in this way is exposed to a gas to be measured and a direct current Ip (hereinafter referred to as pump current) is supplied so that the first electrode 1 is negative and the second electrode 2 is positive, the gas to be measured is Oxygen therein is transported from the first electrode 1 to the second electrode 2 through the solid electrolyte M5, increasing the oxygen partial pressure Pr in the hole of the second electrode 2. Furthermore, if the direction of the pump current Ip is reversed, the oxygen partial pressure Pr in the hole of the second electrode 2 decreases, so by adjusting the pump current Ip, the oxygen partial pressure Pr can be arbitrarily set. .
一方センサセルでは、第2電極2の孔部の酸素分圧Pr
と、被測定ガスの酸素分圧pgとの差により、第2電極
2と第3電極4との間に信号電圧Vsが出力される。On the other hand, in the sensor cell, the oxygen partial pressure Pr in the hole of the second electrode 2
A signal voltage Vs is output between the second electrode 2 and the third electrode 4 due to the difference between the oxygen partial pressure pg and the oxygen partial pressure pg of the gas to be measured.
このようにポンプ電流Ipによって第2電極2の孔部の
酸素分圧Prが任意に設定できるため、前記した一対の
電極間に固体電解質を挾んだ構造のセンサよりも、広範
囲の酸素分圧領域で、高精度の酸素濃度検知が可能とな
る。In this way, the oxygen partial pressure Pr in the hole of the second electrode 2 can be arbitrarily set by the pump current Ip, so that the oxygen partial pressure can be set over a wider range than in the sensor having a structure in which a solid electrolyte is sandwiched between a pair of electrodes. Highly accurate oxygen concentration detection is possible in this area.
しかしながらこのセンサ(第1図)では、第2電極2が
ポンプセルとセンサセルとで共用されているため、信号
出力Vsがポンプ電流rpに影呑されるという欠点があ
り、実用化が難しいという技術的な問題がある。However, in this sensor (Fig. 1), since the second electrode 2 is shared between the pump cell and the sensor cell, the signal output Vs is affected by the pump current rp, which is a technical problem that makes it difficult to put it into practical use. There is a problem.
この問題を解決するために、第2図に示す如く第2電極
を、ポンプセル供電杼2とセンサセル供電な3に各々分
離し、更に空間8を有するように接続部材7を設け、こ
の接続部材7によって固体電解質5と6を一体化した構
造が考えられた。この空間8は、ポンプ電流Ipにより
流入される酸素を保有する基準酸素室となる。へ
しかしながらこのセンサ(第2図)は、製造工程におい
て、次のような欠点を有する。In order to solve this problem, the second electrode is separated into a pump cell power supply shaft 2 and a sensor cell power supply shaft 3, respectively, as shown in FIG. A structure in which solid electrolytes 5 and 6 were integrated was devised. This space 8 becomes a reference oxygen chamber that holds oxygen flowing in by the pump current Ip. However, this sensor (FIG. 2) has the following drawbacks in the manufacturing process.
即ち接続部材7を介して、空間8を有するように固体電
解質5と6を一体成形する手段として、二通りある。That is, there are two methods for integrally molding the solid electrolytes 5 and 6 so as to have the space 8 via the connecting member 7.
その第1の手段として、ポンプセル側電極2とセンサセ
ル(It!l電極3を形成し焼結した固体電解質5と6
を接続部材7を挾んで接着させる手段があるが、この手
段では、空間8の気密度を保証したtま接着するのが′
困難であり、製造が難しく高価なものになるという欠点
がある。As a first means, solid electrolytes 5 and 6 are formed by forming and sintering the pump cell side electrode 2 and the sensor cell (It!l electrode 3).
There is a method of sandwiching and adhering the connecting member 7, but with this method, it is difficult to adhere the connecting member 7 until the airtightness of the space 8 is guaranteed.
The drawback is that it is difficult and expensive to manufacture.
