JPH0755765A - Thin film laminated air-fuel ratio sensor - Google Patents

Thin film laminated air-fuel ratio sensor

Info

Publication number
JPH0755765A
JPH0755765A JP5220630A JP22063093A JPH0755765A JP H0755765 A JPH0755765 A JP H0755765A JP 5220630 A JP5220630 A JP 5220630A JP 22063093 A JP22063093 A JP 22063093A JP H0755765 A JPH0755765 A JP H0755765A
Authority
JP
Japan
Prior art keywords
electrode
fuel ratio
solid electrolyte
air
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5220630A
Other languages
Japanese (ja)
Other versions
JP3326899B2 (en
Inventor
Haruyoshi Kondo
春義 近藤
Hideaki Takahashi
英昭 高橋
Keiichi Saji
啓市 佐治
Masaharu Takeuchi
正治 竹内
Kouzou Satsuta
耕三 颯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP22063093A priority Critical patent/JP3326899B2/en
Priority to US08/174,126 priority patent/US5480535A/en
Priority to DE4344826A priority patent/DE4344826C2/en
Publication of JPH0755765A publication Critical patent/JPH0755765A/en
Application granted granted Critical
Publication of JP3326899B2 publication Critical patent/JP3326899B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To provide a thin film laminated air-fuel ratio sensor. CONSTITUTION:A first electrode 2 is formed on a porous board 1, and first solid electrolyte 3, a third electrode 4, a second solid electrolyte 5, a fourth electrode 6 are sequentially laminated in a predetermined disposition thereon in such a manner that the electrodes are formed of platinum having porous and gas permeable properties and the electrolytes are oxygen ion conductive solid electrolytes having dense and no gas permeable properties. A sensor element having an oxygen concentration battery type theoretical air-fuel ratio sensor part formed of the electrode 2, the electrolyte 3 and the electrode 4 on the substrate 1 and an oxygen pump cell formed of the electrode 4, the electrolyte 5 and the electrode 6 to be integrally formed is provided. Accordingly, its performance is improved, and its size can be remarkably reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は薄膜積層空燃比センサ、
更に詳しくは著しく小形化可能で且つ性能の優れた薄膜
積層空燃比センサに関するものである。
The present invention relates to a thin film laminated air-fuel ratio sensor,
More specifically, the present invention relates to a thin film laminated air-fuel ratio sensor that can be made extremely small and has excellent performance.

【0002】[0002]

【従来技術】空燃比センサとしては種々の形態のものが
使用されている。その一つとして酸素センサを用いた空
燃比センサがある。この空燃比センサは例えば自動車エ
ンジン制御用の空燃比センサとして広く使われている。
ところで、前記空燃比センサに使用されている酸素セン
サは主として、酸化物半導体の抵抗変化を利用した抵抗
変化式酸素センサ、固体電解質を用いた酸素濃淡電池式
酸素センサ、及び酸素ポンプ式酸素センサ(研究開発段
階にあるもの及び既に実用化されているものを含む)の
3種類に分類される。以下に、3種類の酸素センサの特
徴を説明する。
2. Description of the Related Art Various types of air-fuel ratio sensors are used. One of them is an air-fuel ratio sensor using an oxygen sensor. This air-fuel ratio sensor is widely used, for example, as an air-fuel ratio sensor for controlling an automobile engine.
By the way, the oxygen sensor used in the air-fuel ratio sensor is mainly a resistance change type oxygen sensor using a resistance change of an oxide semiconductor, an oxygen concentration battery type oxygen sensor using a solid electrolyte, and an oxygen pump type oxygen sensor ( (Including those in the research and development stage and those already in practical use). The features of the three types of oxygen sensors will be described below.

【0003】酸化物半導体の抵抗変化を利用した抵抗変
化式酸素センサには、TiO2 ,Nb2 5 ,SnO2
等のn型半導体を用いたものと、CoO,CoO1-x
x等のp型半導体を用いたものとがある。前記抵抗変
化式酸素センサは、酸素分圧の変化によって酸化物半導
体の抵抗が次式(I)の様に変化する。 R=Po 1/n (I) 〔式(I)中、 R:酸化物半導体の抵抗 Po :酸素分圧 n:p型半導体では+4〜+6、n型半導体では−4〜
−6 を表わす。〕
The resistance change type oxygen sensor utilizing the resistance change of the oxide semiconductor includes TiO 2 , Nb 2 O 5 and SnO 2.
Using n-type semiconductors such as CoO, CoO 1-x M
Some use p-type semiconductors such as g x . In the resistance change type oxygen sensor, the resistance of the oxide semiconductor changes according to the following expression (I) according to the change in oxygen partial pressure. R = P o 1 / n (I) [In the formula (I), R: resistance of oxide semiconductor P o : partial pressure of oxygen n: +4 to +6 for p-type semiconductor, −4 for n-type semiconductor
Indicates -6. ]

【0004】車両走行時において、空気過剰率λ=1の
点では、酸素分圧は10-0.2〜10-30 atmの範囲内
で急変する。それ故、空気過剰率λ=1では酸素分圧の
変化に伴って酸化物半導体の抵抗も3〜4桁急変する。
この急変特性から、抵抗変化式酸素センサは理論空燃比
検出用センサとして用いられる。
When the vehicle is running, the oxygen partial pressure suddenly changes within the range of 10 −0.2 to 10 −30 atm at the point where the excess air ratio λ = 1. Therefore, when the excess air ratio λ = 1, the resistance of the oxide semiconductor changes abruptly by 3 to 4 digits as the oxygen partial pressure changes.
Due to this sudden change characteristic, the resistance change type oxygen sensor is used as a theoretical air-fuel ratio detection sensor.

【0005】一方、固体電解質を用いた酸素濃淡電池式
酸素センサにおいては、センサ素子は例えばジルコニア
固体電解質からなる一端が閉鎖された円筒状の形態にな
っており、排気側と大気側の酸素分圧の変化(酸素分圧
差)が次式(II)の如く起電力として検出される。 E=RT/4FlnPo ′/Po (II) 〔式(II)中、 R:気体定数 T:絶対温度 F:ファラデー定数 Po ′:カソード側の酸素分圧 Po :アノード側の酸素分圧 を表わす。〕
On the other hand, in the oxygen concentration battery type oxygen sensor using a solid electrolyte, the sensor element is made of, for example, zirconia solid electrolyte and has a cylindrical shape with one end closed, and the oxygen content on the exhaust side and the atmosphere side is reduced. The change in pressure (difference in oxygen partial pressure) is detected as an electromotive force as in the following equation (II). E = RT / 4FlnPo ′ / Po (II) [In the formula (II), R: gas constant T: absolute temperature F: Faraday constant P o ′: oxygen partial pressure on the cathode side P o : oxygen partial pressure on the anode side Represent. ]

【0006】それ故、酸素濃淡電池式酸素センサでは、
車両走行時において、空気過剰率λ=1にて酸素分圧が
急変するのに伴って0〜1Vの範囲内の起電力が発生す
ることから、起電力0.5Vが発生した点を理論空燃比
(空気過剰率λ=1)として検出する。
Therefore, in the oxygen concentration cell type oxygen sensor,
When the vehicle is running, an electromotive force within the range of 0 to 1 V is generated as the oxygen partial pressure suddenly changes at the excess air ratio λ = 1. It is detected as the fuel ratio (excess air ratio λ = 1).

【0007】酸素ポンプ式酸素センサは電気化学的ポン
プ作用を利用して電解質の酸素イオンの伝導度を計測す
る方式の酸素センサであり、基本構成の相違により、更
に以下の3種類に分類される。 (A)酸素ポンプセルがO2 モニターとして用いられる
もの。 (B)酸素ポンプセルが漏洩用細孔と共に用いられるも
の。 (C)酸素ポンプセルがO2 モニターとして及び漏洩用
細孔と共に用いられるもの。
The oxygen pump type oxygen sensor is an oxygen sensor of a type which measures the conductivity of oxygen ions of an electrolyte by utilizing an electrochemical pumping action, and is further classified into the following three types depending on the difference in basic constitution. . (A) An oxygen pump cell used as an O 2 monitor. (B) In which an oxygen pump cell is used with a leaking pore. (C) An oxygen pump cell used as an O 2 monitor and with leaking pores.

【0008】又、酸素ポンプ式酸素センサにおける酸素
濃度の検出方法としても3種類の方法が知られている。
第1の検出方法はポンピング時間により酸素濃度を測定
する方法、第2の検出方法は限界電流により酸素濃度を
測定する方法、更に第3の検出方法は定電流印加時の電
圧により酸素濃度を測定する方法である。よって、酸素
ポンプ式酸素センサを用いると広い範囲の酸素濃度を測
定できることから、この型式の酸素センサはとりわけ広
帯域の空燃比センサとして利用されている。
Three types of methods are known as methods for detecting the oxygen concentration in an oxygen pump type oxygen sensor.
The first detection method is a method of measuring oxygen concentration by pumping time, the second detection method is a method of measuring oxygen concentration by limiting current, and the third detection method is a method of measuring oxygen concentration by voltage when a constant current is applied. Is the way to do it. Therefore, since the oxygen pump type oxygen sensor can measure the oxygen concentration in a wide range, this type of oxygen sensor is particularly used as a wide-range air-fuel ratio sensor.

【0009】理論空燃比センサとしては、従来、ジルコ
ニア酸素濃淡電池式センサ及びTiO2 抵抗変化式酸素
センサが広く使用されている。これらのセンサは、共に
理論空燃比での平行酸素分圧の大幅な変化に伴い、出力
(起電力及び抵抗)が急変する特性(所謂Z特性)を有
し、前記出力を各々の理論空燃比センサに対する適切な
基準値(電圧値又は抵抗値)と比較することにより、空
燃比がリーン領域に有るかリッチ領域に有るかを容易に
判定することができる。
As the theoretical air-fuel ratio sensor, conventionally, a zirconia oxygen concentration cell type sensor and a TiO 2 resistance change type oxygen sensor have been widely used. Both of these sensors have a characteristic (so-called Z characteristic) in which the output (electromotive force and resistance) suddenly changes in accordance with a large change in the parallel oxygen partial pressure at the theoretical air-fuel ratio. By comparing with an appropriate reference value (voltage value or resistance value) for the sensor, it can be easily determined whether the air-fuel ratio is in the lean region or the rich region.

【0010】ジルコニア酸素濃淡電池式理論空燃比セン
サの場合には、起電力のセンサ固体間における相違や起
電力の温度依存性が小さい。それ故、前記センサを同種
の別のセンサに取り替えたり、又は前記センサを車両の
排気系に装着した場合に排気温が変化したときに基準電
圧を固定して使用しても、理論空燃比を高精度で検出す
ることができるという優れた性質を有している。この様
な性質を有することにより、三元触媒を併用する自動車
エンジンの空燃比制御用として非常に使用し易いので、
ジルコニア酸素濃淡電池式理論空燃比センサは前記用途
に最も広く使用されている。
In the case of a theoretical air-fuel ratio sensor of the zirconia oxygen concentration battery type, the difference in electromotive force between sensor solids and the temperature dependence of electromotive force are small. Therefore, even if the sensor is replaced with another sensor of the same type, or the reference voltage is fixed and used when the exhaust temperature changes when the sensor is attached to the exhaust system of the vehicle, the theoretical air-fuel ratio is It has an excellent property that it can be detected with high accuracy. By having such properties, it is very easy to use for controlling the air-fuel ratio of an automobile engine that also uses a three-way catalyst.
The zirconia oxygen concentration battery type theoretical air-fuel ratio sensor is most widely used for the above-mentioned application.

【0011】TiO2 抵抗変化式酸素センサの場合に
は、TiO2 抵抗体全体の抵抗が雰囲気の酸素分圧に応
じて変化する方式であることから、酸素濃度の測定に際
して基準酸素分圧を必要としない。従って、TiO2 抵
抗変化式酸素センサは基準電極や該基準電極に対するガ
ス導入路が不要であり、又構造が簡単で小形化可能であ
ることから、自動車エンジンの空燃比制御用として徐々
に使用されるようになってきた。
In the case of a TiO 2 resistance change type oxygen sensor, since the resistance of the TiO 2 resistor as a whole changes according to the oxygen partial pressure of the atmosphere, a reference oxygen partial pressure is required when measuring the oxygen concentration. Not. Therefore, the TiO2 resistance change type oxygen sensor does not require a reference electrode or a gas introduction path to the reference electrode, and has a simple structure and can be miniaturized. Therefore, it is gradually used for controlling the air-fuel ratio of an automobile engine. It's starting to happen.

【0012】一方、広帯域空燃比センサとしてはジルコ
ニア限界電流式空燃比センサが広く使用されている。こ
のセンサはセンサ起電力及び出力電流の温度依存性が小
さいという優れた性質を有しており、非常に使い易いの
で、種々の全域空燃比センサの中でも最も広く使用され
ている。
On the other hand, a zirconia limiting current type air-fuel ratio sensor is widely used as a broadband air-fuel ratio sensor. This sensor has the excellent property that the temperature dependence of the sensor electromotive force and the output current is small, and is extremely easy to use. Therefore, it is the most widely used among various range air-fuel ratio sensors.

【0013】[0013]

【発明が解決しようとする課題】このように、従来のセ
ンサ例えばジルコニア酸素濃淡電池式理論空燃比センサ
は優れた特性を有するが、しかし一方、下記に例示する
ような大きな課題を抱えている。 一つの空燃比センサで理論空燃比を精度±0.1%程
度で計測することが必要である。又、理論空燃比センサ
に全域空燃比センサを付加した場合には、全域空燃比を
精度±1%程度で計測することが必要である。 エンジン始動直後から空燃比を精度よく検出できるこ
とが必要である。 車両の燃費改善のために、センサ作動時の消費電力を
極力小さくすることが必要である。 低コスト化を図るため、簡単な構成にすることが要求
されている。
As described above, the conventional sensor, for example, the zirconia oxygen concentration battery type theoretical air-fuel ratio sensor has excellent characteristics, but on the other hand, it has a large problem as exemplified below. It is necessary to measure the theoretical air-fuel ratio with an accuracy of about ± 0.1% with one air-fuel ratio sensor. Further, when the full range air-fuel ratio sensor is added to the theoretical air-fuel ratio sensor, it is necessary to measure the full range air-fuel ratio with an accuracy of about ± 1%. It is necessary to be able to accurately detect the air-fuel ratio immediately after the engine is started. In order to improve the fuel efficiency of the vehicle, it is necessary to minimize the power consumption during sensor operation. A simple structure is required to reduce the cost.

