JPS6398176A - Optical semiconductor device - Google Patents

Optical semiconductor device

Info

Publication number
JPS6398176A
JPS6398176A JP24293686A JP24293686A JPS6398176A JP S6398176 A JPS6398176 A JP S6398176A JP 24293686 A JP24293686 A JP 24293686A JP 24293686 A JP24293686 A JP 24293686A JP S6398176 A JPS6398176 A JP S6398176A
Authority
JP
Japan
Prior art keywords
lattices
diffraction grating
lattice
linearly
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24293686A
Other languages
Japanese (ja)
Inventor
Akio Oishi
大石 昭夫
Makoto Okai
誠 岡井
Shinji Tsuji
伸二 辻
Motonao Hirao
平尾 元尚
Hiroyoshi Matsumura
宏善 松村
Tatsuo Harada
原田 達男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24293686A priority Critical patent/JPS6398176A/en
Publication of JPS6398176A publication Critical patent/JPS6398176A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain an optical semiconductor element in which its wavelength characteristic is linearly varied by linearly forming the lattice of diffraction grating not in parallel, and setting intervals between a line perpendicular to one lattice of reference and crossing points of the lattices equally. CONSTITUTION:When a light propagated in a semiconductor layer is coupled with a diffraction grating, a light of wavelength of lambdas = 2.m.n.d (wherein m: natural number, n: effective refractive index of medium, d: period of lattice). Accordingly, when the lattices of the diffraction grating are set not parallel and linearly varied, the period (d) of the lattice is linearly varied. Then, arbitrary one of the formed lattices is considered to be a reference lattice 3, and lines 1, 2 perpendicular thereto are separated at 1 mm. At this time, the interval between a perpendicular line 1 and the crossing points of the lattices are set to 240 nm, and the intervals between a perpendicular line 2 and the crossing points of the lattices are set to 238 nm to be linearly formed. Accordingly, elements are formed at an equal interval in parallel with the lines 1, 2, and when the interval between the elements is set to 500mum, the period of the lattices to be coupled with the elements is varied by 1 mm at an equal interval.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は1回折格子を有する光半導体装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to an optical semiconductor device having one diffraction grating.

〔従来の技術〕[Conventional technology]

従来の非平行な回折格子を有する光半導体素子訃よび作
製方法は特公昭57−29069−QK示されている。
A conventional optical semiconductor device having a non-parallel diffraction grating and a manufacturing method are disclosed in Japanese Patent Publication No. 57-29069-QK.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

周期の異なる回折格子?同一基板上に形成することによ
り、僚々な光半導体素子を形成することが可能となる。
Diffraction gratings with different periods? By forming them on the same substrate, it becomes possible to form a variety of optical semiconductor elements.

例えば1周期の異なる回折格子を有する基板上に分布帰
還型半導体レーザを形成することに工つ1発振波長の異
なる集積化レーザが実現できる。これは、上記従来技術
に示されたような、円筒型レンズを用いた干渉露光法や
、部分的に異なる周期含有する格子を順次干渉露光方法
により形成して行く方法等が考えられる。しかし。
For example, an integrated laser with a different oscillation wavelength can be realized by forming a distributed feedback semiconductor laser on a substrate having diffraction gratings with different periods. Possible methods for this include an interference exposure method using a cylindrical lens as shown in the above-mentioned prior art, and a method in which gratings containing partially different periods are successively formed by an interference exposure method. but.

順次、干渉露光法により格子を形成するためには。To form a grating sequentially by interference exposure method.

複数回の干渉露光や合わせが必要であり、均一な格子を
形成することは非常に困難である。また、円筒型レンズ
を用いた干渉露光法では露光が11g1lで済むものの
、形成される格子は非平行となる。
Multiple interference exposures and alignment are required, making it extremely difficult to form a uniform grating. Further, although the interference exposure method using a cylindrical lens requires only 11g1l of exposure, the formed gratings are non-parallel.

このため、等間隔にレーザを形成した場合、レーザの発
憑波長が等間隔にならないといった問題がめった。
For this reason, when lasers are formed at equal intervals, a problem often arises in that the emission wavelengths of the lasers are not arranged at equal intervals.

本発明の目的は、等間隔に光素子を形成した場合、その
波長特性が線形に変化する光半導体素子を実現すること
およびそのための回折格子の製造方法を示すことにある
An object of the present invention is to realize an optical semiconductor element whose wavelength characteristics change linearly when optical elements are formed at regular intervals, and to show a method for manufacturing a diffraction grating for the same.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は1回折格子の格子を非平行にすると同時にそ
の格子を直線状にすることにより実現できる、この回折
格子は、ルーリング・エンジンのような超微細送りが可
能な装置を用い、機械的な方法でマスクを形成し、その
パターンを半導体基板上に転写することにより容易に形
成することができる。
The above purpose can be achieved by making the grating of a single diffraction grating non-parallel and at the same time making the grating linear. It can be easily formed by forming a mask using a method and transferring the pattern onto a semiconductor substrate.