これに代る第2の手段として、焼結前の固体電解質セラ
ミック粉末の成形体(グリーンシート)から成る固体電
解質5,6、及び接続部材7を接着した後一体焼結する
手段があるが、固体電解質5と6は、接続部材7に掛渡
された状態になっていて、空間8内に露出している固体
電解質部の重力を支える部分がないため、焼結する際に
この固体電解質部が変形を起し、多量製産をする場合空
間8の容積にばらつきを生じさせ、安定したポンプ機能
を有するセンサが得難いという欠点がある〇〔発明の目
的〕
本発明は、上記欠点を解決した、積層形のり一702セ
ンサを提供せんとするものである。As a second alternative to this, there is a method of bonding the solid electrolytes 5 and 6, which are formed bodies (green sheets) of solid electrolyte ceramic powder before sintering, and the connecting member 7, and then sintering them together. Solid electrolytes 5 and 6 are in a state of being spanned by connecting member 7, and since there is no part that supports the gravity of the solid electrolyte part exposed in space 8, this solid electrolyte part is This causes deformation, which causes variations in the volume of the space 8 when mass-produced, making it difficult to obtain a sensor with a stable pumping function. [Object of the Invention] The present invention solves the above-mentioned drawbacks. The present invention aims to provide a laminated glue 702 sensor.
ffDち本発明は、焼結する際に、固体電解質の変形を
防止して、基準酸素室の容積のばらつきをなくしたもの
であって、固体電解質の粉末に有機物バインダを加えて
板状のグリーンシートを形成し、て成るポンプセル用固
体電解質と、センサセル側電極を形成して成るセンサセ
ル用固体電解質と、前記グリーンシートに1個乃至複数
個の孔を穿設して成る基準酸素室用固体電解質とで構成
し、この基準酸素室用固体電解質を、上記ポンプセル側
電極とセンサセル側電極の間に挾むことによって、ポン
プセル用固体?1[質とセンサセル用固体電解質は、基
準酸素室用固体電解室によって補強され、ポンプセル用
及びセンサセル用の両固体電解質の変形が起らないよう
にして、圧着一体化した後焼結したことを特徴とする。ffD The present invention prevents the deformation of the solid electrolyte during sintering and eliminates variations in the volume of the standard oxygen chamber. A solid electrolyte for a pump cell formed by forming a sheet, a solid electrolyte for a sensor cell formed by forming a sensor cell side electrode, and a solid electrolyte for a standard oxygen chamber formed by forming one or more holes in the green sheet. By sandwiching this solid electrolyte for the reference oxygen chamber between the pump cell side electrode and the sensor cell side electrode, the solid electrolyte for the pump cell? 1. The solid electrolyte for the sensor cell was reinforced by the solid electrolyte chamber for the reference oxygen chamber, and the solid electrolytes for both the pump cell and sensor cell were crimped and sintered to prevent deformation. Features.
父上記基準酸素室用固体電解室に明けられた孔の直径と
、ポンプセル用及びセンサセル用の固体型Wjflの厚
さとの比を1以下にすることによって、基準酸素室の容
積のばらつきを更に少なくしたことを特徴とするもので
ある。By setting the ratio of the diameter of the hole drilled in the solid electrolytic chamber for the reference oxygen chamber and the thickness of the solid-state Wjfl for the pump cell and sensor cell to 1 or less, variations in the volume of the reference oxygen chamber can be further reduced. It is characterized by the fact that
以下本発明の一実施例について詳岬に説明する。 An embodiment of the present invention will be described in detail below.
先ず詳細な説明に当って、実施例の概略を説明する。第
3図において、リーン02センサは、ポンプセル側電極
2′を形成したポンプセル用固体電解質5′と、センサ
セル側電極3′を形成して成るセンサセル用固体電解質
6′と、孔8′を穿設して成る基準酸素室用固体電解質
7′とで構成している。First, for detailed explanation, an outline of the embodiment will be explained. In FIG. 3, the Lean 02 sensor includes a pump cell solid electrolyte 5' forming a pump cell side electrode 2', a sensor cell solid electrolyte 6' forming a sensor cell side electrode 3', and a hole 8'. The standard oxygen chamber solid electrolyte 7' is made of a solid electrolyte 7'.
