JPS5994486A - Semiconductor laser device and driving method therefor - Google Patents

Semiconductor laser device and driving method therefor

Info

Publication number
JPS5994486A
JPS5994486A JP58202598A JP20259883A JPS5994486A JP S5994486 A JPS5994486 A JP S5994486A JP 58202598 A JP58202598 A JP 58202598A JP 20259883 A JP20259883 A JP 20259883A JP S5994486 A JPS5994486 A JP S5994486A
Authority
JP
Japan
Prior art keywords
electrodes
diffraction grating
semiconductor laser
oscillation
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58202598A
Other languages
Japanese (ja)
Other versions
JPS6250998B2 (en
Inventor
Kunio Aiki
相木 国男
Michiharu Nakamura
中村 道治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58202598A priority Critical patent/JPS5994486A/en
Publication of JPS5994486A publication Critical patent/JPS5994486A/en
Publication of JPS6250998B2 publication Critical patent/JPS6250998B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1206Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers having a non constant or multiplicity of periods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1206Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers having a non constant or multiplicity of periods
    • H01S5/1212Chirped grating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To enable to vary the oscillating wavelength with one element by altering the period of diffraction lattice in one direction in a distributed feedback type structure and providing a plurality of electrodes in the altering direction. CONSTITUTION:In a semiconductor laser, 7-1-7-10 are positive electrodes, broken lines indicate the direction of grooves of diffraction grating 5 in the crystal. The period of the grating is constant in y direction and continuously variable in x direction. The light output is cleaved in the crystal at one end of the electrode, and produced therefrom. In such a structure, when the adjacent two positive electrodes are simultaneously driven by the currents at the suitable rate, an oscillation can be obtained at the intermediate value of the wavelengths corresponding to the respective electrodes. Further, a plurality of positive electrodes which are not adjacent are simultaneously driven to simultaneously obtain the oscillating wavelengths corresponding to the electrodes. In this manner, one element can readily produce an oscillation with arbitrary wavelength in the gain spectrum of the active substance.

Description

【発明の詳細な説明】 本発明は半導体レーデの構造およびその駆動方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a structure of a semiconductor radar and a method of driving the same.

互いに平行な二つの臂開面を反射器とした従来のフrブ
リ・ペロ型半導体レーデでは、近接した数多くの共振モ
ードが存在するため、通常、活性物質の利得スペクトル
内の近接した数多くの波長で同時に発振する。これらの
発振線の波長や強度は、活性部分の励起条件や温度ある
いは素子の作製条件等に依存し不規則な変化をする。し
たがってこの種の半導体レーザでは任意の一波長からな
る発振出力を得ることは困難であった。
In a conventional Frebri-Perot semiconductor radar with two parallel arm-opening planes as reflectors, there are many closely spaced resonant modes, and therefore there are usually many close wavelengths in the gain spectrum of the active material. oscillate at the same time. The wavelength and intensity of these oscillation lines vary irregularly depending on the excitation conditions and temperature of the active part, the manufacturing conditions of the device, and the like. Therefore, with this type of semiconductor laser, it is difficult to obtain an oscillation output consisting of an arbitrary wavelength.

一方、第1図に一例を示すような分布帰還型半導体レー
ザでは活性部分4にそって形成された回折格子5が光共
振器を構成しておシ、その共振波長λは、λ= 2A 
n g/mとなる。ここにAは回折格子の周期、ngは
伝播する光に対する実効屈折率、mは整数で回折の次数
である。したがって回折格子の周期Aを選ぶことによシ
活性物質の利得スペクトル内の任意の波長で発振を得る
ことが可能である。しかし、−個の分布帰還型レーデで
発振波長全変化させることは困難である。
On the other hand, in a distributed feedback semiconductor laser, an example of which is shown in FIG. 1, a diffraction grating 5 formed along the active portion 4 constitutes an optical resonator, and the resonant wavelength λ is λ=2A.
n g/m. Here, A is the period of the diffraction grating, ng is the effective refractive index for propagating light, and m is an integer and the order of diffraction. Therefore, by selecting the period A of the diffraction grating, it is possible to obtain oscillation at any wavelength within the gain spectrum of the active material. However, it is difficult to completely change the oscillation wavelength using - distributed feedback radars.