【0014】米国、欧州、日本での自動車の排気規制は
年々厳しくなっており、自動車のエンジン自体の改善や
排気ガス浄化用触媒の浄化性能の向上だけでなく、空燃
比センサにも厳しい要求が求められるようになり、従来
技術の小規模な改良だけでは対応が難しくなってきた。
Exhaust regulations for automobiles in the United States, Europe and Japan are becoming stricter year by year, and not only the improvement of the engine of automobiles and the purification performance of exhaust gas purifying catalysts but also the air-fuel ratio sensor have strict requirements. The demands have come to be met, and it has become difficult to deal with the problem only by making small improvements to the conventional technology.

【0015】即ち、 (a)地球規模で起っている環境破壊を改善するために
は、車両用エンジンとしては低燃費で有害成分排出量が
少なく、必要な時には高出力も得られるエンジンが望ま
れている。そのためには、エンジンの空燃比を理論空燃
比に精密に制御する必要がある。又、エンジンの空燃比
を理論空燃比だけでなく、リーン領域からリッチ領域ま
で車両の走行状態に応じて最適な空燃比に設定すれが一
層好ましい。そして空燃比を前記の如く設定された空燃
比となるように忠実に制御しようとすれば、空燃比セン
サによる精密な空燃比の検出と、この値に基づく空燃比
のフィードバック制御が不可欠である。そのため、理論
空燃比を精密に検出することが求められている。又、理
論空燃比に加えて、リーン領域のみでなくリッチ領域も
含めた全域を計測可能であればなお良い。
That is, (a) In order to improve the environmental destruction occurring on a global scale, a vehicle engine is desired to have low fuel consumption, a small amount of harmful components emitted, and a high output when necessary. It is rare. For that purpose, it is necessary to precisely control the air-fuel ratio of the engine to the stoichiometric air-fuel ratio. Further, it is more preferable to set the air-fuel ratio of the engine not only to the stoichiometric air-fuel ratio but also to the optimum air-fuel ratio from the lean region to the rich region according to the running state of the vehicle. In order to faithfully control the air-fuel ratio so that it will be the air-fuel ratio set as described above, precise detection of the air-fuel ratio by the air-fuel ratio sensor and feedback control of the air-fuel ratio based on this value are indispensable. Therefore, it is required to accurately detect the stoichiometric air-fuel ratio. Further, in addition to the stoichiometric air-fuel ratio, it is more preferable that the whole region including not only the lean region but also the rich region can be measured.

【0016】(b)エンジンの冷間始動時の炭化水素
(HC)排出量は、従来の空燃比センサでは、センサが
作動可能になる以前のエンジン始動直後の炭化水素(H
C)排出量が大きな比率を占めている。そして前記炭化
水素排出量にはエンジン始動時の燃料増量の適否が密接
に関係している。それ故、前記炭化水素排出量の低減の
ためにはエンジン始動時の燃料増量の最適化を図るた
め、エンジン始動直後から空燃比センサを急速に作動さ
せることが求められている。更に、排出される有害成分
の浄化を図るため排気ガス浄化用触媒による排気ガスの
処理が行なわれる。その浄化性能を十分に引き出すには
理論空燃比を精密に検出できるセンサが求められてお
り、空燃比センサの機能として理論空燃比及び更に加え
て広範囲の空燃比を精密に検出できる機能が求められて
いる。
(B) In the conventional air-fuel ratio sensor, the hydrocarbon (HC) emission amount at the time of cold start of the engine is the amount of hydrocarbon (H) immediately after the engine start before the sensor becomes operable.
C) Emissions account for a large proportion. The hydrocarbon emission amount is closely related to whether or not the fuel amount is increased when the engine is started. Therefore, in order to reduce the amount of hydrocarbon emissions, it is required to rapidly operate the air-fuel ratio sensor immediately after the engine is started in order to optimize the amount of fuel increase when the engine is started. Further, the exhaust gas is treated with an exhaust gas purifying catalyst in order to purify the harmful components discharged. A sensor that can accurately detect the stoichiometric air-fuel ratio is required to fully bring out the purification performance, and the function of the stoichiometric air-fuel ratio and, in addition, a function that can accurately detect a wide range of air-fuel ratios is required as a function of the air-fuel ratio sensor. ing.

【0017】しかしながら、空燃比センサを作動させる
ためには空燃比センサ(特にその空燃比検出部)を作動
に適する温度(約700℃)にすることが必要なので、
急速に作動させるため、センサの急速昇温加熱が必要で
ある。然して、一般的に空燃比センサの急速昇温は、該
センサ各部の熱歪みの増大による破損や特性劣化につな
がり易い。それ故、前記熱歪みの増大を抑制して、それ
らの悪影響を軽減するためには空燃比センサを小形化す
る必要がある。
However, in order to operate the air-fuel ratio sensor, it is necessary to bring the air-fuel ratio sensor (particularly its air-fuel ratio detecting portion) to a temperature (about 700 ° C.) suitable for operation,
Rapid actuation heating of the sensor is required for rapid operation. However, in general, the rapid temperature rise of the air-fuel ratio sensor is likely to lead to damage or characteristic deterioration due to an increase in thermal strain of each part of the sensor. Therefore, it is necessary to downsize the air-fuel ratio sensor in order to suppress the increase of the thermal strain and reduce the adverse effects thereof.

【0018】しかし、ジルコニア限界電流式空燃比セン
サの場合には、理論空燃比を高精度で検出でき、更に加
えてリーン領域とリッチ領域の全域計測をするために
は、陰陽両電極を気密に保ち分離させ、排気に暴露され
ない側の電極には高濃度の酸素(空気)を供給する必要
がある。それ故、そのための空気(外気)導入用の通路
をセンサの外部から空燃比検出部まで設けなければなら
ない。よって、センサ素子として、通常は一端が閉鎖さ
れた筒形状(コップ形状)のセンサ素子が用いられてい
る。しかし、前述のような素子ではいくら小形化しよう
としても自づから限界がある。
However, in the case of the zirconia limiting current type air-fuel ratio sensor, the theoretical air-fuel ratio can be detected with high accuracy, and in addition, in order to measure the entire lean region and rich region, both the positive and negative electrodes are hermetically sealed. It is necessary to supply a high concentration of oxygen (air) to the electrode on the side that is kept separated and is not exposed to exhaust gas. Therefore, a passage for introducing air (outside air) for that purpose must be provided from the outside of the sensor to the air-fuel ratio detecting section. Therefore, as the sensor element, a tubular (cup-shaped) sensor element whose one end is closed is usually used. However, there is a limit to the miniaturization of the element as described above, no matter how small the element is.

【0019】(c)空燃比センサを加熱するための消費
電力が大きければ、発電機やバッテリーなどの加熱用電
力の供給も従来以上に大きくせざるを得ず、これは燃費
の悪化をもたらすことになる。従って、燃費改善のため
には、空燃比センサの低消費電力化、更にセンサの機能
向上が必要且つ有効である。
(C) If the power consumption for heating the air-fuel ratio sensor is large, the power supply for heating such as the generator and the battery must be increased more than ever before, which causes deterioration of fuel consumption. become. Therefore, in order to improve fuel economy, it is necessary and effective to reduce the power consumption of the air-fuel ratio sensor and further improve the function of the sensor.

【0020】ところで、従来のジルコニア酸素濃淡電池
式理論空燃比センサでは、理論空燃比の検出をするため
には上述の如く基準電極が必要であり、理論空燃比セン
サ内に空気の導入機構や酸素の発生機構を設ける必要が
ある。しかしながら、センサ内に外気から空気を導入す
る形式の理論空燃比センサは、空気導入通路の寸法が大
きいので複雑で大きな構造を有しており、その製造が非
常に難しい。更に、寸法が大きいことから放熱損も大き
くなり、空燃比センサを加熱するための消費電力が大き
くなる。又、寸法が大きいので熱歪みが発生し易く、急
速加熱が不可能であり、必然的に理論空燃比センサの始
動時間が長くなる。そのため、前記理論空燃比センサは
消費電力が大きいことから車両の燃費改善に悪影響を与
えると共に、始動時間が長いことから車両の冷間始動直
後の炭化水素排出量の低減にも寄与することができな
い。
By the way, the conventional zirconia oxygen concentration battery type theoretical air-fuel ratio sensor requires the reference electrode as described above in order to detect the theoretical air-fuel ratio, and an air introduction mechanism and oxygen are introduced into the theoretical air-fuel ratio sensor. It is necessary to provide a mechanism for generating However, the theoretical air-fuel ratio sensor of the type in which air is introduced from the outside air into the sensor has a complicated and large structure because the size of the air introduction passage is large, and its manufacture is very difficult. Further, since the size is large, heat dissipation loss is also large, and power consumption for heating the air-fuel ratio sensor is large. Further, since the size is large, thermal distortion is likely to occur, rapid heating is not possible, and inevitably the starting time of the stoichiometric air-fuel ratio sensor becomes long. Therefore, since the stoichiometric air-fuel ratio sensor consumes a large amount of power, it adversely affects the fuel efficiency of the vehicle, and since the starting time is long, it cannot contribute to the reduction of hydrocarbon emission immediately after the cold start of the vehicle. .

【0021】理論空燃比センサ内に酸素の発生機構を有
する従来のジルコニア酸素濃淡電池式理論空燃比センサ
においても、酸素発生機構を付加するために複雑で大き
な構造を有しており、空気の導入機構を有する前記理論
空燃比センサと同様の問題点を有している。
The conventional zirconia oxygen concentration battery type theoretical air-fuel ratio sensor having a mechanism for generating oxygen in the theoretical air-fuel ratio sensor also has a complicated and large structure in order to add an oxygen generating mechanism. It has the same problem as the stoichiometric air-fuel ratio sensor having a mechanism.

【0022】従来のジルコニア限界電流式酸素センサに
おいても、全域空燃比を検出するためには、空燃比セン
サ内に空気の導入、又は酸素の発生機能を持った基準極
を作る必要がある。即ち、これらの手段を有しない空燃
比センサではリーン領域のみの計測は可能であるが、リ
ッチ領域に於いてもリーン領域に近い電流が流れる二価
関数特性が現われるのでリーン領域なのかリッチ領域な
のかを判別することができなくなり、リッチ領域におい
ては有効な空燃比の計測ができない。
Even in the conventional zirconia limiting current type oxygen sensor, in order to detect the overall air-fuel ratio, it is necessary to introduce air into the air-fuel ratio sensor or to form a reference electrode having an oxygen generating function. That is, with an air-fuel ratio sensor that does not have these means, it is possible to measure only in the lean region, but even in the rich region, a bivalent function characteristic in which a current close to the lean region flows appears. It becomes impossible to determine whether the air-fuel ratio is high or not, and the effective air-fuel ratio cannot be measured in the rich region.

【0023】然して、前記問題を克服するためには、リ
ーン領域空燃比センサに、リーン領域の空燃比を検出す
る手段とは別途にリッチかリーンかを判別する手段と、
リッチ領域の空燃比を検出する手段、更に、電気化学的
セルにより構成された酸素ガスを供給する酸素ポンプの
手段を付加する必要がある。
In order to overcome the above problems, however, the lean region air-fuel ratio sensor is provided with a means for discriminating between rich and lean, separately from the means for detecting the air-fuel ratio in the lean region.
It is necessary to add a means for detecting the air-fuel ratio in the rich region and a means for an oxygen pump for supplying oxygen gas constituted by an electrochemical cell.

【0024】一方、空燃比センサ内に外部から空気を導
入する形式の全域空燃比センサでは、基本的に全域空燃
比を高精度に検出する性能を有する。しかしながら、こ
の型式の全域空燃比センサは空気導入通路の寸法が大き
く、複雑で大きな構造を有しており、前記のジルコニア
酸素濃淡電池式理論空燃比センサと同様の問題点を有し
ている。
On the other hand, the full-range air-fuel ratio sensor of the type in which air is introduced from the outside into the air-fuel ratio sensor basically has the capability of detecting the full-range air-fuel ratio with high accuracy. However, this type of global air-fuel ratio sensor has a complicated and large structure in which the size of the air introduction passage is large, and has the same problems as the zirconia oxygen concentration battery type theoretical air-fuel ratio sensor.

【0025】本発明は前述の従来の理論空燃比センサに
おける課題を解決するためになされたものであり、その
第1の目的は、温度変化に伴う起電力の変化が小さいな
どの従来の酸素濃淡電池式理論空燃比センサ(例えばジ
ルコニア酸素濃淡電池式理論空燃比センサ)の優れた性
質を全て承継し、且つ空気導入用の通路を必要としない
小形で高性能の薄膜積層型の酸素濃淡電池式理論空燃比
センサ(例えばジルコニア酸素濃淡電池式理論空燃比セ
ンサ)を提供することにある。
The present invention has been made in order to solve the problems in the above-mentioned conventional stoichiometric air-fuel ratio sensor, and the first object thereof is to provide a conventional oxygen concentration such as a small change in electromotive force due to temperature change. A small, high-performance thin-film laminated oxygen concentration battery type that inherits all the excellent properties of a battery-type theoretical air-fuel ratio sensor (for example, a zirconia oxygen concentration battery type theoretical air-fuel ratio sensor) and does not require a passage for introducing air. A theoretical air-fuel ratio sensor (for example, a zirconia oxygen concentration battery type theoretical air-fuel ratio sensor) is provided.

【0026】本発明の第2の目的は、前記酸素濃淡電池
式理論空燃比センサに加えて、耐熱性、安定性に優れ、
しかもセンサ出力の温度依存性が小さいなどの特長を持
ち、且つ空気導入用の通路を必要とせずにリーン領域か
らリッチ領域の全域にわたって空燃比検出計測性能を有
する限界電流式全域空燃比センサ(例えばジルコニア限
界電流式全域空燃比センサ)を有し、理論空燃検出部も
一体化し、原理的に著しく小形化が可能な薄膜積層空燃
比センサを提供することにある。
A second object of the present invention is, in addition to the oxygen concentration battery type theoretical air-fuel ratio sensor, excellent heat resistance and stability,
Moreover, it has a feature that the temperature dependence of the sensor output is small, and does not require a passage for introducing air, and has a limiting current type full-range air-fuel ratio sensor having air-fuel ratio detection and measurement performance from the lean region to the rich region (for example, The present invention is to provide a thin film laminated air-fuel ratio sensor that has a zirconia limiting current type full-range air-fuel ratio sensor) and also has a theoretical air-fuel detection unit integrated with it and can be made extremely small in principle in principle.