こめ基準酸素室用固体電解質7′は、小さな孔8′を有
する一枚の板状になっているので、この基準酸素室用固
体電解質7′を挾むポンプセル用及びセンサセル用の固
体電解質5′と6′は、ちょうど板を挾む状態と同じで
あり、圧着一体化して焼結する際の補強になる。The solid electrolyte 7' for the reference oxygen chamber is in the form of a single plate with small holes 8', so the solid electrolyte 5' for the pump cell and sensor cell sandwiching the solid electrolyte 7' for the reference oxygen chamber and 6' are just the same as the state in which the plates are sandwiched, and serve as reinforcement when crimped and integrated and sintered.
又、孔8′の直径が、ポンプセル用及びセンサセル用の
固体電解質5′と6′の厚さに対し、あ19大き過ぎる
と、圧着一体化する際に、ポンプセル用及びセンサセル
用の固体電解質5′と6′は、孔8′部で変形すること
になるので、孔8′の直径とポンプセル用及びセンサセ
ル用の固体電解質5′と6′の厚さの比を1以下にする
ことにより、孔8′部での変形や割れがなくなシ、基準
酸素室(孔8′)の容積のばらつきをなくすことができ
る0
以下その詳細について更に詳しく説明する。先ず固体電
解質粉末にブチラール樹脂などのバインダと、有機溶剤
を加えてスラリー状とした後、ドクタープレイド法のス
リップキャスティングによシシート状の成形体(グリー
ンシート)を作成する。このグリーンシートを所望の形
状に切断し、第3図に示すポンプセル用固体電解質5′
、センサセル用固体電解質・6′及び基準酸素室用固体
電解質7′を形成する。これら固体電解質5’、6’、
7’は、共にY2O3で安定化されたZ rO2を用い
ている。Also, if the diameter of the hole 8' is too large compared to the thickness of the solid electrolytes 5' and 6' for the pump cell and the sensor cell, the solid electrolyte 5 for the pump cell and the sensor cell will be ' and 6' are deformed at the hole 8', so by setting the ratio of the diameter of the hole 8' and the thickness of the solid electrolytes 5' and 6' for the pump cell and the sensor cell to 1 or less, There is no deformation or cracking at the hole 8' portion, and variations in the volume of the reference oxygen chamber (hole 8') can be eliminated.The details will be explained in more detail below. First, a binder such as butyral resin and an organic solvent are added to solid electrolyte powder to form a slurry, and then a sheet-like molded body (green sheet) is created by slip casting using the Doctor Plaid method. This green sheet is cut into a desired shape, and the solid electrolyte 5' for pump cell shown in FIG.
, a solid electrolyte 6' for the sensor cell and a solid electrolyte 7' for the reference oxygen chamber are formed. These solid electrolytes 5', 6',
7' both use ZrO2 stabilized with Y2O3.
このように形成したポンプセル用及びセンサセル用の固
体電解質5′と6′にそれぞれ、ポンプセル側電極2′
とセンサセル側電極3′を、金属粉末を有機物でペース
ト状にした材料を使用したスクリーン印刷法で形成する
。又基準酸素室用固体電解質7′は、打抜き加工等によ
つで複数の孔8′が穿設されている。Pump cell side electrodes 2' are attached to the thus formed solid electrolytes 5' and 6' for the pump cell and sensor cell, respectively.
and the sensor cell side electrode 3' are formed by a screen printing method using a material made of a paste of metal powder with an organic substance. Further, the reference oxygen chamber solid electrolyte 7' has a plurality of holes 8' formed therein by punching or the like.
このようにして形成されたポンプセル用及びセンサセル
用の固体電解質5′と6′を、ポンプセル側電極2′と
センサセル側電極3′の間に基準酸素室用固体電解室7
′を挾むように重ね合せ、グリーンシート内に含ませた
バインダのガラス転移点以上の高温、で且つ5Kf/1
Yn2〜30Kg/crn2の圧力を加え、熱圧着して
一体化する。その後、各固体電解質粉末が充分気密性を
有するまで焼結する温度で熱処理をする。この状態で孔
8′は、ポンプセル側及びセンサセル側の電極2’、3
’乃至は、ポンプセル用及びセンサセル用固体電解質5
’、6’と基準酸素室用固体電解質7′との一体化によ
シ、気密に保持された基準酸素室となっている◎1及び
4は、金九をスパッタリングによって形成した電極であ
シ、それぞれリード線9aと9dが接続されている。図
中、9a及び9bは、ポンプ電流を供給するためのリー
ド線、9c 、 9dは、信号電圧を取出すためのリー
ド線である。なおlOは、多孔質のセラミック保設膜で
ある。The thus formed solid electrolytes 5' and 6' for the pump cell and the sensor cell are placed between the pump cell side electrode 2' and the sensor cell side electrode 3' in the solid electrolyte chamber 7 for the reference oxygen chamber.