本発明の目的は従来の半導体レーデのこれら欠点をなく
し、発振波長可変の半導体レーデを提供することである
An object of the present invention is to eliminate these drawbacks of conventional semiconductor radars and provide a semiconductor radar whose oscillation wavelength can be varied.

上記目的を達成するため、本発明の半導体レーザは分布
帰還型構造をなし、その回折格子の周期を一方向に変化
させ、この変化の方向にそって複数個の電極を設けであ
る。周期i1Hの位置の電極を駆動することによりλ1
 = 2 AI’ ng/mなる波長の発振を得る。
In order to achieve the above object, the semiconductor laser of the present invention has a distributed feedback structure, the period of the diffraction grating is changed in one direction, and a plurality of electrodes are provided along the direction of this change. By driving the electrode at the position of period i1H, λ1
= 2 AI' ng/m wavelength oscillation is obtained.

以下本発明を実施例によシ、よシ詳細に説明する。The present invention will be explained in detail below using examples.

実施例 第2図は本発明による発振波長可変の半導体レーデの上
面図である。断面は第1図と同様である。
Embodiment FIG. 2 is a top view of a semiconductor radar with variable oscillation wavelength according to the present invention. The cross section is similar to that in FIG.

7−1.7−2.・・・・・・・・・7−10は正電極
であり、点#!9は結晶内の回折格子5の溝の方向を示
す。
7-1.7-2. ......7-10 is the positive electrode, and point #! 9 indicates the direction of the grooves of the diffraction grating 5 in the crystal.

格子の周期はX方向には一定であり、X方向に連続的に
変化している。光出力は電極の一端で結晶ヲ臂開し、こ
こから取出す。
The period of the grating is constant in the X direction and continuously changes in the X direction. The light output is extracted from a crystal that opens at one end of the electrode.

このような構造をつくるには、まずn形層 a A S
基板2の上に連続液相成長法により、n形Ga1−X 
A7XAS (x″:0.3)層3、p形QaAs活性
層4を成長する。次にこの表面にホトト レジスタを塗布し、レーザ光の干渉を利用して周期が2
423A〜2456Aの間で連続的に変化する格子状の
干渉縞を露光する。ここで周期はGaAsの利得スペク
トル内で2次の回折(m=2)が得られるように選んだ
。このような干渉縞を得るのに波長3250AのHe−
Cdレーザの平行光線10を円筒型レンズを用いてX方
向に発散させ、第3図に示すような配置で干渉させた。
To create such a structure, first the n-type layer a
N-type Ga1-X was deposited on the substrate 2 by continuous liquid phase growth.
An A7XAS (x″:0.3) layer 3 and a p-type QaAs active layer 4 are grown. Next, a photoresistor is applied to this surface, and the period is set to 2 using the interference of laser light.
A lattice-like interference fringe that continuously changes between 423A and 2456A is exposed. Here, the period was selected so as to obtain second-order diffraction (m=2) within the gain spectrum of GaAs. To obtain such interference fringes, He-
Parallel light rays 10 of a Cd laser were diverged in the X direction using a cylindrical lens, and made to interfere with each other in an arrangement as shown in FIG.

ここに11は円筒型レンズ、12は半透鏡、1:Iは全
反射鏡、14はホトレジストを塗布した試料である。
Here, 11 is a cylindrical lens, 12 is a semi-transparent mirror, 1:I is a total reflection mirror, and 14 is a sample coated with photoresist.