〔作用〕[Effect]

半導体層中を伝搬する光が回折格子と結合した場合、λ
g =’)、−m−n−d (m :自然数、n:媒質
の有効屈折率、d:格子の周期)の波長の光が選択され
る。したがって1回折格子の格子を非平行とし且直線状
に変化させることにより、格子の周期dが、直線状に変
化する。したがって、基準となるある格子に垂直に素子
を等間隔に形成すると、各素子の格子の周期dの差Δd
は等しくなる。したがって、各素子ごとに選択される光
の波長の差ΔλSは等しくなる。
When light propagating in a semiconductor layer is coupled with a diffraction grating, λ
g='), -m-n-d (m: natural number, n: effective refractive index of the medium, d: period of the grating) is selected. Therefore, by making the grating of one diffraction grating nonparallel and changing it linearly, the period d of the grating changes linearly. Therefore, if elements are formed at regular intervals perpendicular to a certain reference grating, the difference in the grating period d of each element Δd
are equal. Therefore, the difference ΔλS between the wavelengths of light selected for each element becomes equal.

〔実施例〕〔Example〕

以F1本発明の一実施例を第1図および第2図により説
明する。第1図は、マスクより転写することにより形成
した回折格子を有する半導体基板の一部を示す。形成し
た格子の内の任意の1本の格子を基準格子3と考え、こ
れと垂直な腺a、bを考える。ここで垂直線aとbは1
mm離れている。本実施例では、この時、垂直、癲1と
各格子の交点の間隔金240nmとした。また、垂直線
2と各格子の交点の間隔を238nmとした。この゛時
、各格子は直線状に形成されている。したがって、垂直
線1.2と平行に且等間隔に素子を形成し、素子と素子
の間隔を500μmとした場合、各素子と結合する格子
の周期は、1mmずつ等間隔で変化することになる。こ
の基板上に第2図に示すように7本の半導体レーザを形
成した。ここで%基板としてn型InP基板5を用い、
この基板上に第1図に示した回折格子を形成し、その上
にn型jnGaAsP(ホトルミネセンス波長λPL=
1.3μm)の光ガイド層*  InGaAsP活性層
(λPL=1.53μm)、p型InP層、p型I n
GaAsPキャップ層を成長した。その後、第1図に示
した垂直M1,2と平行な方向に500μm間隔で酸化
膜ストライブを形成した後5k3t−メタノール系ニツ
チ/グ液でエツチングを行い、メグの両側を結晶で埋込
みBH構造レーザを作製した。その後、両面に電極を形
成した後、へ午開、スクライプして、5g2図に示すよ
うな7本のレーザ6を集積化したバーを形成した。%素
子は電気的に分離され、独立に動作させることができる
。各素子を動作させたときの成流−光出力特性とスペク
トルを第3図に示す。第3図に示すように各スペクトル
の間の波長間隔は6.5±0.2nmと非常に均一な波
長間隔で発振する集積化分布帰還型半導体レーザが得ら
れた。
An embodiment of the F1 invention will be described below with reference to FIGS. 1 and 2. FIG. FIG. 1 shows a part of a semiconductor substrate having a diffraction grating formed by transferring from a mask. An arbitrary one of the formed grids is considered as the reference grid 3, and grids a and b perpendicular to this are considered. Here vertical lines a and b are 1
mm apart. In this example, the distance between the vertical intersections of the grid 1 and each grid was set to 240 nm. Further, the interval between the intersection of the vertical line 2 and each grid was 238 nm. At this time, each grid is formed in a straight line. Therefore, if elements are formed parallel to the vertical line 1.2 and at equal intervals, and the spacing between elements is 500 μm, the period of the grating connected to each element will change at equal intervals of 1 mm. . Seven semiconductor lasers were formed on this substrate as shown in FIG. Here, an n-type InP substrate 5 is used as the substrate,
A diffraction grating shown in FIG. 1 is formed on this substrate, and n-type jnGaAsP (photoluminescence wavelength λPL=
1.3 μm) optical guide layer* InGaAsP active layer (λPL=1.53 μm), p-type InP layer, p-type InP layer
A GaAsP cap layer was grown. After that, oxide film stripes are formed at intervals of 500 μm in the direction parallel to the vertical M1 and M2 shown in Fig. 1, and then etched with a 5k3t-methanol-based nitrogen solution, and both sides of the MEG are filled with crystals to form a BH structure. We created a laser. Thereafter, electrodes were formed on both sides, and then the strip was opened and scribed to form a bar in which seven lasers 6 were integrated as shown in Fig. 5g2. % elements are electrically isolated and can be operated independently. FIG. 3 shows the flow-light output characteristics and spectra when each element is operated. As shown in FIG. 3, an integrated distributed feedback semiconductor laser was obtained which oscillated at a very uniform wavelength interval of 6.5±0.2 nm between each spectrum.

本実施例は発振波長が1.5μm?rfの分布帰還型レ
ーザについて述べたが、本発明は、1.3μm帯やGa
AS系の分布帰還型あるいは分布反射型し一部に対して
も有効である。また、半導体レーザ以外にも、波長選択
性を持たせた光スィッチ等の光半導体装置に対しても効
果がある。
In this example, the oscillation wavelength is 1.5 μm? Although the RF distributed feedback laser has been described, the present invention is applicable to the 1.3 μm band and Ga laser.
It is also effective for some distributed feedback type or distributed reflection type AS systems. In addition to semiconductor lasers, the present invention is also effective for optical semiconductor devices such as optical switches with wavelength selectivity.