' are placed on top of each other so as to sandwich the green sheets, and the temperature is higher than the glass transition point of the binder contained in the green sheets, and 5Kf/1.
A pressure of Yn2 to 30 Kg/crn2 is applied, and the pieces are bonded together by thermocompression. Thereafter, each solid electrolyte powder is heat-treated at a sintering temperature until it has sufficient airtightness. In this state, the holes 8' are connected to the electrodes 2' and 3 on the pump cell side and the sensor cell side.
' or solid electrolyte 5 for pump cells and sensor cells
', 6' are integrated with the solid electrolyte 7' for the reference oxygen chamber to form a reference oxygen chamber that is kept airtight. ◎1 and 4 are electrodes made of gold nine by sputtering. , are connected to lead wires 9a and 9d, respectively. In the figure, 9a and 9b are lead wires for supplying pump current, and 9c and 9d are lead wires for taking out signal voltage. Note that IO is a porous ceramic retention membrane.
第4図は、熱圧着工程及び熱処理工程において、基準酸
素室用固体電解質7′に設けた孔8′の直径とポンプセ
ル用及びセンサセル用固体電解質5’、6’の厚さとの
関係が、基準酸素室の容積のばらつきように影響するか
を示した図でおる。曲1iAは、基準酸素室のばらつき
を又曲ll1lBは、固体電解質の亀裂不良率を表わす
。FIG. 4 shows the relationship between the diameter of the hole 8' provided in the standard oxygen chamber solid electrolyte 7' and the thickness of the pump cell and sensor cell solid electrolytes 5' and 6' in the thermocompression bonding process and the heat treatment process. This is a diagram showing how variations in the volume of the oxygen chamber are affected. The track 1iA represents the variation in the standard oxygen chamber, and the track ll11B represents the crack failure rate of the solid electrolyte.
以上のように構成した本実施例の作用を説明する。先ず
第5図を用いて、本実施例の製造プロセスを説明する。The operation of this embodiment configured as above will be explained. First, the manufacturing process of this embodiment will be explained using FIG.
図において、厚さ0.3 ttanで所望の形に切断し
た安定化ジルコニアのグリーンシート5′。In the figure, a stabilized zirconia green sheet 5' having a thickness of 0.3 ttan and cut into a desired shape.
6’、7’にφ0.3咽の貫通孔5d 、 7c 、
7d 、 6b 、 6c 、 6dを明ける。又グリ
ーンシート7′にはφ0.2 amの複数の貫通孔8′
を明ける。グリーンシート5′上にペースト状白金を印
刷してポンプセル側電極2′を成形すると共に孔5dに
白金ベース) 5d’を充填した後150℃30分間乾
燥し、この上にグリーンシート7′を重ね合せる。この
状態では、孔5dと7dは、連通し、孔7Cは、グリー
ンシート2′上に形成した白金ペース) 7c’上に位
置している。一方グリーンシート6′には、白金ペース
トが印刷され、センサセル側電極3′が形成される。こ
の時孔6bに白金ペーストを充填しておく。この状態で
150℃30分間乾燥し、裏返してシート7の上に重ね
合せ120℃に加熱しながら20KLi/Crn2の荷
重を10分間かけ、3層のグリーンシートを熱圧着する
。この熱圧着工程において、グリーンシート7′に明け
た複数の孔8′の周辺で、グリーンシート5′と6′が
圧着力によって変形したシ、亀裂が発生したりすること
がある。6', 7' through holes 5d, 7c, φ0.3mm,
Open 7d, 6b, 6c, 6d. In addition, the green sheet 7' has a plurality of through holes 8' with a diameter of 0.2 am.