上記光学系で得られる干渉縞は第4図に示すようにX方
向には一定の周期をもら、これがX方向に連続的に変化
するものである。図の点線15内の格子状干渉縞で試料
を露光した。これを現像して得られたホトレジストの格
子をマスクとしてp+形GaAs活性層4の表面を化学
エツチングし、深さ約0.12μの回折格子5を形成し
、ホトレジストを除去する。この上に前述と同様の液相
成長法によりp形oa、−x AtxAs、(x中o、
3)層6を成長する。ここに添加不純物としてn形層に
はSn、p形層にはGeを用いた。層3,4.6の厚さ
はそれぞれ2μ、0.5μ、10μである。結晶成長後
、n形GaAs基板2に対し全面に7yu−Q e −
N iを蒸着し負電極1とした。p形   −G al
−x Atx A s層6には(:’ r −A II
を蒸着し、5μの間隔を置いて20μX409μの10
個の帯状の正電極7−1.7−2.・・・・・・、7−
10を形成した。光出力を外部に取出すため正電極の一
端で結晶を見開し、ステムにボンディングした。
The interference fringes obtained by the above optical system have a constant period in the X direction, as shown in FIG. 4, and this period changes continuously in the X direction. The sample was exposed to a lattice interference pattern within the dotted line 15 in the figure. Using the photoresist grating obtained by developing this as a mask, the surface of the p+ type GaAs active layer 4 is chemically etched to form a diffraction grating 5 with a depth of about 0.12 μm, and the photoresist is removed. On top of this, p-type oa, -x AtxAs, (o in x,
3) Grow layer 6. Here, as added impurities, Sn was used for the n-type layer and Ge was used for the p-type layer. The thicknesses of layers 3, 4.6 are 2μ, 0.5μ and 10μ, respectively. After crystal growth, 7yu-Q e − is applied to the entire surface of the n-type GaAs substrate 2.
Ni was vapor-deposited to form a negative electrode 1. p-type -G al
-x Atx A s layer 6 has (:' r -A II
20μ x 409μ 10
strip-shaped positive electrodes 7-1.7-2. ......, 7-
10 was formed. In order to extract light output to the outside, a crystal was opened at one end of the positive electrode and bonded to the stem.

上記半導体レーザ素子を室温でパルス動作させた場合、
7−1.7−2.川・・・7−10の各電極に対ししき
い電流密度3〜4 KA / cm2で発振が得られた
。駆動した電極と得られた発振波長の関係を第5図に示
す。発振線の線巾はおよそ0.3Aであった。
When the above semiconductor laser device is operated in pulses at room temperature,
7-1.7-2. Oscillation was obtained at a threshold current density of 3 to 4 KA/cm2 for each electrode of 7-10. FIG. 5 shows the relationship between the driven electrodes and the obtained oscillation wavelength. The width of the oscillation line was approximately 0.3A.

上記以外の発振波長は次の二つの方法で得ることができ
た。
Laser wavelengths other than those mentioned above could be obtained by the following two methods.

隣シ合った二つの正電極を適当な割合の電流で同時に駆
動することにより各々の電極に対応する波長の中間値で
発振を得ることができた。この場合、電流の分布を二つ
の正電極の間に集中させるため駆動するこれらの電極以
外は負電極と短絡した。他の方法として、ngが温度に
よシ変化するので、素子の温度を変えて発振波長を連続
的に変化させることができた。この場合、発振波長の温
度変化の割合ti 0.8 A / degで温度の上
昇とともに長波長に変化した。
By simultaneously driving two adjacent positive electrodes with an appropriate ratio of current, we were able to obtain oscillation at an intermediate value of the wavelengths corresponding to each electrode. In this case, the electrodes other than those driven were short-circuited to the negative electrode in order to concentrate the current distribution between the two positive electrodes. As another method, since ng changes with temperature, it was possible to continuously change the oscillation wavelength by changing the temperature of the element. In this case, the oscillation wavelength changed to a longer wavelength as the temperature rose at a temperature change rate ti 0.8 A/deg.