【0027】[0027]

【課題を解決するための手段】即ち、本第1の発明の薄
膜積層空燃比センサ〔(i)と称する〕は、多孔質基板
上に第1電極が形成され、第1電極の上に第1固体電解
質及び第3電極が順次積層され、第1固体電解質は第1
電極の周囲を含めて第1電極を覆い隠し、第3電極は第
1固体電解質の周囲を含めて第1固体電解質を覆い隠
し、更に第3電極の上に第2固体電解質及び第4電極が
順次積層され、第2固体電解質及び第4電極は共に第3
電極の周辺部が露出するように配置され、第1電極,第
3電極及び第4電極は多孔質でガス透過性を有する白金
を用いて形成され、第1固体電解質及び第2固体電解質
は緻密でガス透過性を有しない酸素イオン伝導性の固体
電解質を用いて形成されてなり、多孔質基板上に第1電
極,第1固体電解質及び第3電極によって構成され、酸
素濃淡電池式理論空燃比センサとして作動する部分と、
第3電極,第2固体電解質及び第4電極によって構成さ
れ、酸素ポンプセルとして作動する部分とが一体的に形
成されてなるセンサ素子を有することを特徴とする。
That is, in a thin film laminated air-fuel ratio sensor [referred to as (i)] of the first invention, a first electrode is formed on a porous substrate, and a first electrode is formed on the first electrode. The first solid electrolyte and the third electrode are sequentially stacked, and the first solid electrolyte is the first
The first electrode including the circumference of the electrode is covered, the third electrode covers the first solid electrolyte including the circumference of the first solid electrolyte, and the second solid electrolyte and the fourth electrode are further covered on the third electrode. The second solid electrolyte and the fourth electrode are sequentially stacked,
The first electrode, the third electrode, and the fourth electrode are formed by using platinum that is porous and has gas permeability, and the first solid electrolyte and the second solid electrolyte are dense. Is formed using a solid electrolyte of oxygen ion conductivity having no gas permeability, and is composed of a first electrode, a first solid electrolyte and a third electrode on a porous substrate, and has an oxygen concentration cell type theoretical air-fuel ratio. A part that acts as a sensor,
It is characterized in that it has a sensor element which is composed of a third electrode, a second solid electrolyte and a fourth electrode and is integrally formed with a portion which operates as an oxygen pump cell.

【0028】本第1の発明の薄膜積層空燃比センサにお
いて、酸素濃淡電池式理論空燃比センサ部分に更に限界
電流式全域空燃比センサ部分を付加した本第1の発明の
好ましい態様〔(ii)と称する〕は、多孔質基板上に第
1電極と独立して更に第2電極が形成され、第1電極及
び第2電極の上に第1固体電解質及び第3電極が順次積
層され、第1固体電解質は第1電極及び第2電極の周囲
を含めて第1電極及び第2電極を覆い隠し、第3電極は
第1固体電解質の周囲を含めて第1固体電解質を覆い隠
し、更に第3電極の上に第2固体電解質及び第4電極が
順次積層され、第2固体電解質及び第4電極は共に第3
電極の周辺部が露出するように配置され、第1電極,第
2電極,第3電極及び第4電極は多孔質でガス透過性を
有する白金を用いて形成され、第1固体電解質及び第2
固体電解質は緻密でガス透過性を有しない酸素イオン伝
導性の固体電解質を用いて形成されてなり、多孔質基板
上に第1電極,第1固体電解質及び第3電極によって構
成され、酸素濃淡電池式理論空燃比センサとして作動す
る部分と、多孔質基板上に第2電極,第1固体電解質及
び第3電極によって構成され、限界電流式全域空燃比セ
ンサとして作動する部分と、第3電極,第2固体電解質
及び第4電極によって構成され、酸素ポンプセルとして
作動する部分とが一体的に形成されてなるセンサ素子を
有する(i)の薄膜積層空燃比センサである。
In the thin film laminated air-fuel ratio sensor of the first aspect of the invention, a preferred embodiment of the first aspect of the invention in which a limiting current type full range air-fuel ratio sensor portion is further added to the oxygen concentration battery type theoretical air-fuel ratio sensor portion [(ii)] The second electrode is further formed on the porous substrate independently of the first electrode, and the first solid electrolyte and the third electrode are sequentially stacked on the first electrode and the second electrode. The solid electrolyte covers the first electrode and the second electrode including the periphery of the first electrode and the second electrode, the third electrode covers the first solid electrolyte including the periphery of the first solid electrolyte, and the third electrode The second solid electrolyte and the fourth electrode are sequentially stacked on the electrode, and the second solid electrolyte and the fourth electrode are both the third and third electrodes.
The first electrode, the second electrode, the third electrode, and the fourth electrode are arranged so that the peripheral portions of the electrodes are exposed, and the first electrode, the second electrode, the third electrode, and the fourth electrode are formed by using platinum having gas permeability.
The solid electrolyte is formed by using a dense solid electrolyte that does not have gas permeability and has oxygen ion conductivity, and is composed of a first electrode, a first solid electrolyte and a third electrode on a porous substrate. Formula A theoretical air-fuel ratio sensor, a second electrode, a first solid electrolyte and a third electrode on a porous substrate, and a limit current type global air-fuel ratio sensor, a third electrode, a third electrode, The thin-film laminated air-fuel ratio sensor of (i), which has a sensor element that is integrally formed with a portion that is composed of two solid electrolytes and a fourth electrode and that operates as an oxygen pump cell.

【0029】本第1の発明の薄膜積層空燃比センサにお
いて、センサ素子の外表面全体を、触媒金属例えば白
金、ロジウム、パラジウム等の貴金属触媒(酸化触媒)
を所定量担持した被覆層にて被覆すると、排気ガス中の
未燃焼分を完全燃焼させることができ、未燃焼ガスの影
響を受けないのでセンサ特性が向上し好ましい。この場
合の触媒の種類、担持量、被覆層の厚さ、被覆材料は適
宜選択し、単独又は組み合わせて用いる。
In the thin film laminated air-fuel ratio sensor of the first aspect of the present invention, the entire outer surface of the sensor element is covered with a noble metal catalyst (oxidation catalyst) such as a catalytic metal such as platinum, rhodium or palladium.
It is preferable that the coating layer that carries a predetermined amount is used to completely burn the unburned component in the exhaust gas, and the sensor characteristics are improved because it is not affected by the unburned gas. In this case, the type of catalyst, the supported amount, the thickness of the coating layer, and the coating material are appropriately selected and used alone or in combination.

【0030】本第1の発明の薄膜積層空燃比センサにお
いて、第1電極と多孔質基板とが接している部分〔(i
i)では更に第2電極と多孔質基板とが接している部
分〕は、多孔質基板の表面の凹凸がピークとピークの間
が1μm以上あると、酸素濃淡電池式理論空燃比センサ
〔(ii)では更に限界電流式全域空燃比センサ〕として
の性能に良好な結果をもたらすので好ましい。
In the thin film laminated air-fuel ratio sensor of the first aspect of the present invention, the portion where the first electrode is in contact with the porous substrate [(i
In i), the portion where the second electrode is in contact with the porous substrate] has an oxygen concentration cell type theoretical air-fuel ratio sensor [(ii In ()), the performance as a limiting current type full range air-fuel ratio sensor] is further obtained, which is preferable.

【0031】本第1の発明の薄膜積層空燃比センサにお
いて、第1電極〔(ii)では第1電極及び/又は第2電
極〕の多孔質基板と接している部分に微細で互いに連通
する溝が高密度に設けられていると、第1電極〔(ii)
では第1電極及び/又は第2電極〕の面内全体に酸素ガ
スを均一に拡散させることができるので好ましい。前記
溝の大きさ、形状、数等は適宜選択する。
In the thin-film laminated air-fuel ratio sensor of the first aspect of the present invention, fine and continuous grooves are formed in the portion of the first electrode [(ii) the first electrode and / or the second electrode] in contact with the porous substrate. Are densely arranged, the first electrode [(ii)
Then, the oxygen gas can be uniformly diffused over the entire surface of the first electrode and / or the second electrode], which is preferable. The size, shape, number, etc. of the grooves are appropriately selected.

【0032】本第1の発明の薄膜積層空燃比センサにお
いて、第3電極に微細で互いに連通する通路が高密度に
設けられ、更に第3電極に、それらの通路網の外周部と
外部とを第3電極の外周端面を介して接続する通路が設
けられていると、第3電極内の過剰な酸素ガスを外部に
放出することができるので好ましい。前記通路の大き
さ、形状、数等は適時選択する。
In the thin-film laminated air-fuel ratio sensor of the first aspect of the present invention, fine and fine passages communicating with each other are provided in the third electrode at a high density, and the third electrode is provided with the outer peripheral portion of the passage network and the outside. It is preferable to provide a passage that connects through the outer peripheral end surface of the third electrode, because excess oxygen gas in the third electrode can be released to the outside. The size, shape, number, etc. of the passages are selected as appropriate.

【0033】第1電極〔(ii)では第1電極及び/又は
第2電極〕の多孔質基板と接している部分に微細で互い
に連通する溝が高密度に設けられ、第3電極に微細で互
いに連通する通路が高密度に設けられ、且つ更に第3電
極に、それらの通路網の外周部と外部とを第3電極の外
周端面を介して接続する通路が設けられていると、前記
二つの長所が併有されるので一層良い。
Fine and communicating grooves are provided at a high density in a portion of the first electrode [(ii) first electrode and / or second electrode] in contact with the porous substrate, and the third electrode has a fine groove. If the passages communicating with each other are provided at a high density, and further, the third electrode is provided with a passage that connects the outer peripheral portion of the passage network and the outside via the outer peripheral end face of the third electrode, It is even better because it has two advantages.

【0034】それ故、本第1の発明の薄膜積層空燃比セ
ンサ〔(i)〕及びその好ましい態様(ii)において、
一層好ましい態様は以下のものである。 (iii ):センサ素子の外表面全体が、触媒金属を担持
した被覆層にて被覆されてなる(i)又は(ii)の薄膜
積層空燃比センサ。 (iv):第1電極〔(ii)では第1電極及び/又は第2
電極〕の多孔質基板と接している部分に微細で互いに連
通する溝が高密度に設けられてなる(i)ないし(iii
)の何れか一つの薄膜積層空燃比センサ。 (v):第3電極に微細で互いに連通する通路が高密度
に設けられ、更に第3電極に、それらの通路網の外周部
と外部とを第3電極の外周端面を介して接続する通路が
設けられてなる(i)ないし(iii )の何れか一つの薄
膜積層空燃比センサ。 (vi):第1電極〔(ii)では第1電極及び/又は第2
電極〕の多孔質基板と接している部分3微細で互いに連
通する溝が高密度に設けられ、第3電極に微細で互いに
連通する通路が高密度に設けられ、且つ更に第3電極
に、それらの通路網の外周部と外部とを第3電極の外周
端面を介して接続する通路が設けられてなる(i)ない
し(iii )の何れか一つのの薄膜積層空燃比センサ。
Therefore, in the thin film laminated air-fuel ratio sensor [(i)] and its preferred embodiment (ii) of the first invention,
More preferable embodiments are as follows. (Iii): The thin film laminated air-fuel ratio sensor according to (i) or (ii), wherein the entire outer surface of the sensor element is covered with a coating layer carrying a catalytic metal. (Iv): first electrode [in (ii), first electrode and / or second electrode
Electrodes] are provided in the portion in contact with the porous substrate with fine, high-density communicating grooves (i) to (iii).
) Any one thin film laminated air-fuel ratio sensor. (V): Passages in which fine and fine passages that communicate with each other are provided at high density in the third electrode, and further connect the outer peripheral portion of the passage network and the outside to the third electrode via the outer peripheral end face of the third electrode. A thin film laminated air-fuel ratio sensor according to any one of (i) to (iii). (Vi): first electrode [first electrode and / or second electrode in (ii)]
Electrode] The portion 3 in contact with the porous substrate is provided with high density and fine grooves for communicating with each other, and is provided with high density for fine and mutually communicating passages in the third electrode, and further, for the third electrode, A thin-film laminated air-fuel ratio sensor according to any one of (i) to (iii), wherein a passage is provided to connect the outer peripheral portion of the passage network to the outside via the outer peripheral end surface of the third electrode.

【0035】本第1の発明の薄膜積層空燃比センサに使
用する多孔質基板は、この分野において慣用の材料、例
えばアルミナなどを用いて形成してもよい。多孔質基板
の大きさや形状、気孔質、多孔度は最適に選択する。
又、所望により多孔質基板の適する位置にセンサ素子に
加熱手段例えばヒータなど設けてもよい。
The porous substrate used in the thin film laminated air-fuel ratio sensor of the first aspect of the invention may be formed using a material commonly used in this field, such as alumina. The size and shape of the porous substrate, the porosity, and the porosity are optimally selected.
If desired, the sensor element may be provided with a heating means such as a heater at an appropriate position on the porous substrate.

【0036】本第1の発明の薄膜積層空燃比センサに使
用する固体電解質は、例えばジルコニアやイットリアな
どの慣用の材料を単独又は組み合せて用いて、適する大
きさ及び形状のものを形成することができる。
The solid electrolyte used in the thin film laminated air-fuel ratio sensor of the first aspect of the present invention may be formed of a suitable size and shape by using conventional materials such as zirconia and yttria alone or in combination. it can.

【0037】本第1の発明の薄膜積層空燃比センサに使
用する電極は、適する貴金属ペースト例えば白金ペース
トを用いて慣用の方法例えば印刷法により形成してもよ
いし、又は蒸着等により形成してもよい。前記電極の大
きさ、形状及び厚さは適宜選択する。
The electrodes used in the thin film laminated air-fuel ratio sensor of the first aspect of the invention may be formed by a conventional method such as a printing method using a suitable noble metal paste such as platinum paste, or by vapor deposition or the like. Good. The size, shape and thickness of the electrodes are selected appropriately.

【0038】本第1の発明の薄膜積層空燃比センサは、
実際に使用する上でのこの分野における慣用の付帯手
段、例えば電圧印加手段、電圧又は電流測定手段、ヒー
タ加熱手段などを備えていてよい。
The thin film laminated air-fuel ratio sensor of the first invention is
It may be provided with auxiliary means conventionally used in this field for actual use, for example, voltage applying means, voltage or current measuring means, heater heating means and the like.