Open the day. Platinum paste is printed on the green sheet 5' to form the pump cell side electrode 2', and the hole 5d is filled with platinum base (5d'), dried at 150°C for 30 minutes, and the green sheet 7' is placed on top of this. Match. In this state, the holes 5d and 7d communicate with each other, and the hole 7C is located on the platinum paste 7c' formed on the green sheet 2'. On the other hand, platinum paste is printed on the green sheet 6' to form the sensor cell side electrode 3'. At this time, the hole 6b is filled with platinum paste. In this state, it is dried at 150° C. for 30 minutes, turned over and placed on top of sheet 7, and heated to 120° C. while applying a load of 20 KLi/Crn2 for 10 minutes to thermocompress the three layers of green sheets. In this thermocompression bonding process, the green sheets 5' and 6' may be deformed or cracks may occur due to the pressure bonding force around the plurality of holes 8' formed in the green sheet 7'.
このようにして3層のグリーンシートを熱圧着した後、
孔5d 、 6cの上から白金ペーストを印刷し且つ孔
に白金ペーストを充填すると共に厚膜部a。After bonding the three layers of green sheets in this way,
Platinum paste is printed over the holes 5d and 6c, and the holes are filled with the platinum paste, and the thick film portion a is formed.
b、e、dを形成する。この状態で、150℃30分間
乾燥後、大気中にて1500℃2時間の熱処理を行なっ
て焼成し、3層のグリーンシートを1体化し、非孔質の
ZrO2を得ると共に白金ペーストをメタライズする。Form b, e, d. In this state, after drying at 150°C for 30 minutes, heat treatment is performed at 1500°C for 2 hours in the air and fired to integrate the three layers of green sheets to obtain non-porous ZrO2 and metallize the platinum paste. .
この熱処理工程において、熱可塑性のノ(インダが軟化
して、グリーンシート7′に明けた孔8′に露出してい
る固体電解質が変形し、ポンプセル側及びセンサセル側
電極2′と3′が接触したり、孔8′の容積を変化させ
たシすることがある。続いて、スZrO2の両面に形成
する。この電a1 +’ 4は、白金の厚い部a、dに
接続している。次に4本のφ0.10の白金リードわ9
a + 9b + 9c + 9dを、白金の厚膜部a
−dに接合し、表面全面にスピネル粉末をプラズマ溶射
して多孔質の保朽膜を形成し、リーン02センサを完成
する。In this heat treatment process, the thermoplastic resin (indah) is softened, the solid electrolyte exposed in the hole 8' formed in the green sheet 7' is deformed, and the electrodes 2' and 3' on the pump cell side and the sensor cell side come into contact with each other. Alternatively, the volume of the hole 8' may be changed.Subsequently, a layer is formed on both sides of the ZrO2 layer.This electrode a1+'4 is connected to the thick parts a and d of platinum. Next, four φ0.10 platinum leads 9
a + 9b + 9c + 9d as platinum thick film part a
-d, and plasma spray spinel powder over the entire surface to form a porous preservation film, completing the Lean 02 sensor.
上記した製造プロセスの熱圧着工程において、グ・リー
ンシート7′(基準r:1索室用固体電解質)は、小さ
い孔8′を設けた1枚の板とみなすこと力!でき、この
グリーンシート7′を挟むグリーンシート5′と6′(
ポンプセル用及びセンサセル用固体’rrs’m質>は
、ちょうど一枚の板を挾む状態と同じになシ、結局グリ
ーンシート7′によって補強された形となり、圧着力に
対する強度が保たれる。In the thermocompression bonding step of the manufacturing process described above, the green sheet 7' (standard r: solid electrolyte for 1 cable chamber) can be regarded as a single plate with small holes 8'. Green sheets 5' and 6' (
The solid material for the pump cell and the sensor cell is the same as when a single plate is sandwiched between them, and is eventually reinforced by the green sheet 7', so that the strength against the pressing force is maintained.