また本発明の半導体レーザでは隣シ合わない複数個の正
電極を同時に駆動し、これらの電極に対応する発振波長
可変時に得ることが可能である。
Further, in the semiconductor laser of the present invention, it is possible to simultaneously drive a plurality of non-adjacent positive electrodes, and to obtain a variable oscillation wavelength corresponding to these electrodes.

以上説明したごとく、異なる周期の回折格子をもつ分布
帰還型レーザを一つの基板に集積化した本発明の半導体
レーザでは一個の素子で活性物質の利得スペクトル内の
任意の波長で容易に発振が得られる点においてその効果
は著しい。
As explained above, the semiconductor laser of the present invention, in which distributed feedback lasers with diffraction gratings of different periods are integrated on one substrate, can easily oscillate at any wavelength within the gain spectrum of the active material with a single element. The effect is remarkable in that it is possible to

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の分布帰還型半導体レーザの断面図、第2
図は本発明の実施例における半導体レーザの上面図であ
る。 第1.2図において、 1・・・負電極、2・・・n形GaAs基板、3・・・
n形G ar −x A L x A s層(X中0.
3)、4 ・I)形GaAs活性層、5・・・周期約0
.24μ、深さ約0.12μの回折格子、6・・・p形
G a l−X A l x A s層(X中0.3)
、7および7−1.7〜2・・・・・・7−10・・・
正電極、8・・・見開面、9・・・回折格子の溝の方向
を表す。 第3図は本発明の実施例における格子状干渉縞を露光す
る光学系の配置である。 第3図において、 10・He−Cdレーザの波長3250Aの平行光線、
11・・・円筒型レンズ、12・・・半透鏡、13・・
・全反射鏡、14・・・ホトレジストを塗布した試料で
ある。 第4図は第3図の光学系配置で得られる格子状干渉縞を
示す。点線15の領域を試料の露光に利用した。 第5図は本発明の実施例における半導体レーザの室温に
おける発振波長を示す。横軸は駆動した第 1 図 第2 図 第 3 目 第4 図
Figure 1 is a cross-sectional view of a conventional distributed feedback semiconductor laser;
The figure is a top view of a semiconductor laser in an embodiment of the present invention. In Fig. 1.2, 1... negative electrode, 2... n-type GaAs substrate, 3...
n-type G ar -x A L x A s layer (0.
3), 4 ・I) type GaAs active layer, 5...period approximately 0
.. Diffraction grating of 24μ, depth of about 0.12μ, 6... p-type G a l-X A l x A s layer (0.3 in X)
, 7 and 7-1.7 to 2...7-10...
Positive electrode, 8... Open plane, 9... Represents the direction of the grooves of the diffraction grating. FIG. 3 shows the arrangement of an optical system for exposing lattice interference fringes in an embodiment of the present invention. In Fig. 3, a parallel beam of wavelength 3250A from a 10 He-Cd laser,
11...Cylindrical lens, 12...Semi-transparent mirror, 13...
- Total reflection mirror, 14...This is a sample coated with photoresist. FIG. 4 shows lattice-like interference fringes obtained with the optical system arrangement shown in FIG. The area indicated by the dotted line 15 was used for exposing the sample. FIG. 5 shows the oscillation wavelength at room temperature of the semiconductor laser in the embodiment of the present invention. The horizontal axis is the driven figure 1, figure 2, figure 3, and figure 4.

Claims (1)