【0039】本第2の発明の薄膜積層空燃比センサ
〔(vii )と称する〕は、多孔質基板上に第1電極が形
成され、第1電極の上に第1固体電解質及び第3電極が
順次積層され、第1固体電解質は第1電極の周囲を含め
て第1電極を覆い隠し、第3電極は第1固体電解質の周
囲を含めて第1固体電解質を覆い隠し、更に第3電極の
上に開口部を有する第2固体電解質が、第1固体電解質
との間に空間を設けて形成され、第2固体電解質の第3
電極と対向する面に第4電極が形成され且つ第2固体電
解質の第3電極と対向する面と反対側の面に第5電極が
形成され、第2固体電解質及び第5電極は共に第3電極
の周辺部が露出するように配置され、第1電極,第3電
極,第4電極及び第5電極は多孔質でガス透過性を有す
る白金を用いて形成され、第1固体電解質及び第2固体
電解質は緻密でガス透過性を有しない酸素イオン伝導性
の固体電解質を用いて形成されてなり、多孔質基板上に
第1電極,第1固体電解質及び第3電極によって構成さ
れ、酸素濃淡電池式理論空燃比センサとして作動する部
分と、第4電極,第2固体電解質及び第5電極によって
構成され、酸素ポンプセルとして作動する部分とが一体
的に形成されてなるセンサ素子を有することを特徴とす
る。
In the thin film laminated air-fuel ratio sensor [referred to as (vii)] of the second invention, the first electrode is formed on the porous substrate, and the first solid electrolyte and the third electrode are formed on the first electrode. Sequentially stacked, the first solid electrolyte covers the first electrode including the periphery of the first electrode, the third electrode covers the first solid electrolyte including the periphery of the first solid electrolyte, and further the third electrode The second solid electrolyte having an opening above is formed with a space provided between the second solid electrolyte and the third solid electrolyte of the second solid electrolyte.
A fourth electrode is formed on the surface facing the electrode, and a fifth electrode is formed on the surface of the second solid electrolyte opposite to the surface facing the third electrode, and the second solid electrolyte and the fifth electrode are both third electrodes. The first electrode, the third electrode, the fourth electrode, and the fifth electrode are arranged so that the peripheral portions of the electrodes are exposed, and are made of platinum that is porous and has gas permeability. The solid electrolyte is formed by using a dense solid electrolyte that does not have gas permeability and has oxygen ion conductivity, and is composed of a first electrode, a first solid electrolyte and a third electrode on a porous substrate. Formula: A sensor element having a portion that operates as a theoretical air-fuel ratio sensor and a portion that includes a fourth electrode, a second solid electrolyte and a fifth electrode and that operates as an oxygen pump cell are integrally formed. To do.

【0040】本第2の発明の薄膜積層空燃比センサにお
いて、酸素濃淡電池式理論空燃比センサ部分に更に限界
電流式全域空燃比センサ部分を付加した本第1の発明の
好ましい態様〔(viii)と称する〕は、多孔質基板上に
第1電極と独立して更に第2電極が形成され、第1電極
及び第2電極の上に第1固体電解質及び第3電極が順次
積層され、第1固体電解質は第1電極及び第2電極の周
囲を含めて第1電極及び第2電極を覆い隠し、第3電極
は第1固体電解質の周囲を含めて第1固体電解質を覆い
隠し、更に第3電極の上に開口部を有する第2固体電解
質が、第1固体電解質との間に空間を設けて形成され、
第2固体電解質の第3電極と対向する面に第4電極が形
成され且つ第2固体電解質の第3電極と対向する面と反
対側の面に第5電極が形成され、第2固体電解質及び第
5電極は共に第3電極の周辺部が露出するように配置さ
れ、第1電極,第2電極,第3電極,第4電極及び第5
電極は多孔質でガス透過性を有する白金を用いて形成さ
れ、第1固体電解質及び第2固体電解質は緻密でガス透
過性を有しない酸素イオン伝導性の固体電解質を用いて
形成されてなり、多孔質基板上に第1電極,第1固体電
解質及び第3電極によって構成され、酸素濃淡電池式理
論空燃比センサとして作動する部分と、多孔質基板上に
第2電極,第1固体電解質及び第3電極によって構成さ
れ、限界電流式全域空燃比センサとして作動する部分
と、第4電極,第2固体電解質及び第5電極によって構
成され、酸素ポンプセルとして作動する部分とが一体的
に形成されてなるセンサ素子を有することを特徴とす
る。
In the thin film laminated air-fuel ratio sensor of the second aspect of the invention, a preferred embodiment of the first aspect of the invention in which a limiting current type full range air-fuel ratio sensor portion is further added to the oxygen concentration battery type theoretical air-fuel ratio sensor portion [(viii) The second electrode is further formed on the porous substrate independently of the first electrode, and the first solid electrolyte and the third electrode are sequentially stacked on the first electrode and the second electrode. The solid electrolyte covers the first electrode and the second electrode including the periphery of the first electrode and the second electrode, the third electrode covers the first solid electrolyte including the periphery of the first solid electrolyte, and the third electrode A second solid electrolyte having an opening on the electrode is formed with a space provided between the second solid electrolyte and the first solid electrolyte,
A fourth electrode is formed on the surface of the second solid electrolyte facing the third electrode, and a fifth electrode is formed on the surface of the second solid electrolyte opposite to the surface facing the third electrode. The fifth electrode is disposed so that the peripheral portion of the third electrode is exposed, and the first electrode, the second electrode, the third electrode, the fourth electrode, and the fifth electrode.
The electrodes are formed of platinum that is porous and has gas permeability, and the first solid electrolyte and the second solid electrolyte are formed of dense and non-gas permeable oxygen ion conductive solid electrolyte, A portion composed of the first electrode, the first solid electrolyte and the third electrode on the porous substrate, which operates as an oxygen concentration battery type theoretical air-fuel ratio sensor, and the second electrode, the first solid electrolyte and the first electrode on the porous substrate. A part composed of three electrodes, which operates as a limiting current type global air-fuel ratio sensor, and a part composed of a fourth electrode, a second solid electrolyte and a fifth electrode, which operates as an oxygen pump cell are integrally formed. It is characterized by having a sensor element.

【0041】本第2の発明の薄膜積層空燃比センサにお
いては、本第1の発明の薄膜積層空燃比センサと異な
り、第3電極の上に開口部を有する第2固体電解質が、
第1固体電解質との間に空間を設けて形成されている。
前記空間の大きさ(容積)、形状は適宜選択する。又、
前記空間は、適する多孔性材料例えば発泡セラミックに
より充填されていてもよい。第4電極,第2固体電解質
及び第5電極によって構成された酸素ポンプセルにより
前記空間内に供給される酸素ガスの量が過剰である場合
には、第2固体電解質の開口部より酸素ガスがセンサ素
子の外部に放出されるので、前記空間内の酸素ガス分圧
は常に最適に制御される。
In the thin film laminated air-fuel ratio sensor of the second aspect of the invention, unlike the thin film laminated air-fuel ratio sensor of the first aspect of the invention, the second solid electrolyte having an opening above the third electrode is
A space is provided between the first solid electrolyte and the first solid electrolyte.
The size (volume) and shape of the space are appropriately selected. or,
The space may be filled with a suitable porous material, for example foam ceramic. When the amount of oxygen gas supplied into the space by the oxygen pump cell composed of the fourth electrode, the second solid electrolyte and the fifth electrode is excessive, oxygen gas is detected from the opening of the second solid electrolyte. Since it is released to the outside of the device, the partial pressure of oxygen gas in the space is always optimally controlled.

【0042】第2固体電解質に設ける開口部の大きさ、
形状、数は、センサ素子の所定の性能が得られる様に適
宜選択する。開口部としては例えばピンホールを用いる
ことができる。
The size of the opening provided in the second solid electrolyte,
The shape and the number are appropriately selected so that a predetermined performance of the sensor element can be obtained. A pinhole, for example, can be used as the opening.

【0043】本第2の発明の薄膜積層空燃比センサ
〔(vii )〕及びその好ましい態様(viii)において、
一層好ましい態様は以下のものである。(ix)センサ素
子の外表面全体が、触媒金属を担持した被覆層にて被覆
されてなる(vii )又は(viii)の薄膜積層空燃比セン
サ。(x)第1電極〔(viii)では第1電極及び/又は
第2電極〕の多孔質基板と接している部分に微細で互い
に連通する溝が高密度に設けられてなる(vii )ないし
(ix)の何れか一つの薄膜積層空燃比センサ。(xi)第
3電極に微細で互いに連通する通路が高密度に設けら
れ、更に第3電極に、それらの通路網の外周部と外部と
を第3電極の外周端面を介して接続する通路が設けられ
てなる(vii )ないし(ix)の何れか一つの薄膜積層空
燃比センサ。(xii )第1電極〔(viii)では第1電極
及び/又は第2電極〕の多孔質基板と接している部分に
微細で互いに連通する溝が高密度に設けられ、第3電極
に微細で互いに連通する通路が高密度に設けられ、且つ
更に第3電極に、それらの通路網の外周部と外部とを第
3電極の外周端面を介して接続する通路が設けられてな
る(vii )ないし(ix)の何れか一つの薄膜積層空燃比
センサ。
In the thin film laminated air-fuel ratio sensor [(vii)] and its preferred embodiment (viii) of the second invention,
More preferable embodiments are as follows. (Ix) The thin film laminated air-fuel ratio sensor according to (vii) or (viii), wherein the entire outer surface of the sensor element is covered with a coating layer carrying a catalytic metal. (X) Fine and communicating grooves are provided at high density in a portion of the first electrode [the first electrode and / or the second electrode in (viii) that is in contact with the porous substrate] (vii) or ( ix) Any one of the thin film laminated air-fuel ratio sensors. (Xi) The third electrodes are provided with minute and fine passages that communicate with each other at high density, and further, the third electrodes are provided with passages that connect the outer peripheral portion of the passage network and the outside through the outer peripheral end face of the third electrode. The thin film laminated air-fuel ratio sensor according to any one of (vii) to (ix). (Xii) Fine and dense grooves for communicating with each other are provided in a portion of the first electrode [the first electrode and / or the second electrode in (viii)] that is in contact with the porous substrate, and the third electrode has fine grooves. Passages communicating with each other are provided at high density, and further, passages are provided in the third electrode for connecting the outer peripheral portion of the passage network and the outside through the outer peripheral end face of the third electrode (vii). A thin film laminated air-fuel ratio sensor according to any one of (ix).

【0044】本第2の発明の薄膜積層空燃比センサにお
ける他の構成要素及び付帯手段に関しては、本第1の発
明の薄膜積層空燃比センサにおける構成要素と同様の事
が言える。
With respect to the other constituent elements and auxiliary means in the thin film laminated air-fuel ratio sensor of the second aspect of the present invention, the same things as the constituent elements of the thin film laminated air-fuel ratio sensor of the first aspect of the invention can be said.

【0045】[0045]

【作用】本発明の薄膜積層空燃比センサは、従来のジル
コニア理論空燃比センサの場合のように、一方の電極に
高濃度の酸素濃度を維持するための空気(外気)導入用
の通路を設けて拡散により自然に空気をセンサ素子に供
給するのではなく、車両エンジン燃焼排気中に多量に含
まれている水蒸気及び二酸化炭素から酸素を解離させて
酸素イオンを酸素ポンプ作用により強制的に供給する。
又、本発明のセンサは、酸素ポンプセルの下に酸素濃淡
電池セルが多孔質基板上に薄膜手法にて積層されている
ため、低消費電力で急速加熱、急速昇温及び急速作動が
可能であり、理論空燃比を精度良く測定することができ
る。なお、本発明の薄膜積層空燃比センサにおいて、酸
素濃淡電池セルに加えて更に限界電流セルを付加した態
様は、理論空燃比に加えて更に全域空燃比も測定が可能
である。
In the thin film laminated air-fuel ratio sensor of the present invention, as in the case of the conventional zirconia theoretical air-fuel ratio sensor, one electrode is provided with a passage for introducing air (outside air) for maintaining a high oxygen concentration. Rather than naturally supplying air to the sensor element by diffusion, oxygen is dissociated from water vapor and carbon dioxide contained in a large amount in the vehicle engine combustion exhaust gas, and oxygen ions are forcibly supplied by the oxygen pump action. .
Further, in the sensor of the present invention, since the oxygen concentration battery cell is laminated under the oxygen pump cell on the porous substrate by the thin film method, rapid heating, rapid temperature rising and rapid operation are possible with low power consumption. The stoichiometric air-fuel ratio can be measured with high accuracy. In addition, in the thin film laminated air-fuel ratio sensor of the present invention, in a mode in which a limiting current cell is further added in addition to the oxygen concentration battery cell, it is possible to measure the entire range air-fuel ratio in addition to the theoretical air-fuel ratio.

【0046】[0046]

【実施例】以下の実施例により、本発明を更に詳細に説
明する。
The present invention will be described in more detail with reference to the following examples.

【0047】実施例1(第1の発明) 図1に本発明の実施例1のセンサを示す。本センサの構
成としては、例えばアルミナなどからなる多孔質基板1
上に第1電極2、第1固体電解質3及び第3電極4が順
次積層され、第1固体電解質3は第1電極2の周囲を含
めて第1電極2を覆い隠し、第3電極4は第1固体電解
質3の周囲を含めて第1固体電解質3を覆い隠し、更に
第3電極4の上に第2固体電解質5及び第4電極6が順
次積層され、第2固体電解質5及び第4電極6は共に第
3電極4の周辺部が露出するように配置され、第1電極
2、第3電極4及び第4電極6は多孔質でガス透過性を
有する白金を用いて形成され(白金ペーストを塗布する
印刷法によって形成した)、第1固体電解質3及び第2
固体電解質5は緻密でガス透過性を有しない酸素イオン
伝導性の固体電解質を用いて形成した(ジルコニアを用
いた)。
Embodiment 1 (First Invention) FIG. 1 shows a sensor according to Embodiment 1 of the present invention. The structure of this sensor is, for example, a porous substrate 1 made of alumina or the like.
A first electrode 2, a first solid electrolyte 3 and a third electrode 4 are sequentially stacked on top of each other. The first solid electrolyte 3 covers the first electrode 2 including the periphery of the first electrode 2, and the third electrode 4 is The first solid electrolyte 3 including the periphery of the first solid electrolyte 3 is covered and hidden, and the second solid electrolyte 5 and the fourth electrode 6 are sequentially stacked on the third electrode 4, and the second solid electrolyte 5 and the fourth solid electrolyte 4 are formed. The electrodes 6 are both arranged so that the peripheral portion of the third electrode 4 is exposed, and the first electrode 2, the third electrode 4, and the fourth electrode 6 are made of porous and gas-permeable platinum (platinum). Formed by a printing method of applying a paste), a first solid electrolyte 3 and a second solid electrolyte 3
The solid electrolyte 5 was formed by using a dense solid electrolyte having oxygen ion conductivity and having no gas permeability (using zirconia).