更に、第4図に示すようにグリーンシート7′に設けた
孔8′の直径とグリーンシート5′と6′の厚さとの比
(孔径/固体電解質厚さ)を1以下にしており、孔8′
周辺のグリーンシート5′と6′の変形や圧着力による
亀裂がなく、又熱処゛理工程において、ている部分のグ
リーンシート−の変形が起らない。Furthermore, as shown in FIG. 4, the ratio (pore diameter/solid electrolyte thickness) between the diameter of the hole 8' provided in the green sheet 7' and the thickness of the green sheets 5' and 6' is set to 1 or less, 8′
There is no deformation or cracking of the surrounding green sheets 5' and 6' due to the pressure force, and no deformation of the surrounding green sheets occurs during the heat treatment process.
又安定化ジルコニアの粉末にバインダを加えて作られた
グリーンシー)5’、6’、7’は、焼成によって非通
気質の焼結体となって一体化され、孔8′は気密性を有
する基準酸素室として形成される。In addition, green sheets 5', 6', and 7' made by adding a binder to stabilized zirconia powder are integrated into a non-porous sintered body by firing, and the holes 8' are made airtight. It is formed as a reference oxygen chamber with.
又同じ組成と同じ粒度分布を有する材料でグリーンシー
ト5’、6’、7’を作シ、製造プロセスでの乾燥や熱
処理工程での相互間の熱膨張差間じにし、相互間の密着
性や機械的強度を保持する。In addition, the green sheets 5', 6', and 7' are made of materials with the same composition and particle size distribution, and the difference in thermal expansion between them during the drying and heat treatment processes during the manufacturing process is minimized to improve the adhesion between them. and maintain mechanical strength.
以上詳述した通シ本発明の酸素センサによれば、固体電
解質に1個又は複数の孔を設けて、基準酸素室用固体電
解質を形成し、この基準酸素室用電解質を、ポンプセル
用及びセンサセル用の固体電解質で挾むようにしたので
、ポンプセル用及びセンサセル用の固体電解質は、一枚
の板を挾んでいるのと同じ結果となり、基準酸素室用電
解質によって補強され圧着力に対する変形も起らない。According to the oxygen sensor of the present invention as described in detail above, one or more holes are provided in the solid electrolyte to form a reference oxygen chamber solid electrolyte, and this reference oxygen chamber electrolyte is used for pump cells and sensor cells. Since the solid electrolytes for the pump cell and the sensor cell are sandwiched together, the result is the same as if they were sandwiching a single plate, and they are reinforced by the standard oxygen chamber electrolyte and do not deform under pressure. .
又、基準酸素室用固体電解質に設けた孔の直径と、ポン
プセル用及びセンサセル用固体電解質の厚さの比を1以
下にすることによシ、熱圧着工程における上記固体電解
質の変形や亀裂を防止すると共に、熱処理工程における
熱可塑性バインダの軟化による固体電解質の変形を防止
することができた。In addition, by keeping the ratio of the diameter of the hole provided in the solid electrolyte for the standard oxygen chamber to the thickness of the solid electrolyte for the pump cell and sensor cell to 1 or less, deformation and cracking of the solid electrolyte during the thermocompression bonding process can be prevented. It was also possible to prevent deformation of the solid electrolyte due to softening of the thermoplastic binder during the heat treatment process.
このように、固体電解質の熱圧着力に対する補強、変形
と0裂の防止、及び熱処理時の変形をな欠すことによシ
、基準酸素室の容積の変化をなくし、安定したポンプ性
能を有する酸素センサを得ることができた。In this way, by reinforcing the thermocompression bonding force of the solid electrolyte, preventing deformation and zero cracking, and preventing deformation during heat treatment, changes in the volume of the standard oxygen chamber are eliminated and stable pump performance is achieved. We were able to obtain an oxygen sensor.
このように基準酸素室の容積を正確に得ることができる
ことにより、ポンプ電流の調節によって、広ね囲の酸素
分圧に対して、精度の高い制御が可能となるばかシでな
く、センサ素子の量産が容易になり、実用上の効果は多
大なものがある。By being able to accurately obtain the volume of the reference oxygen chamber in this way, it is possible to precisely control the oxygen partial pressure over a wide range by adjusting the pump current. Mass production becomes easier, and the practical effects are significant.