【特許請求の範囲】 1、単一基板に形成され且回折格子を装置内部に有する
分布帰還型レーデ装置において、前記回折格子は周期を
異にする少なくとも二つの所望領域を有し、この二つの
所望領域に対応し且レーデ光の進行方向に延在した形状
で互いに分離した電極層を有することを特徴とする半導
体レーデ装置。 2、単一基板に形成され且回折格子を装置内部に有する
分布帰還型レーデ装置において、前記回折格子は周期を
異にする少なくとも二つの所望領域を有し、この二つの
所望領域に対応し且レーデ光の進行方向に延長した形状
で互いに分離した電極層を有し、当該電極層を介して隣
り合う活性領域を同時に発振せしめ所定の発振波長を得
ることを特徴とする半導体レーデ装置の駆動方法。
[Claims] 1. In a distributed feedback radar device formed on a single substrate and having a diffraction grating inside the device, the diffraction grating has at least two desired regions with different periods, and the two A semiconductor radar device characterized by having electrode layers separated from each other in a shape that corresponds to a desired area and extends in the traveling direction of radar light. 2. In a distributed feedback radar device formed on a single substrate and having a diffraction grating inside the device, the diffraction grating has at least two desired regions having different periods, and the diffraction grating has at least two desired regions corresponding to the two desired regions; A method for driving a semiconductor radar device, characterized in that it has electrode layers separated from each other in a shape extending in the traveling direction of Rade light, and causes adjacent active regions to simultaneously oscillate via the electrode layers to obtain a predetermined oscillation wavelength. .
JP58202598A 1983-10-31 1983-10-31 Semiconductor laser device and driving method therefor Granted JPS5994486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58202598A JPS5994486A (en) 1983-10-31 1983-10-31 Semiconductor laser device and driving method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58202598A JPS5994486A (en) 1983-10-31 1983-10-31 Semiconductor laser device and driving method therefor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP14805074A Division JPS5174589A (en) 1974-12-25 1974-12-25 HANDOT AIREEZA

Publications (2)

Publication Number Publication Date
JPS5994486A true JPS5994486A (en) 1984-05-31
JPS6250998B2 JPS6250998B2 (en) 1987-10-28

Family

ID=16460114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58202598A Granted JPS5994486A (en) 1983-10-31 1983-10-31 Semiconductor laser device and driving method therefor

Country Status (1)

Country Link
JP (1) JPS5994486A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6398176A (en) * 1986-10-15 1988-04-28 Hitachi Ltd Optical semiconductor device
JPH0287692A (en) * 1988-09-26 1990-03-28 Mitsubishi Electric Corp Semiconductor optical element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6398176A (en) * 1986-10-15 1988-04-28 Hitachi Ltd Optical semiconductor device
JPH0287692A (en) * 1988-09-26 1990-03-28 Mitsubishi Electric Corp Semiconductor optical element

Also Published As

Publication number Publication date
JPS6250998B2 (en) 1987-10-28

Similar Documents

Publication Publication Date Title
EP0188919B1 (en) A method for the formation of a diffraction grating
US7120322B2 (en) Photonic crystal device
JP2768988B2 (en) End face coating method
JPH06214169A (en) Controllable optical and periodic surface filter
EP0391334A3 (en) Semiconductor laser element capable of changing emission wavelength, and wavelength selective fitter, and methods of driving the same
US4782035A (en) Method of forming a waveguide for a DFB laser using photo-assisted epitaxy
JPS61190368A (en) Formation of fine pattern
JPS5994486A (en) Semiconductor laser device and driving method therefor
JPH06201909A (en) Production of diffraction grating
KR101938990B1 (en) A fabrication method of nano metal antenna in optical phased array chip, and the device thereof
JPS60241019A (en) Optical integrated circuit
JPS60132380A (en) Distributed feedback type semiconductor laser device
JPS6362916B2 (en)
JPH02143581A (en) Semiconductor laser element
EP0490320B1 (en) A method for producing a diffraction grating
JP2735589B2 (en) Manufacturing method of diffraction grating
JPH03296003A (en) Optical device and its manufacture
US10768364B1 (en) High-efficiency, high-divergence chip-scale emitter using a waveguide defect between resonant gratings
JP2830108B2 (en) Manufacturing method of semiconductor laser
JPS60127776A (en) Semiconductor light emitting device
JPH0461331B2 (en)
JPH08213709A (en) Optical part and driving of the same
JP3112153B2 (en) Grating fabrication method
JPS62208007A (en) Manufacture of diffraction grating
JPS627001A (en) Production of diffraction grating