〔発明の効果〕〔Effect of the invention〕

本発明によれば1位置の変化に対して線形な波長選択を
有する光半導体装tを容易に得ることができる。
According to the present invention, an optical semiconductor device t having linear wavelength selection with respect to a change in one position can be easily obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による一実施例で、InP基板上にグレ
ーティングを形成した時の、InP基板の一部の表面を
示す図、第2図は第1図の基板を用いて7素子を集積化
した分布帰還を集積化半導体レーザの概観図および第3
図は第2図に示した7素子の屯流−光出力特性とスペク
トラム図である。 第1図 1  L、、P+反の一匍 第2図 等3図 工牝e基様、
Figure 1 is an example of the present invention, which shows a partial surface of an InP substrate when a grating is formed on the InP substrate, and Figure 2 shows the integration of seven elements using the substrate shown in Figure 1. An overview diagram of a semiconductor laser integrated with distributed feedback and the third
The figure shows the current-light output characteristics and spectrum diagram of the seven elements shown in FIG. 2. Fig. 1 1 L,, P + anti-sample Fig. 2 etc. 3 Mr. E Ki,

Claims (1)

【特許請求の範囲】 1、単一基板に形成され且回折格子を装置内部に有する
光半導体装置において、前記回折格子の格子が非平行で
且直線状に形成され、ある基準となる1本の格子と垂直
な線と各格子の各交点の間隔が等間隔である回折格子を
有することを特徴とする光半導体装置。 2、上記非平行な回折格子をマスクよりの光による転写
によつて形成したことを特徴とする特許請求の範囲第1
項記載の光半導体装置。
[Claims] 1. In an optical semiconductor device formed on a single substrate and having a diffraction grating inside the device, the gratings of the diffraction grating are non-parallel and linear, and one reference An optical semiconductor device comprising a diffraction grating in which the intersections of each grating and a line perpendicular to the grating are equally spaced. 2. Claim 1, characterized in that the non-parallel diffraction grating is formed by transferring light from a mask.
Optical semiconductor device as described in section.
JP24293686A 1986-10-15 1986-10-15 Optical semiconductor device Pending JPS6398176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24293686A JPS6398176A (en) 1986-10-15 1986-10-15 Optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24293686A JPS6398176A (en) 1986-10-15 1986-10-15 Optical semiconductor device

Publications (1)

Publication Number Publication Date
JPS6398176A true JPS6398176A (en) 1988-04-28

Family

ID=17096419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24293686A Pending JPS6398176A (en) 1986-10-15 1986-10-15 Optical semiconductor device

Country Status (1)

Country Link
JP (1) JPS6398176A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5456385A (en) * 1977-10-14 1979-05-07 Nippon Telegr & Teleph Corp <Ntt> Wavelength variable distribution feedback type semiconductor laser device
JPS5994486A (en) * 1983-10-31 1984-05-31 Hitachi Ltd Semiconductor laser device and driving method therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5456385A (en) * 1977-10-14 1979-05-07 Nippon Telegr & Teleph Corp <Ntt> Wavelength variable distribution feedback type semiconductor laser device
JPS5994486A (en) * 1983-10-31 1984-05-31 Hitachi Ltd Semiconductor laser device and driving method therefor

Similar Documents

Publication Publication Date Title
US4665528A (en) Distributed-feedback semiconductor laser device
JPH0262090A (en) Manufacture of optical semiconductor device
JPS6398176A (en) Optical semiconductor device
US6643315B2 (en) Distributed feedback semiconductor laser device and multi-wavelength laser array
JPH06132610A (en) Semiconductor laser array element and manufacture thereof
JPS622478B2 (en)
JPH08255947A (en) Semiconductor laser and fabrication thereof
JPS63148692A (en) Multiple wave length distribution bragg reflection type semiconductor laser array
JPH01270284A (en) Semiconductor laser element and its manufacture
JP2008160130A (en) Optoelectronic componet comprising diffraction grating with transverse structure
US5027368A (en) Semiconductor laser device
JPS6273690A (en) Semiconductor laser element
US5105431A (en) Semiconductor laser
JPH02252284A (en) Semiconductor laser array and manufacture thereof
JP2552504B2 (en) Semiconductor laser array device
JPS61148890A (en) Distribution feedback type semiconductor laser element
JPH02110986A (en) Multi-wavelength semiconductor laser
JPS60211993A (en) Semiconductor laser
JPH01186693A (en) Semiconductor device and manufacture thereof
JPS6250998B2 (en)
JPH1027936A (en) Method of forming laser with modulator
JPH02154204A (en) Manufacture of diffraction grating
JPS61134096A (en) Distributed feedback type semiconductor laser
JPS60242686A (en) Semiconductor laser array
JPH02237189A (en) Manufacture of single wavelength laser