第1図及び第2図は、従来のり一ン02センサを断面し
て示した図である。第3図は、本発明実施例のリーン0
2センサを断面して示した図である。
第4図は、熱圧着工程及び熱処理工程において、基準酸
素用固体電解質に設けた孔径と固体電解質厚さが及はす
影響を示した図である。第5図は、本発明実施例の製造
プロセスを示す図でおる。
l・・・電極、2′・・・ポンプセル側電極、3′・・
・センサセル側電極、4・・・電極、5′・・・ポンプ
セル用固体電解質、6′・・・センサセル用固体電解質
、7′・・・基準酸素室用固体電解質。
代理人 弁理士 秋 本 正 実
第1図
第2因
第3図FIGS. 1 and 2 are cross-sectional views of a conventional glue-in 02 sensor. FIG. 3 shows the lean 0 according to the embodiment of the present invention.
FIG. 2 is a cross-sectional view of two sensors. FIG. 4 is a diagram showing the influence of the pore diameter provided in the standard oxygen solid electrolyte and the solid electrolyte thickness in the thermocompression bonding process and the heat treatment process. FIG. 5 is a diagram showing the manufacturing process of an embodiment of the present invention. l...electrode, 2'...pump cell side electrode, 3'...
- Sensor cell side electrode, 4... Electrode, 5'... Solid electrolyte for pump cell, 6'... Solid electrolyte for sensor cell, 7'... Solid electrolyte for reference oxygen chamber. Agent Patent Attorney Tadashi Akimoto Figure 1 Figure 2 Cause Figure 3
Claims (1)
グリーンシートを形成し、該グリーンシートにポンプセ
ル側電極を形成して成るポンプセル用固体電解質と、セ
ンサセル側電極を形成して成るセンサセル用固体電解質
と、前記グリーンシートに1個乃至複数個の孔を穿設し
て成る基準酸素室用固体電解質から成り、該基準酸素室
用固体電解質を、前記、ポンプセル側電極とセンサセル
側電極の間に挾み、ポンプセル用及びセンサセル用固体
電解質と、基準酸素室用固体電解質とを熱圧着して一体
化した後、焼結したことを特徴とする酸素センサ。 2、固体電解質の粉末に有機物バインダを加えて板状の
グリーンシートを形成し、該グリーンシートにポンプセ
ル側電極を形成して成るポンプ用固体電解質と、センサ
セル側電極を形成して成るセンサセル用固体電解質と、
前記グリーンシートに1個乃至複数個の孔を穿設して成
る基準酸素室用固体電解質とから成シ、該基準酸素室用
固体電解質に設けた孔の直径と前記ポンプセル用及びセ
ンサセル用固体電解質厚さとの比(孔の直径/ポンプセ
ル用及びセンサセル用固体電解質厚さ)が1又はそれ以
下とし、基準酸素室用固体電解質を前記ポンプセル側電
極とセンサセル側電極の間に挾み、ポンプセル用及びセ
ンサセル用固体電解質と基¥′−酸素室用電解質とを熱
圧着して一体化した後、焼結したことを特徴とする酸素
センサ。[Claims] 1. A solid electrolyte for a pump cell is formed by adding an organic binder to solid electrolyte powder to form a plate-shaped green sheet, and forming a pump cell side electrode on the green sheet, and forming a sensor cell side electrode. A solid electrolyte for a sensor cell is formed by forming one or more holes in the green sheet, and a solid electrolyte for a reference oxygen chamber is formed by forming one or more holes in the green sheet. 1. An oxygen sensor, which is sandwiched between electrodes on the sensor cell side, and is characterized in that solid electrolytes for a pump cell and a sensor cell, and a solid electrolyte for a reference oxygen chamber are integrated by thermocompression bonding, and then sintered. 2. A solid electrolyte for a pump, which is formed by adding an organic binder to solid electrolyte powder to form a plate-shaped green sheet, and forming a pump cell side electrode on the green sheet, and a solid electrolyte for a sensor cell, which is formed by forming a sensor cell side electrode. electrolyte and
a solid electrolyte for a reference oxygen chamber formed by drilling one or more holes in the green sheet, the diameter of the hole provided in the solid electrolyte for the reference oxygen chamber and the solid electrolyte for the pump cell and sensor cell; The ratio (hole diameter/thickness of the solid electrolyte for the pump cell and the sensor cell) is 1 or less, and the solid electrolyte for the reference oxygen chamber is sandwiched between the pump cell side electrode and the sensor cell side electrode. An oxygen sensor characterized in that a solid electrolyte for a sensor cell and an electrolyte for a base oxygen chamber are integrated by thermocompression bonding and then sintered.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57205455A JPS5995452A (en) | 1982-11-25 | 1982-11-25 | Oxygen sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57205455A JPS5995452A (en) | 1982-11-25 | 1982-11-25 | Oxygen sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5995452A true JPS5995452A (en) | 1984-06-01 |