【0048】又、多孔質基板1の裏面にはヒータ7を設
けた。ヒータ7はヒータ加熱手段8に接続されている。
なお、ヒータ7の材質は白金、ロジウム、パラジウム等
の貴金属又はそれらの合金やSiC,W,Re,Moな
どからなる耐熱導電材料が適しており、本例では白金を
用いた。
A heater 7 was provided on the back surface of the porous substrate 1. The heater 7 is connected to the heater heating means 8.
The heater 7 is preferably made of a noble metal such as platinum, rhodium or palladium, or an alloy thereof, or a heat-resistant conductive material such as SiC, W, Re or Mo, and platinum was used in this example.

【0049】更に、図1に示すように、第4電極6に対
して第3電極4に正の電圧を印加するための電圧印加手
段9を設けた。10は第1電極2に対する第3電極4の
電位差(電圧)を測定するための電圧測定手段である。
Further, as shown in FIG. 1, a voltage applying means 9 for applying a positive voltage to the third electrode 4 with respect to the fourth electrode 6 is provided. Reference numeral 10 is a voltage measuring means for measuring the potential difference (voltage) of the third electrode 4 with respect to the first electrode 2.

【0050】第4電極6に対して第3電極4に正の電圧
を印加すると、第2固体電解質5を含めたこの部分で
は、酸素ポンプ作用により、第4電極6側から第3電極
4側へ酸素イオンが輸送される。この場合、リーン空燃
比雰囲気下では、雰囲気中に残留している酸素がガス拡
散により第4電極6に供給される。一方、リッチ空燃比
雰囲気下では、雰囲気中に酸素が充分に存在しないた
め、雰囲気中からガス拡散により第4電極6に供給され
た水蒸気及び二酸化炭素が第4電極6で解離されて酸素
イオンが生成され、前記の場合と同様に酸素イオンが輸
送される。輸送された酸素イオンは第2固体電解質5と
第3電極4との界面で酸素ガスに変換される。このよう
にして、多孔質の第3電極4の中においては、リーン空
燃比雰囲気下であるかリッチ空燃比雰囲気下であるかに
係わらず、常に酸素過剰状態が保たれる。
When a positive voltage is applied to the third electrode 4 with respect to the fourth electrode 6, in this portion including the second solid electrolyte 5, the oxygen pumping action causes the side from the fourth electrode 6 side to the third electrode 4 side. Oxygen ions are transported to. In this case, under a lean air-fuel ratio atmosphere, oxygen remaining in the atmosphere is supplied to the fourth electrode 6 by gas diffusion. On the other hand, in a rich air-fuel ratio atmosphere, since oxygen is not sufficiently present in the atmosphere, water vapor and carbon dioxide supplied from the atmosphere to the fourth electrode 6 by gas diffusion are dissociated at the fourth electrode 6 to generate oxygen ions. Oxygen ions are produced and transported as in the previous case. The transported oxygen ions are converted into oxygen gas at the interface between the second solid electrolyte 5 and the third electrode 4. Thus, in the porous third electrode 4, the excess oxygen state is always maintained regardless of the lean air-fuel ratio atmosphere or the rich air-fuel ratio atmosphere.

【0051】第1電極2、第1固体電解質3及び第3電
極4からなる部分は、酸素濃淡電池式空燃比検出部とし
て作用し、起電力から理論空燃比を測定することができ
る。この状態で、センサ周囲の燃焼排気中の空気過剰量
率をパラメータにして、前記酸素濃淡電池式空燃比検出
部の起電力特性を測定すると、図2が得られた。
The portion composed of the first electrode 2, the first solid electrolyte 3 and the third electrode 4 functions as an oxygen concentration cell type air-fuel ratio detecting section, and the stoichiometric air-fuel ratio can be measured from the electromotive force. In this state, the electromotive force characteristics of the oxygen concentration cell type air-fuel ratio detection section were measured using the excess air ratio in the combustion exhaust gas around the sensor as a parameter, and FIG. 2 was obtained.

【0052】第3電極4は多孔質体であり、その外周部
がセンサの外部と連通しているので、第3電極4へ過剰
な酸素が供給された場合には、外周部から外部へ過剰な
酸素が排出されるので測定の障害にはならない。又、第
1電極2内の酸素ガスは多孔質基板1内に排出される。
Since the third electrode 4 is a porous body and its outer peripheral portion communicates with the outside of the sensor, when excessive oxygen is supplied to the third electrode 4, the third electrode 4 is excessively discharged from the outer peripheral portion to the outside. Since no oxygen is discharged, it does not hinder the measurement. Further, the oxygen gas in the first electrode 2 is discharged into the porous substrate 1.

【0053】実施例2(第1の発明) 図3に本発明の実施例2のセンサを示す。本センサは第
1電極2の多孔質基板1と接している部分に微細で互い
に連通する溝11が高密度に設けられたこと以外は実施
例1のセンサと同じである。理論空燃比センサでは白金
電極を用いているが、白金は酸化・還元の繰り返しに対
する耐久性が必ずしも充分ではないことから、多孔質層
によって表面を被覆して雰囲気中から電極表面に到達す
るガスの拡散量を制限することにより劣化を抑制する
と、長期安定性も得易くなる。そこで、拡散抵抗の大き
い多孔質基板1を用いてガスの拡散量を下げるのが有効
な方法であるが、その反面、第1電極2の面内に酸素ガ
スが供給され難い部分(無効部分)、即ち、過渡応答時
間の長い部分が生じる。すると、過渡応答時間の短い正
常な部分の起電力と、過渡応答時間の長い不正常な部分
の起電力とが相互に影響を及ぼし合うことにより、全体
として起電力の変化が緩慢な特性となり、これは空燃比
制御用センサとしては不適切である。本実施例は、この
問題に対して有効な解決策を与えるものである。
Second Embodiment (First Invention) FIG. 3 shows a sensor according to a second embodiment of the present invention. The present sensor is the same as the sensor of the first embodiment except that fine and communicating grooves 11 are provided at a high density in a portion of the first electrode 2 which is in contact with the porous substrate 1. Although the theoretical air-fuel ratio sensor uses a platinum electrode, platinum does not always have sufficient durability against repeated oxidation / reduction, so the surface of the sensor is covered with a porous layer to prevent the gas reaching the electrode surface from the atmosphere. When the deterioration is suppressed by limiting the diffusion amount, long-term stability can be easily obtained. Therefore, it is an effective method to reduce the diffusion amount of gas by using the porous substrate 1 having a large diffusion resistance, but on the other hand, a portion (ineffective portion) where oxygen gas is difficult to be supplied in the surface of the first electrode 2 That is, a long transient response time occurs. Then, the electromotive force of the normal portion having a short transient response time and the electromotive force of the abnormal portion having a long transient response time affect each other, resulting in a characteristic that the change of the electromotive force is slow as a whole. This is unsuitable as a sensor for air-fuel ratio control. The present embodiment provides an effective solution to this problem.

【0054】溝11は、第1電極2の面内での酸素ガス
の拡散を容易にし、面内の酸素濃度分布を低く抑制する
作用が有る。これにより、拡散抵抗の大きな多孔質基板
1を用いた場合の第1電極2の面内の酸素ガスが供給さ
れ難い部分(無効部分)、即ち、過渡応答時間の長い不
正常な部分の発生を抑制でき、電極面内の過渡応答時間
を一定に揃えることができる。従って、全体として起電
力の変化が緩慢な空燃比制御用センサとして不適切な特
性となることが防止され、良好な耐久性が得られると共
に、長期安定性に対しても非常に良い結果が得られるよ
うになった。
The groove 11 has the function of facilitating the diffusion of oxygen gas within the surface of the first electrode 2 and suppressing the oxygen concentration distribution within the surface to a low level. As a result, when the porous substrate 1 having a large diffusion resistance is used, the generation of a portion (ineffective portion) where oxygen gas is difficult to be supplied in the plane of the first electrode 2, that is, an abnormal portion having a long transient response time is generated. It can be suppressed, and the transient response time in the electrode plane can be made uniform. Therefore, it is possible to prevent the characteristics unsuitable for an air-fuel ratio control sensor in which the change in electromotive force is slow as a whole, and to obtain good durability and very good results for long-term stability. Came to be.

【0055】図4は図3のセンサの第1電極2の平面図
である。本例では溝11は所定間隔で格子状に設けた。
FIG. 4 is a plan view of the first electrode 2 of the sensor of FIG. In this example, the grooves 11 are provided in a grid pattern at predetermined intervals.

【0056】実施例3(第1の発明) 図5に本発明の実施例3のセンサを示す。本センサは第
3電極4に微細で互いに連通する通路12が高密度に設
けられ、更に第3電極4に、それらの通路網の外周部と
外部とを第3電極4の外周端面を介して接続する通路1
3が設けられたこと以外は実施例1のセンサと同じであ
る。
Embodiment 3 (First Invention) FIG. 5 shows a sensor according to Embodiment 3 of the present invention. In this sensor, fine and fine passages 12 that communicate with each other are provided in the third electrode 4 at a high density. Further, the third electrode 4 is provided with the outer peripheral portion of the passage network and the outside through the outer peripheral end face of the third electrode 4. Passage 1 to connect
The sensor is the same as that of the first embodiment except that 3 is provided.

【0057】酸素ポンプの作用により第3電極4内の圧
力が外部の圧力より高まれば、上述の微細な通路13及
び通路14を通じて過剰な酸素ガスが外部に排出される
ことにより、第2電極4内の圧力の上昇は抑制される。
If the pressure inside the third electrode 4 becomes higher than the outside pressure by the action of the oxygen pump, excess oxygen gas is discharged to the outside through the fine passages 13 and 14 described above, so that the second electrode 4 is discharged. The rise in internal pressure is suppressed.

【0058】図6に図5のセンサの第3電極4のA−A
線に沿った平面図を示す。本例では通路12は所定間隔
で格子状に設け、又、通路13は通路12の外周部と外
部とを接続するように通路12の外周部に縦横方向に設
けた。
FIG. 6 shows the AA of the third electrode 4 of the sensor of FIG.
Figure 3 shows a plan view along the line. In this example, the passages 12 are provided in a grid pattern at predetermined intervals, and the passages 13 are provided in the outer peripheral portion of the passage 12 in the vertical and horizontal directions so as to connect the outer peripheral portion of the passage 12 to the outside.

【0059】実施例4(第1の発明) 図7に本発明の実施例4のセンサを示す。本センサは実
施例2のセンサと同様に第1電極2の多孔質基板1と接
している部分に微細で互いに連通する溝11が高密度に
設けられ、又、実施例3のセンサと同様に第3電極4に
微細で互いに連通する通路12が高密度に設けられ、更
に第3電極4に、それらの通路網の外周部と外部とを第
3電極4の外周端面を介して接続する通路13が設けら
れたこと以外は実施例1のセンサと同じである。
Embodiment 4 (First Invention) FIG. 7 shows a sensor according to Embodiment 4 of the present invention. Similar to the sensor of the second embodiment, this sensor is provided with fine and dense grooves 11 communicating with each other in the portion of the first electrode 2 which is in contact with the porous substrate 1, and like the sensor of the third embodiment. Passages 12 that are fine and communicate with each other are provided at high density in the third electrode 4, and further, a passage that connects the outer peripheral portion of the passage network and the outside to the third electrode 4 via the outer peripheral end face of the third electrode 4. The sensor is the same as that of the first embodiment except that 13 is provided.

【0060】それ故、本センサは実施例2のセンサの前
記長所と実施例3のセンサの前記長所とを併有してい
る。
Therefore, this sensor has both the advantages of the sensor of the second embodiment and the advantages of the sensor of the third embodiment.

【0061】図8は図7のセンサの第1電極2の平面図
である。本例では溝11は所定間隔で格子状に設けた。
又、図9は図7のセンサの第3電極4のA−A線に沿っ
た平面図である。本例では通路12は所定間隔で格子状
に設け、通路13は通路12の外周部と外部とを接続す
るように通路12の外周部に縦横方向に設けた。
FIG. 8 is a plan view of the first electrode 2 of the sensor of FIG. In this example, the grooves 11 are provided in a grid pattern at predetermined intervals.
9 is a plan view of the third electrode 4 of the sensor of FIG. 7 taken along the line AA. In this example, the passages 12 are provided in a lattice pattern at a predetermined interval, and the passages 13 are provided in the outer peripheral portion of the passage 12 in the vertical and horizontal directions so as to connect the outer peripheral portion of the passage 12 to the outside.

【0062】実施例5(第1の発明) 図10に本発明の実施例5のセンサを示す。本センサの
構成は、例えばアルミナなどからなる多孔質基板1(多
孔質基板の表面の凹凸がピークとピークの間が1μm以
上ある)上に第1電極2、第1電極に並行して配列され
た第2電極143、第1固体電解質3及び第3電極4が
順次積層され、第1固体電解質3は第1電極2及び第2
電極14の周囲を含めて第1電極2及び第2電極14を
覆い隠し、又第3電極4は第1固体電解質3の周囲を含
めて第1固体電解質3を覆い隠し、更に第3電極4上に
第2固体電解質5及び第4電極6が順次積層され、第2
固体電解質5及び第4電極6は共に第3電極4の周辺部
が露出するように配置され、第1電極2、第2電極1
4、第3電極4及び第4電極6は多孔質でガス透過性を
有する白金を用いて形成され(例えば、白金ペーストを
塗布する印刷法によって形成する)、第1固体電解質3
及び第2固体電解質5は緻密でガス透過性を有しない酸
素イオン伝導性の固体電解質(例えば、ジルコニア)を
用いて形成されている。
Embodiment 5 (First Invention) FIG. 10 shows a sensor according to Embodiment 5 of the present invention. The structure of this sensor is such that a first electrode 2 and a first electrode are arranged in parallel on a porous substrate 1 (for example, unevenness on the surface of the porous substrate has a peak interval of 1 μm or more) made of alumina or the like. The second electrode 143, the first solid electrolyte 3 and the third electrode 4 are sequentially stacked, and the first solid electrolyte 3 includes the first electrode 2 and the second solid electrolyte 3.
The first electrode 2 and the second electrode 14 including the periphery of the electrode 14 are covered, and the third electrode 4 covers the first solid electrolyte 3 including the periphery of the first solid electrolyte 3, and the third electrode 4 is further covered. The second solid electrolyte 5 and the fourth electrode 6 are sequentially stacked on top of the second
Both the solid electrolyte 5 and the fourth electrode 6 are arranged so that the peripheral portion of the third electrode 4 is exposed, and the first electrode 2 and the second electrode 1
4, the third electrode 4 and the fourth electrode 6 are formed by using platinum that is porous and has gas permeability (for example, is formed by a printing method of applying a platinum paste), and the first solid electrolyte 3
The second solid electrolyte 5 is formed by using a dense solid electrolyte having no gas permeability and having oxygen ion conductivity (for example, zirconia).