Family
ID=16507159
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57205455A Pending JPS5995452A (en) | 1982-11-25 | 1982-11-25 | Oxygen sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5995452A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61272648A (en) * | 1985-05-29 | 1986-12-02 | Ngk Insulators Ltd | Oxygen sensor element |
JPH02156148A (en) * | 1988-12-08 | 1990-06-15 | Toyota Motor Corp | Manufacture of oxygen concentration sensor |
JPH0755765A (en) * | 1993-08-12 | 1995-03-03 | Toyota Central Res & Dev Lab Inc | Thin film laminated air-fuel ratio sensor |
-
1982
- 1982-11-25 JP JP57205455A patent/JPS5995452A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61272648A (en) * | 1985-05-29 | 1986-12-02 | Ngk Insulators Ltd | Oxygen sensor element |
JPH0623729B2 (en) * | 1985-05-29 | 1994-03-30 | 日本碍子株式会社 | Oxygen sensor element |
JPH02156148A (en) * | 1988-12-08 | 1990-06-15 | Toyota Motor Corp | Manufacture of oxygen concentration sensor |
JPH0755765A (en) * | 1993-08-12 | 1995-03-03 | Toyota Central Res & Dev Lab Inc | Thin film laminated air-fuel ratio sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH09259905A (en) | Laminated sintered body for electrochemical cell, electrochemical cell, and manufacture of laminated sintered body for electrochemical cell | |
JP3692623B2 (en) | Ceramic laminate and manufacturing method thereof | |
JP3760573B2 (en) | NOx sensor manufacturing method and NOx sensor | |
JPS5995452A (en) | Oxygen sensor | |
JPH01197972A (en) | Plate shaped solid electrolyte type fuel cell | |
JP3572241B2 (en) | Air-fuel ratio sensor element | |
JP3550231B2 (en) | Plate stack type solid oxide fuel cell and method of manufacturing the same | |
JPH06349516A (en) | Stack for solid electrolyte type fuel cell | |
JP2004327255A (en) | Manufacturing method for ceramic heater structure and ceramic heater structure | |
JP2800196B2 (en) | Manufacturing method of stacked oxygen concentration sensor | |
JP2848551B2 (en) | Method for producing electrolyte membrane for solid oxide fuel cell | |
JP4610127B2 (en) | Air-fuel ratio sensor element | |
KR101748799B1 (en) | Oxygen sensor and method of manufacturing the same | |
JPS59166856A (en) | Production of oxygen sensor | |
JP2007040838A (en) | Gas sensor element and method for manufacturing the same | |
JP2001041922A (en) | Oxygen sensor element integrated with heater | |
JPH10189016A (en) | Solid electrolyte fuel cell | |
JP3752452B2 (en) | Flat plate oxygen sensor and manufacturing method thereof | |
JP2003279531A (en) | Oxygen sensor element | |
JP2001242130A (en) | Gas sensor element | |
JPS5827051A (en) | Manufacture of oxygen gas concentration cell | |
JPH01124964A (en) | Flat plate type solid electrolyte fuel cell | |
JPH06223846A (en) | Joint method for solid electrolyte type fuel cell stack | |
JPH07335239A (en) | Manufacture of junction body | |
JP3285856B2 (en) | Solid oxide fuel cell |