【0063】又、多孔質基板1の裏側にはヒータ7を設
けた。ヒータ7はヒータ加熱手段8に接続されている。
なお、ヒータ7の材質は白金、ロジウム、パラジウム等
の貴金属又はそれらの合金やSiC,W,Re,Moな
どからなる耐熱導電材料が適しており、本例では白金を
用いた。
A heater 7 was provided on the back side of the porous substrate 1. The heater 7 is connected to the heater heating means 8.
The heater 7 is preferably made of a noble metal such as platinum, rhodium or palladium, or an alloy thereof, or a heat-resistant conductive material such as SiC, W, Re or Mo, and platinum was used in this example.

【0064】更に、図10に示すように、第4電極6に
対して第3電極4に正の電圧を印加するための電圧印加
手段15を設けた。又、第2電極14に対して第3電極
4に正の電圧を印加するための電圧印加手段16を設け
た。17は流れる電流を測定するための電流測定手段で
ある。又、第1電極2と第3電極4の間に発生する起電
力を測定するための電圧測定手段10を設けた。
Further, as shown in FIG. 10, a voltage applying means 15 for applying a positive voltage to the third electrode 4 with respect to the fourth electrode 6 is provided. Further, the voltage applying means 16 for applying a positive voltage to the third electrode 4 with respect to the second electrode 14 is provided. Reference numeral 17 is a current measuring means for measuring the flowing current. Further, the voltage measuring means 10 for measuring the electromotive force generated between the first electrode 2 and the third electrode 4 is provided.

【0065】第4電極6に対して第3電極4に正の電圧
を印加すると、第2固体電解質5を含めたこの部分で
は、酸素ポンプ作用により、第4電極6から第3電極4
側へ酸素イオンが輸送される。この場合、リーン空燃比
雰囲気下では、排気中に残っている酸素ガス、更に、排
気中に含まれている水蒸気、二酸化炭素は第4電極6に
て解離され酸素イオンが生成される。一方、リッチ空燃
比雰囲気下では、雰囲気中に酸素が充分に存在しないた
め、排気中に含まれる水蒸気、二酸化炭素は第4電極6
で解離されて酸素イオンが生成される。生成した酸素イ
オンは第2固体電解質5中をイオン伝導し第3電極4へ
輸送され、第2固体電解質5と第3電極4との界面で酸
素ガスに変換される。このようにして、多孔質の第3電
極4の中においては、リーン空燃比雰囲気下であるかリ
ッチ雰囲気下であるかに係わらず、、常に酸素過剰状態
が保たれる。
When a positive voltage is applied to the third electrode 4 with respect to the fourth electrode 6, the oxygen pumping action causes the fourth electrode 6 to the third electrode 4 in this portion including the second solid electrolyte 5.
Oxygen ions are transported to the side. In this case, under a lean air-fuel ratio atmosphere, oxygen gas remaining in the exhaust gas, and further steam and carbon dioxide contained in the exhaust gas are dissociated at the fourth electrode 6 to generate oxygen ions. On the other hand, in a rich air-fuel ratio atmosphere, oxygen is not sufficiently present in the atmosphere, so that water vapor and carbon dioxide contained in the exhaust gas are not contained in the fourth electrode 6
Is dissociated to generate oxygen ions. The generated oxygen ions are ion-conducted in the second solid electrolyte 5 and are transported to the third electrode 4, and are converted into oxygen gas at the interface between the second solid electrolyte 5 and the third electrode 4. In this way, in the porous third electrode 4, the excess oxygen state is always maintained regardless of the lean air-fuel ratio atmosphere or the rich atmosphere.

【0066】第2電極14、第1固体電解質3及び第3
電極4からなる部分は、限界電流式全域空燃比センサと
して作動し、限界電流から空燃比を測定することができ
る。この状態で、センサ周囲の燃焼排気中の空気過剰率
をパラメータにして、前記限界電流式全域空燃比センサ
の電流−電圧特性を測定すると図11が得られた。更
に、図11中の一点鎖線で示す印加電圧を与えて測定し
た電流を図12に示す。
Second electrode 14, first solid electrolyte 3 and third
The portion including the electrode 4 operates as a limiting current type global air-fuel ratio sensor, and the air-fuel ratio can be measured from the limiting current. In this state, using the excess air ratio in the combustion exhaust gas around the sensor as a parameter, the current-voltage characteristics of the limiting current type global air-fuel ratio sensor were measured, and FIG. 11 was obtained. Further, FIG. 12 shows a current measured by applying an applied voltage shown by a chain line in FIG.

【0067】一方、第1電極2、第1固体電解質3及び
第3電極4からなる部分は、酸素濃淡電池式理論空燃比
センサとして作動し、起電力の急変特性から理論空燃比
を測定することができる。よって、センサ周囲の燃焼排
気中の空気過剰率をパラメータにして、前記酸素濃淡電
池式理論空燃比センサの起電力特性を測定すると図2に
示す関係と同様の関係が得られた。
On the other hand, the portion consisting of the first electrode 2, the first solid electrolyte 3 and the third electrode 4 operates as an oxygen concentration cell type theoretical air-fuel ratio sensor, and the theoretical air-fuel ratio should be measured from the sudden change characteristic of electromotive force. You can Therefore, when the electromotive force characteristic of the oxygen concentration battery type theoretical air-fuel ratio sensor was measured using the excess air ratio in the combustion exhaust gas around the sensor as a parameter, the same relation as shown in FIG. 2 was obtained.

【0068】実施例5のセンサの空燃比センサ部分との
比較のために、従来技術による空燃比センサの特性を図
18及び図19に示す。図18は図11に対応する図で
あり、図19は図12に対応する図である。図18は図
11、及び図19は図12の比較から明らかなように、
従来技術の空燃比センサでは空気過剰率が1より小さい
(即ち、燃料リッチ)雰囲気下に於いて、限界電流特性
が第3象限に現れていたのに対し、本発明のセンサの空
燃比センサ部分では第4象限に現れている。
The characteristics of the air-fuel ratio sensor according to the prior art are shown in FIGS. 18 and 19 for comparison with the air-fuel ratio sensor portion of the sensor of the fifth embodiment. 18 is a diagram corresponding to FIG. 11, and FIG. 19 is a diagram corresponding to FIG. As is clear from the comparison of FIG. 18 with FIG. 11 and FIG. 19 with FIG.
In the air-fuel ratio sensor of the prior art, the limiting current characteristic appears in the third quadrant in an atmosphere in which the excess air ratio is smaller than 1 (that is, fuel rich), whereas the air-fuel ratio sensor portion of the sensor of the present invention. Then it appears in the 4th quadrant.

【0069】その結果、従来品では空気過剰率が1より
大きい(即ち、燃料リーン)雰囲気下では正の印加電
圧、空気過剰率が1より小さい(即ち、燃料リッチ)雰
囲気下では負の印加電圧と、印加電圧の極性を切り替え
る必要が有ったのに対し、本実施例品では空燃比センサ
部分は常に正の印加電圧でよいことから、極性切り替え
の必要が無くなった。
As a result, the conventional product has a positive applied voltage in an atmosphere in which the excess air ratio is greater than 1 (that is, fuel lean) and a negative applied voltage in an atmosphere in which the excess air ratio is less than 1 (ie, fuel rich). While it was necessary to switch the polarity of the applied voltage, the air-fuel ratio sensor portion of the present embodiment does not need to switch the polarity because the positive applied voltage is always required.

【0070】従って、本実施例品においては検出雰囲気
が燃料リーンであるか燃料リッチであるかを検出するた
めの手段を別途設ける必要も無くなった。
Therefore, in the product of this embodiment, it is not necessary to additionally provide means for detecting whether the detection atmosphere is fuel lean or fuel rich.

【0071】又、印加電圧の極性を切り替える必要が無
くなったことにより、本実施例品においては切り替えに
伴うノイズ的な出力信号成分の発生も無くなった。
Further, since it is no longer necessary to switch the polarity of the applied voltage, in the product of this embodiment, the generation of a noise-like output signal component due to the switching is also eliminated.

【0072】本実施例のセンサの空燃比センサ部分で
は、従来技術による全域空燃比センサのように外気から
の酸素導入部を有しないが、前記の如く、第3電極4上
に酸素ポンプとして作用する電気化学セルを付加するこ
とにより酸素を供給せしめ、従来技術による全域空燃比
センサと等価な作用を行わせている。
The air-fuel ratio sensor portion of the sensor of this embodiment does not have an oxygen introducing portion from the outside air unlike the conventional full-range air-fuel ratio sensor, but as described above, it functions as an oxygen pump on the third electrode 4. Oxygen is supplied by the addition of an electrochemical cell to perform an operation equivalent to that of the conventional air-fuel ratio sensor of the prior art.

【0073】実施例6(第1の発明) 図13に本発明の実施例6のセンサを示す。本センサは
第1電極2及び第2電極14の多孔質基板1と接してい
る部分に、実施例2のセンサと同様に微細で互いに連通
する溝11が高密度に設けられたこと以外は実施例5の
センサと同じである。酸素センサでは電極の単位面積当
たりの電流(即ち、電流密度)を大きくすると、電極抵
抗の影響が大きくなり初期特性が悪くなり易いばかりで
なく、長期安定性も得難くなる。そこで、拡散抵抗の大
きい多孔質基板1を用いて電流密度を下げるのが有効な
方法であるが、その反面、第1電極2及び第2電極14
の面内に酸素ガスが供給されない部分(無効部分)が多
くなることにより電極抵抗の増加を招き易く、必ずしも
充分な効果を得難い。本実施例は、この問題に対して有
効な解決策を与えるものである。
Embodiment 6 (First Invention) FIG. 13 shows a sensor according to Embodiment 6 of the present invention. This sensor was implemented except that fine and communicating grooves 11 were provided at high density in the portions of the first electrode 2 and the second electrode 14 in contact with the porous substrate 1 as in the sensor of Example 2. Same as the sensor of Example 5. In the oxygen sensor, when the current per unit area of the electrode (that is, the current density) is increased, not only the effect of the electrode resistance increases and the initial characteristics are easily deteriorated, but also the long-term stability becomes difficult to obtain. Therefore, it is an effective method to reduce the current density by using the porous substrate 1 having a large diffusion resistance, but on the other hand, the first electrode 2 and the second electrode 14 are used.
Since the number of portions (ineffective portions) to which oxygen gas is not supplied increases in the plane, the electrode resistance is likely to increase, and it is difficult to obtain a sufficient effect. The present embodiment provides an effective solution to this problem.

【0074】溝11は、第1電極2及び第2電極14の
面内での酸素ガスの拡散を容易にし、面内の酸素濃度分
布を低く抑制する作用が有る。これにより、拡散抵抗の
大きな多孔質基板1を用いた場合の第1電極2及び第2
電極14の面内の酸素ガスが供給されない部分の増加を
抑制でき、電極抵抗の増加を防止できる。従って、電流
密度の低下と相まって、良好な初期特性が得られると共
に、長期安定性に対しても非常に良い結果が得られるよ
うになった。
The groove 11 has an action of facilitating the diffusion of oxygen gas within the planes of the first electrode 2 and the second electrode 14 and suppressing the oxygen concentration distribution within the plane to a low level. Accordingly, when the porous substrate 1 having a large diffusion resistance is used, the first electrode 2 and the second electrode 2
It is possible to suppress an increase in the portion of the surface of the electrode 14 to which oxygen gas is not supplied, and prevent an increase in electrode resistance. Therefore, in combination with the decrease in current density, good initial characteristics are obtained, and very good results are obtained for long-term stability.

【0075】実施例6のセンサの第1電極2及び第2電
極14に設けた溝11の平面図は図4と同じである。本
例では溝11は所定間隔で格子状に設けた。
The plan view of the groove 11 provided in the first electrode 2 and the second electrode 14 of the sensor of the sixth embodiment is the same as FIG. In this example, the grooves 11 are provided in a grid pattern at predetermined intervals.

【0076】実施例7(第1の発明) 図14に本発明の実施例7のセンサを示す。本センサは
第3電極4に実施例3のセンサと同様に微細で互いに連
通する通路12が高密度に設けられ、更に第3電極4
に、それらの通路網の外周部と外部とを第3電極4の外
周端面を介して接続する通路13が設けられたこと以外
は実施例5のセンサと同じである。
Embodiment 7 (First Invention) FIG. 14 shows a sensor according to Embodiment 7 of the present invention. In this sensor, fine passages 12 which communicate with each other are provided in the third electrode 4 at high density as in the sensor of the third embodiment.
The sensor is the same as the sensor of the fifth embodiment except that a passage 13 is provided to connect the outer peripheral portion of the passage network to the outside through the outer peripheral end surface of the third electrode 4.

【0077】第3電極4は多孔質体であり、その外周部
がセンサの外部と連通しているので、酸素ポンプの作用
により第3電極4へ過剰な酸素が供給され第3電極4内
の圧力が外部の圧力より高まれば、上述の微細な通路1
2及び通路13を通じて過剰な酸素ガスが外部に排出さ
れることにより、第3電極4内の圧力の上昇は抑制され
るので測定の障害にはならない。又、第1電極2及び第
2電極14内の酸素ガスは多孔質基板1内に排出され
る。
Since the third electrode 4 is a porous body and its outer peripheral portion communicates with the outside of the sensor, excess oxygen is supplied to the third electrode 4 by the action of the oxygen pump, and the inside of the third electrode 4 is supplied. If the pressure is higher than the external pressure, the above-mentioned fine passage 1
Excessive oxygen gas is discharged to the outside through the passage 2 and the passage 13, so that the increase in the pressure inside the third electrode 4 is suppressed, which does not hinder the measurement. Further, the oxygen gas in the first electrode 2 and the second electrode 14 is discharged into the porous substrate 1.

【0078】実施例7のセンサの第3電極4のA−A線
に沿った平面図は図6と同じである。本例では通路12
は所定間隔で格子状に設け、又、通路13は通路12の
外周部と外部とを接続するように通路12の外周部に縦
横方向に設けた。
The plan view of the third electrode 4 of the sensor of Example 7 taken along the line AA is the same as FIG. In this example, the passage 12
Are provided in a grid pattern at a predetermined interval, and the passages 13 are provided in the outer peripheral portion of the passage 12 in the vertical and horizontal directions so as to connect the outer peripheral portion of the passage 12 to the outside.

【0079】実施例8(第1の発明) 図15に本発明の実施例8のセンサを示す。本センサは
実施例6のセンサと同様に第1電極2及び第2電極14
の多孔質基板1と接している部分に微細で互いに連通す
る溝11が高密度に設けられ、又、実施例7のセンサと
同様に第3電極4に微細で互いに連通する通路12が高
密度に設けられ、更に第3電極4に、それらの通路網の
外周部と外部とを第3電極4の外周端面を介して接続す
る通路13が設けられたこと以外は実施例5のセンサと
同じである。
Embodiment 8 (First Invention) FIG. 15 shows a sensor according to Embodiment 8 of the present invention. This sensor is similar to the sensor of the sixth embodiment in that the first electrode 2 and the second electrode 14
The grooves 11 communicating with each other in high density are provided in the portion in contact with the porous substrate 1 of the above, and the passages 12 communicating with each other in the third electrode 4 are dense as in the sensor of the seventh embodiment. Same as the sensor of the fifth embodiment except that the third electrode 4 is provided with a passage 13 that connects the outer peripheral portion of the passage network and the outside through the outer peripheral end surface of the third electrode 4. Is.

【0080】それ故、本センサは実施例6のセンサの前
記長所と実施例7のセンサの前記長所とを併有してい
る。
Therefore, the present sensor has both the advantages of the sensor of the sixth embodiment and the advantages of the sensor of the seventh embodiment.

【0081】実施例8のセンサの第1電極2及び第2電
極14の平面図は図4と同じである。本例では溝11は
所定間隔で格子状に設けた。又、実施例8のセンサの第
3電極4のA−A線に沿った平面図は図6と同じであ
る。本例では通路12は所定間隔で格子状に設け、通路
13は通路12の外周部と外部とを接続するように通路
12の外周部に縦横方向に設けた。
The plan view of the first electrode 2 and the second electrode 14 of the sensor of Example 8 is the same as FIG. In this example, the grooves 11 are provided in a grid pattern at predetermined intervals. The plan view of the third electrode 4 of the sensor of Example 8 taken along the line AA is the same as FIG. In this example, the passages 12 are provided in a lattice pattern at a predetermined interval, and the passages 13 are provided in the outer peripheral portion of the passage 12 in the vertical and horizontal directions so as to connect the outer peripheral portion of the passage 12 to the outside.

【0082】実施例9(第1の発明) 図16に本発明の実施例9のセンサを示す。本センサ
は、センサ素子全体が触媒金属を担持した被覆層18で
被覆されていること以外は実施例5のセンサと同じであ
る。触媒金属としては例えば白金を用い、被覆層の材質
としては例えばアルミナを用いてよい。以下に、触媒金
属を担持した被覆層18を設ける理由について説明す
る。
Embodiment 9 (First Invention) FIG. 16 shows a sensor according to Embodiment 9 of the present invention. This sensor is the same as the sensor of Example 5 except that the entire sensor element is covered with the coating layer 18 supporting the catalytic metal. For example, platinum may be used as the catalyst metal and alumina may be used as the material of the coating layer. The reason why the coating layer 18 supporting the catalytic metal is provided will be described below.

【0083】限界電流式全3空燃比センサの出力電流特
性及び酸素濃淡電池式理論空燃比センサの起電力特性
は、被検体である自動車排気ガス中の未燃焼ガス成分の
影響を大きく受ける。
The output current characteristics of the limiting current type all-three air-fuel ratio sensor and the electromotive force characteristics of the oxygen concentration battery type theoretical air-fuel ratio sensor are greatly affected by the unburned gas component in the exhaust gas of the automobile, which is the subject.

【0084】然して、自動車エンジンでは、ガソリンと
空気を混合し、各気筒で燃焼させるが、その場合、気筒
ごとに発生する未燃焼ガス成分の濃度が違う場合があ
る。例えば、第1気筒では燃焼後の未燃焼ガス成分とし
てH2 が多く、他の気筒ではHCガスが多かったとする
と、H2 ガス未燃焼成分の多い第1気筒の影響を大きく
受ける位置にセンサが取り付けられていた場合、限界電
流式全域空燃比センサでは出力電流が大きくなり、酸素
濃淡電池式理論空燃比センサでは起電力急変点がリーン
側へ移動することが予想される。更に、他の気筒の影響
を受ける位置にセンサが取り付けられている場合には、
限界電流式全域空燃比センサでは出力電流は小さくな
り、酸素濃淡電池式理論空燃比センサは起電力急変点が
リッチ側へ移動することが予想される。
In an automobile engine, however, gasoline and air are mixed and burned in each cylinder, but in that case, the concentration of the unburned gas component generated in each cylinder may be different. For example, assuming that the first cylinder has a large amount of H 2 as an unburned gas component after combustion, and the other cylinders have a large amount of HC gas, the sensor is placed at a position greatly affected by the first cylinder having a large amount of unburned H 2 gas component. If attached, it is expected that the output current will increase in the limiting current type global air-fuel ratio sensor and the electromotive force sudden change point will move to the lean side in the oxygen concentration battery type theoretical air-fuel ratio sensor. Furthermore, if the sensor is installed at a position affected by another cylinder,
The output current becomes smaller in the limiting current type full range air-fuel ratio sensor, and it is expected that the electromotive force sudden change point moves to the rich side in the oxygen concentration battery type theoretical air-fuel ratio sensor.

【0085】このようにセンサに到達する未燃焼ガス成
分によってセンサ特性は変わることから、未燃焼ガス成
分の影響を極力小さくする必要がある。その対策法とし
て、白金、ロジウム、パラジウム等の触媒金属を担持し
た被覆層にてセンサ素子全体を被覆することが有効であ
る。このような触媒金属を担持した被覆層があると、セ
ンサ素子表面に到達した未燃焼ガス成分は触媒の作用に
より被覆層にて完全燃焼する。よってセンサ素子に供給
される被検ガスは、未燃焼成分ガスを含まないことか
ら、センサ出力特性を安定化する方法として有効であ
る。
Since the sensor characteristics change depending on the unburned gas component reaching the sensor, it is necessary to minimize the influence of the unburned gas component. As a countermeasure against this, it is effective to coat the entire sensor element with a coating layer carrying a catalytic metal such as platinum, rhodium or palladium. If there is such a coating layer carrying a catalytic metal, the unburned gas components reaching the sensor element surface are completely burned in the coating layer by the action of the catalyst. Therefore, the test gas supplied to the sensor element does not contain unburned component gas, which is effective as a method for stabilizing the sensor output characteristics.

【0086】なお、触媒金属を担持した被覆層18を設
ける場合において、被覆層の材質、多孔度、厚さ、更に
触媒の種類、担持量などは、目的とする性能が得られる
様に適宜選択する。
When the coating layer 18 supporting the catalytic metal is provided, the material, the porosity, the thickness of the coating layer, the type of the catalyst, and the loading amount are appropriately selected so that the desired performance can be obtained. To do.

【0087】実施例10(第2の発明) 図17に本発明の実施例10のセンサを示す。本第2の
発明の薄膜積層空燃比センサにおいては、前記本第1の
発明の薄膜積層空燃比センサと異なり、センサ素子内に
空間を有する。即ち、本実施例のセンサにおいては、第
3電極4の上に開口部19(ピンホール)を有する第2
固体電解質5が、第1固体電解質3との間に空間20を
設けて形成されており、第2固体電解質5の第3電極4
側には第4電極21が形成され且つ第2固体電解質5の
第3電極4の反対側には第5電極22が形成されてい
る。他の構造は、前記実施例9のセンサと同様である。
以下に、空間20の機能を説明する。
Embodiment 10 (Second Invention) FIG. 17 shows a sensor according to Embodiment 10 of the present invention. In the thin film laminated air-fuel ratio sensor of the second aspect of the present invention, unlike the thin film laminated air-fuel ratio sensor of the first aspect of the present invention, there is a space in the sensor element. That is, in the sensor of the present embodiment, the second electrode having the opening 19 (pinhole) on the third electrode 4 is used.
The solid electrolyte 5 is formed with a space 20 provided between the solid electrolyte 5 and the first solid electrolyte 3, and the third electrode 4 of the second solid electrolyte 5 is formed.
The fourth electrode 21 is formed on the side, and the fifth electrode 22 is formed on the side of the second solid electrolyte 5 opposite to the third electrode 4. The other structure is similar to that of the sensor of the ninth embodiment.
The function of the space 20 will be described below.

【0088】本実施例のセンサでは酸素ポンプセルの酸
素ポンプ作用によって、空間20内の圧力が高まれば、
開口部19を通じて過剰な酸素ガスがセンサ素子の外部
に排出されることにより空間20内の酸素ガス圧力が低
下するので、第3電極4近傍の雰囲気は一定酸素雰囲気
に保たれ、それ故、第3電極4は基準酸素極の作用をす
る。
In the sensor of this embodiment, if the pressure in the space 20 increases due to the oxygen pumping action of the oxygen pump cell,
Excessive oxygen gas is discharged to the outside of the sensor element through the opening 19, so that the oxygen gas pressure in the space 20 is reduced, so that the atmosphere in the vicinity of the third electrode 4 is maintained at a constant oxygen atmosphere. The three electrodes 4 act as a reference oxygen electrode.

【0089】上記のように本発明のセンサでは、従来の
大気基準極に相当する基準極を作り出す酸素ポンプセル
と、酸素濃淡電池式理論空燃比センサとが一体化されて
いることから、酸素濃淡電池式理論空燃比センサの起電
力の急変特性から精度よく理論空燃比を検出することが
できる。又、酸素濃淡電池式理論空燃比センサに加えて
限界電流式全域空燃比センサを付加した態様において
は、出力電流に基づいてリッチ領域からリーン領域まで
の広い空燃比を検出することができる。
As described above, in the sensor of the present invention, since the oxygen pump cell that creates a reference electrode corresponding to the conventional atmospheric reference electrode and the oxygen concentration battery type theoretical air-fuel ratio sensor are integrated, the oxygen concentration battery The stoichiometric air-fuel ratio can be detected accurately from the sudden change characteristics of the electromotive force of the theoretical air-fuel ratio sensor. Further, in the mode in which the limiting current type global air-fuel ratio sensor is added in addition to the oxygen concentration battery type theoretical air-fuel ratio sensor, a wide air-fuel ratio from the rich region to the lean region can be detected based on the output current.

【0090】[0090]

【発明の効果】本発明の薄膜積層空燃比センサは上述の
如き構成を有するため、以下に例示する様な種々の効果
を奏する。 1)本センサは、酸素ポンプ作用によってセンサ素子に
酸素を供給するため、センサ素子に酸素導入部を設ける
必要がなく、ハウジングの外部と連通する部分を必要と
しない。よって、センサ全体を小形にすることができ
る。 2)本センサは、センサ素子に酸素導入部を設ける必要
がないので、センサ素子を従来のセンサのように筒状な
どの立体的な構造とする必要がなく、平面的な構成とす
ることができるので、薄膜技術で製作するために適して
いる。 3)本センサは、酸素導入部を必要としないので、ハウ
ジングの気密構造が簡単になる。 4)本センサは酸素を解離する部分及び酸素ポンプとし
て作用する部分、酸素濃淡電池式理論空燃比センサとし
て作動する部分が一体化されており、温度依存性が小さ
いことから使用方法が簡単である。 5)本センサの酸素濃淡電池式理論空燃比センサ部分で
は、基準電圧を温度によって調整するなどの煩雑な操作
をすることなく、理論空燃比を正確に測定することがで
きる。 6)本センサは小形化が可能であることから加熱に要す
る電力が小さい。 7)本センサは薄膜手法で製作されているので急速昇温
しても発生する熱歪みが小さく、安定性が良い。 8)本センサは多孔質基板上に薄膜技術により製作され
るので、量産性が良く、製造時の低コスト化が可能であ
る。 9)本センサは種々の変形が可能であるので、適用範囲
が広い。 10)本センサにおいて限界電流式全域空燃比センサと
して作動する部分を付加した態様においては、限界電流
式全域空燃比センサ部分では、印加電圧を切り換えるこ
となくリッチ領域からリーン領域までの空燃比を検出す
ることができる。
Since the thin film laminated air-fuel ratio sensor of the present invention has the above-mentioned structure, it has various effects as exemplified below. 1) Since this sensor supplies oxygen to the sensor element by the oxygen pump action, it is not necessary to provide an oxygen introduction part in the sensor element and a part communicating with the outside of the housing is not required. Therefore, the entire sensor can be downsized. 2) Since the sensor element does not need to be provided with an oxygen introducing portion in the sensor element, it is not necessary to form the sensor element into a three-dimensional structure such as a cylindrical shape as in the conventional sensor, and may have a planar configuration. It is suitable for manufacturing by thin film technology. 3) Since this sensor does not require an oxygen introduction part, the airtight structure of the housing becomes simple. 4) This sensor is integrated with a part that dissociates oxygen, a part that acts as an oxygen pump, and a part that operates as an oxygen concentration battery type theoretical air-fuel ratio sensor, and its temperature dependence is small, so it is easy to use. . 5) In the oxygen concentration battery type theoretical air-fuel ratio sensor part of this sensor, the theoretical air-fuel ratio can be accurately measured without performing a complicated operation such as adjusting the reference voltage by temperature. 6) Since this sensor can be miniaturized, the electric power required for heating is small. 7) Since this sensor is manufactured by the thin film method, the thermal strain generated is small and the stability is good even if the temperature is rapidly raised. 8) Since this sensor is manufactured on the porous substrate by the thin film technology, mass productivity is good and cost reduction at the time of manufacturing is possible. 9) Since this sensor can be variously modified, its application range is wide. 10) In the mode in which the portion that operates as the limiting current type global air-fuel ratio sensor is added to this sensor, the limiting current type global air-fuel ratio sensor portion detects the air-fuel ratio from the rich region to the lean region without switching the applied voltage. can do.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の空燃比センサの説明図であ
る。
FIG. 1 is an explanatory diagram of an air-fuel ratio sensor according to a first embodiment of the present invention.

【図2】実施例1の空燃比センサの起電力特性を示す図
である。
FIG. 2 is a diagram showing an electromotive force characteristic of the air-fuel ratio sensor of the first embodiment.

【図3】本発明の実施例2の空燃比センサの説明図であ
る。
FIG. 3 is an explanatory diagram of an air-fuel ratio sensor according to a second embodiment of the present invention.

【図4】図3の空燃比センサの第1電極の平面図であ
る。
FIG. 4 is a plan view of a first electrode of the air-fuel ratio sensor of FIG.

【図5】本発明の実施例3の空燃比センサの説明図であ
る。
FIG. 5 is an explanatory diagram of an air-fuel ratio sensor according to a third embodiment of the present invention.

【図6】図5の空燃比センサの第3電極のA−A線に沿
った平面図である。
6 is a plan view of the third electrode of the air-fuel ratio sensor of FIG. 5, taken along the line AA.

【図7】本発明の実施例4の空燃比センサの説明図であ
る。
FIG. 7 is an explanatory diagram of an air-fuel ratio sensor according to a fourth embodiment of the present invention.

【図8】図7の空燃比センサの第1電極の平面図であ
る。
FIG. 8 is a plan view of a first electrode of the air-fuel ratio sensor of FIG.

【図9】図7の空燃比センサの第3電極のA−A線に沿
った平面図である。
9 is a plan view of the third electrode of the air-fuel ratio sensor of FIG. 7, taken along the line AA.

【図10】本発明の実施例5の空燃比センサの説明図で
ある。
FIG. 10 is an explanatory diagram of an air-fuel ratio sensor according to a fifth embodiment of the present invention.

【図11】実施例5の空燃比センサの限界電流式全域空
燃比センサ部分の電流−電圧特性を示す図である。
FIG. 11 is a diagram showing current-voltage characteristics of a limiting current type full range air-fuel ratio sensor portion of an air-fuel ratio sensor of Example 5;

【図12】実施例5の空燃比センサにおいて、図11中
の一点鎖線で示す印加電圧を与えて測定した電流を示す
図である。
FIG. 12 is a diagram showing a current measured by applying an applied voltage shown by a chain line in FIG. 11 to the air-fuel ratio sensor of Example 5;

【図13】本発明の実施例6の空燃比センサの説明図で
ある。
FIG. 13 is an explanatory diagram of an air-fuel ratio sensor according to a sixth embodiment of the present invention.

【図14】本発明の実施例7の空燃比センサの説明図で
ある。
FIG. 14 is an explanatory diagram of an air-fuel ratio sensor according to a seventh embodiment of the present invention.

【図15】本発明の実施例8の空燃比センサの説明図で
ある。
FIG. 15 is an explanatory diagram of an air-fuel ratio sensor of Example 8 of the present invention.

【図16】本発明の実施例9の空燃比センサの説明図で
ある。
FIG. 16 is an explanatory diagram of an air-fuel ratio sensor according to a ninth embodiment of the present invention.

【図17】本発明の実施例10の空燃比センサの説明図
である。
FIG. 17 is an explanatory diagram of an air-fuel ratio sensor according to a tenth embodiment of the present invention.

【図18】従来の空燃比センサの限界電流式全域空燃比
センサ部分の電流−電圧特性を示す図である。
FIG. 18 is a diagram showing current-voltage characteristics of a limiting current type full range air-fuel ratio sensor portion of a conventional air-fuel ratio sensor.

【図19】従来の空燃比センサにおいて、所定印加電圧
を与えて測定した電流を示す図である。
FIG. 19 is a diagram showing a current measured by applying a predetermined applied voltage in the conventional air-fuel ratio sensor.

【符号の説明】[Explanation of symbols]

1 多孔質基板 2 第1電極 3 第1固体電解質 4 第3電極 5 第2固体電解質 6,21 第4電極 解質 7 ヒータ 8 ヒータ加熱手段 9,15,16 電圧印加手段 10 電圧測定手段 11 溝 12,13 通路 14 第2電極 17 電流測定手段 18 被覆層 19 開口部 20 空間 22 第5電極 1 Porous Substrate 2 1st Electrode 3 1st Solid Electrolyte 4 3rd Electrode 5 2nd Solid Electrolyte 6,21 4th Electrode Decomposition 7 Heater 8 Heater Heating Means 9, 15, 16 Voltage Applying Means 10 Voltage Measuring Means 11 Grooves 12, 13 Passage 14 Second electrode 17 Current measuring means 18 Coating layer 19 Opening 20 Space 22 Fifth electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐治 啓市 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 竹内 正治 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 颯田 耕三 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Saji Kei-shi, Aichi-gun, Aichi-gun, Nagakute-cho, Nagachote 1 41 of Yokomichi Yokoido Central Research Institute Co., Ltd. (72) Inventor Shoji Takeuchi, Aichi-gun, Nagakute-cho 1 in 41 Chuo Yokoido Central Research Institute Co., Ltd. (72) Inventor Kozo Usuda 1 in 41, Nagachite Yokoido Aichi District Aichi Prefecture Toyota Central Research Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 多孔質基板上に第1電極が形成され、第
1電極の上に第1固体電解質及び第3電極が順次積層さ
れ、第1固体電解質は第1電極の周囲を含めて第1電極
を覆い隠し、第3電極は第1固体電解質の周囲を含めて
第1固体電解質を覆い隠し、更に第3電極の上に第2固
体電解質及び第4電極が順次積層され、第2固体電解質
及び第4電極は共に第3電極の周辺部が露出するように
配置され、第1電極,第3電極及び第4電極は多孔質で
ガス透過性を有する白金を用いて形成され、第1固体電
解質及び第2固体電解質は緻密でガス透過性を有しない
酸素イオン伝導性の固体電解質を用いて形成されてな
り、 多孔質基板上に第1電極,第1固体電解質及び第3電極
によって構成され、酸素濃淡電池式理論空燃比センサと
して作動する部分と、 第3電極,第2固体電解質及び第4電極によって構成さ
れ、酸素ポンプセルとして作動する部分とが一体的に形
成されてなるセンサ素子を有することを特徴とする薄膜
積層空燃比センサ。
1. A first electrode is formed on a porous substrate, a first solid electrolyte and a third electrode are sequentially stacked on the first electrode, and the first solid electrolyte includes a first electrode including a periphery of the first electrode. 1st electrode is covered, 3rd electrode covers 1st solid electrolyte including the circumference | surroundings of 1st solid electrolyte, 2nd solid electrolyte and 4th electrode are sequentially laminated | stacked on 3rd electrode, 2nd solid The electrolyte and the fourth electrode are both disposed so that the peripheral portion of the third electrode is exposed, and the first electrode, the third electrode, and the fourth electrode are formed of platinum that is porous and has gas permeability. The solid electrolyte and the second solid electrolyte are formed by using a dense, gas-impermeable, oxygen-ion-conducting solid electrolyte, which is composed of a first electrode, a first solid electrolyte, and a third electrode on a porous substrate. That operates as an oxygen concentration battery type theoretical air-fuel ratio sensor When the third electrode is constituted by the second solid electrolyte and a fourth electrode, the thin film stack fuel ratio sensor, characterized in that a portion which operates as an oxygen pump cell having a sensor element made integrally formed.
【請求項2】 多孔質基板上に第1電極が形成され、第
1電極の上に第1固体電解質及び第3電極が順次積層さ
れ、第1固体電解質は第1電極の周囲を含めて第1電極
を覆い隠し、第3電極は第1固体電解質の周囲を含めて
第1固体電解質を覆い隠し、更に第3電極の上に開口部
を有する第2固体電解質が、第1固体電解質との間に空
間を設けて形成され、第2固体電解質の第3電極と対向
する面に第4電極が形成され且つ第2固体電解質の第3
電極と対向する面と反対側の面に第5電極が形成され、
第2固体電解質及び第5電極は共に第3電極の周辺部が
露出するように配置され、第1電極,第3電極,第4電
極及び第5電極は多孔質でガス透過性を有する白金を用
いて形成され、第1固体電解質及び第2固体電解質は緻
密でガス透過性を有しない酸素イオン伝導性の固体電解
質を用いて形成されてなり、 多孔質基板上に第1電極,第1固体電解質及び第3電極
によって構成され、酸素濃淡電池式理論空燃比センサと
して作動する部分と、 第4電極,第2固体電解質及び第5電極によって構成さ
れ、酸素ポンプセルとして作動する部分とが一体的に形
成されてなるセンサ素子を有することを特徴とする薄膜
積層空燃比センサ。
2. A first electrode is formed on a porous substrate, a first solid electrolyte and a third electrode are sequentially stacked on the first electrode, and the first solid electrolyte includes a first electrode including a periphery of the first electrode. The first electrode covers the first electrode, the third electrode covers the first solid electrolyte including the periphery of the first solid electrolyte, and the second solid electrolyte having an opening on the third electrode is A space is provided between the second solid electrolyte and the third electrode of the second solid electrolyte, and a fourth electrode is formed on the surface of the second solid electrolyte facing the third electrode.
A fifth electrode is formed on the surface opposite to the surface facing the electrode,
The second solid electrolyte and the fifth electrode are both arranged so that the peripheral portion of the third electrode is exposed, and the first electrode, the third electrode, the fourth electrode, and the fifth electrode are made of porous platinum having gas permeability. The first solid electrolyte and the second solid electrolyte are formed by using a dense and oxygen ion conductive solid electrolyte having no gas permeability, and the first electrode and the first solid are formed on the porous substrate. A portion composed of an electrolyte and a third electrode, which operates as an oxygen concentration battery type theoretical air-fuel ratio sensor, and a portion composed of a fourth electrode, a second solid electrolyte and a fifth electrode, which operates as an oxygen pump cell are integrally formed. A thin film laminated air-fuel ratio sensor comprising a formed sensor element.
JP22063093A 1992-12-28 1993-08-12 Thin film air-fuel ratio sensor Expired - Lifetime JP3326899B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP22063093A JP3326899B2 (en) 1993-08-12 1993-08-12 Thin film air-fuel ratio sensor
US08/174,126 US5480535A (en) 1992-12-28 1993-12-27 Thin film multilayered air/fuel ratio sensor
DE4344826A DE4344826C2 (en) 1992-12-28 1993-12-28 Multi-layer thin film air / fuel ratio sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22063093A JP3326899B2 (en) 1993-08-12 1993-08-12 Thin film air-fuel ratio sensor

Publications (2)

Publication Number Publication Date
JPH0755765A true JPH0755765A (en) 1995-03-03
JP3326899B2 JP3326899B2 (en) 2002-09-24

Family

ID=16753987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22063093A Expired - Lifetime JP3326899B2 (en) 1992-12-28 1993-08-12 Thin film air-fuel ratio sensor

Country Status (1)

Country Link
JP (1) JP3326899B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001289818A (en) * 2000-01-31 2001-10-19 Kyocera Corp Air/fuel ratio sensor element
JP2006023128A (en) * 2004-07-06 2006-01-26 Denso Corp Zirconia structure and its manufacturing method
JP2011002403A (en) * 2009-06-22 2011-01-06 Yazaki Corp Air-fuel ratio sensor and air-fuel ratio measuring method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57144454A (en) * 1981-03-03 1982-09-07 Nissan Motor Co Ltd Production of oxygen concentration detecting element
JPS5995452A (en) * 1982-11-25 1984-06-01 Hitachi Ltd Oxygen sensor
JPS59108951A (en) * 1982-12-15 1984-06-23 Hitachi Ltd Oxygen pump type air/fuel ratio sensor
JPS61206863U (en) * 1985-06-14 1986-12-27
JPS62214347A (en) * 1986-03-17 1987-09-21 Ngk Insulators Ltd Electrochemical device
JPH01158959U (en) * 1988-04-22 1989-11-02
JPH05126793A (en) * 1991-05-27 1993-05-21 Nippondenso Co Ltd Oxygen concentration detector
JPH06201642A (en) * 1992-12-28 1994-07-22 Toyota Central Res & Dev Lab Inc Thin film critical current type overall air-fuel ratio sensor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57144454A (en) * 1981-03-03 1982-09-07 Nissan Motor Co Ltd Production of oxygen concentration detecting element
JPS5995452A (en) * 1982-11-25 1984-06-01 Hitachi Ltd Oxygen sensor
JPS59108951A (en) * 1982-12-15 1984-06-23 Hitachi Ltd Oxygen pump type air/fuel ratio sensor
JPS61206863U (en) * 1985-06-14 1986-12-27
JPS62214347A (en) * 1986-03-17 1987-09-21 Ngk Insulators Ltd Electrochemical device
JPH01158959U (en) * 1988-04-22 1989-11-02
JPH05126793A (en) * 1991-05-27 1993-05-21 Nippondenso Co Ltd Oxygen concentration detector
JPH06201642A (en) * 1992-12-28 1994-07-22 Toyota Central Res & Dev Lab Inc Thin film critical current type overall air-fuel ratio sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001289818A (en) * 2000-01-31 2001-10-19 Kyocera Corp Air/fuel ratio sensor element
JP2006023128A (en) * 2004-07-06 2006-01-26 Denso Corp Zirconia structure and its manufacturing method
JP4548020B2 (en) * 2004-07-06 2010-09-22 株式会社デンソー Zirconia structure and manufacturing method thereof
JP2011002403A (en) * 2009-06-22 2011-01-06 Yazaki Corp Air-fuel ratio sensor and air-fuel ratio measuring method

Also Published As

Publication number Publication date
JP3326899B2 (en) 2002-09-24

Similar Documents

Publication Publication Date Title
US4487680A (en) Planar ZrO2 oxygen pumping sensor
US6527929B2 (en) Gas sensor and nitrogen oxide sensor
US4264425A (en) Device for detection of air/fuel ratio from oxygen partial pressure in exhaust gas
JP3876506B2 (en) Gas concentration measuring method and composite gas sensor
US5480535A (en) Thin film multilayered air/fuel ratio sensor
JPS6156779B2 (en)
JP3234080B2 (en) Sensor for measuring gas components and / or gas concentrations in gas mixtures
US6635162B2 (en) Gas sensor
JP3835022B2 (en) Gas sensor element
JP3377016B2 (en) Limit current type oxygen sensor for measuring oxygen concentration in exhaust gas
JP3993122B2 (en) Gas sensor element and method for measuring hydrogen-containing gas
JPH07501152A (en) Polarographic sensor
JPS5943348A (en) Air/fuel ratio sensor
JPH08334492A (en) Air-fuel ratio sensor element
JP2004037100A (en) Gas sensor element
US4832818A (en) Air/fuel ratio sensor
JP3326899B2 (en) Thin film air-fuel ratio sensor
JP3973851B2 (en) Gas sensor element
KR102567567B1 (en) Limiting current type oxygen sensor
JPH11166911A (en) Air-fuel ratio sensor
JP3916945B2 (en) Gas sensor element
JP3289353B2 (en) Thin film limit current type full range air-fuel ratio sensor
JPH10325824A (en) Hydrocarbon sensor
JP2000214130A (en) Method for measuring concentration of gas
JP3314782B2 (en) Composite gas sensor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080712

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080712

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090712

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100712

Year of fee payment: 8