JPS6398176A - Optical semiconductor device - Google Patents
Optical semiconductor deviceInfo
- Publication number
- JPS6398176A JPS6398176A JP24293686A JP24293686A JPS6398176A JP S6398176 A JPS6398176 A JP S6398176A JP 24293686 A JP24293686 A JP 24293686A JP 24293686 A JP24293686 A JP 24293686A JP S6398176 A JPS6398176 A JP S6398176A
- Authority
- JP
- Japan
- Prior art keywords
- lattices
- diffraction grating
- lattice
- linearly
- elements
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 20
- 230000003287 optical effect Effects 0.000 title claims abstract description 14
- 239000000758 substrate Substances 0.000 claims description 12
- 230000000644 propagated effect Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 description 8
- 238000001228 spectrum Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- OKKJLVBELUTLKV-UHFFFAOYSA-N methanol Substances OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000005424 photoluminescence Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
Landscapes
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は1回折格子を有する光半導体装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to an optical semiconductor device having one diffraction grating.
従来の非平行な回折格子を有する光半導体素子訃よび作
製方法は特公昭57−29069−QK示されている。A conventional optical semiconductor device having a non-parallel diffraction grating and a manufacturing method are disclosed in Japanese Patent Publication No. 57-29069-QK.
周期の異なる回折格子?同一基板上に形成することによ
り、僚々な光半導体素子を形成することが可能となる。Diffraction gratings with different periods? By forming them on the same substrate, it becomes possible to form a variety of optical semiconductor elements.
例えば1周期の異なる回折格子を有する基板上に分布帰
還型半導体レーザを形成することに工つ1発振波長の異
なる集積化レーザが実現できる。これは、上記従来技術
に示されたような、円筒型レンズを用いた干渉露光法や
、部分的に異なる周期含有する格子を順次干渉露光方法
により形成して行く方法等が考えられる。しかし。For example, an integrated laser with a different oscillation wavelength can be realized by forming a distributed feedback semiconductor laser on a substrate having diffraction gratings with different periods. Possible methods for this include an interference exposure method using a cylindrical lens as shown in the above-mentioned prior art, and a method in which gratings containing partially different periods are successively formed by an interference exposure method. but.
順次、干渉露光法により格子を形成するためには。To form a grating sequentially by interference exposure method.
複数回の干渉露光や合わせが必要であり、均一な格子を
形成することは非常に困難である。また、円筒型レンズ
を用いた干渉露光法では露光が11g1lで済むものの
、形成される格子は非平行となる。Multiple interference exposures and alignment are required, making it extremely difficult to form a uniform grating. Further, although the interference exposure method using a cylindrical lens requires only 11g1l of exposure, the formed gratings are non-parallel.
このため、等間隔にレーザを形成した場合、レーザの発
憑波長が等間隔にならないといった問題がめった。For this reason, when lasers are formed at equal intervals, a problem often arises in that the emission wavelengths of the lasers are not arranged at equal intervals.
本発明の目的は、等間隔に光素子を形成した場合、その
波長特性が線形に変化する光半導体素子を実現すること
およびそのための回折格子の製造方法を示すことにある
。An object of the present invention is to realize an optical semiconductor element whose wavelength characteristics change linearly when optical elements are formed at regular intervals, and to show a method for manufacturing a diffraction grating for the same.
上記目的は1回折格子の格子を非平行にすると同時にそ
の格子を直線状にすることにより実現できる、この回折
格子は、ルーリング・エンジンのような超微細送りが可
能な装置を用い、機械的な方法でマスクを形成し、その
パターンを半導体基板上に転写することにより容易に形
成することができる。The above purpose can be achieved by making the grating of a single diffraction grating non-parallel and at the same time making the grating linear. It can be easily formed by forming a mask using a method and transferring the pattern onto a semiconductor substrate.
半導体層中を伝搬する光が回折格子と結合した場合、λ
g =’)、−m−n−d (m :自然数、n:媒質
の有効屈折率、d:格子の周期)の波長の光が選択され
る。したがって1回折格子の格子を非平行とし且直線状
に変化させることにより、格子の周期dが、直線状に変
化する。したがって、基準となるある格子に垂直に素子
を等間隔に形成すると、各素子の格子の周期dの差Δd
は等しくなる。したがって、各素子ごとに選択される光
の波長の差ΔλSは等しくなる。When light propagating in a semiconductor layer is coupled with a diffraction grating, λ
g='), -m-n-d (m: natural number, n: effective refractive index of the medium, d: period of the grating) is selected. Therefore, by making the grating of one diffraction grating nonparallel and changing it linearly, the period d of the grating changes linearly. Therefore, if elements are formed at regular intervals perpendicular to a certain reference grating, the difference in the grating period d of each element Δd
are equal. Therefore, the difference ΔλS between the wavelengths of light selected for each element becomes equal.
以F1本発明の一実施例を第1図および第2図により説
明する。第1図は、マスクより転写することにより形成
した回折格子を有する半導体基板の一部を示す。形成し
た格子の内の任意の1本の格子を基準格子3と考え、こ
れと垂直な腺a、bを考える。ここで垂直線aとbは1
mm離れている。本実施例では、この時、垂直、癲1と
各格子の交点の間隔金240nmとした。また、垂直線
2と各格子の交点の間隔を238nmとした。この゛時
、各格子は直線状に形成されている。したがって、垂直
線1.2と平行に且等間隔に素子を形成し、素子と素子
の間隔を500μmとした場合、各素子と結合する格子
の周期は、1mmずつ等間隔で変化することになる。こ
の基板上に第2図に示すように7本の半導体レーザを形
成した。ここで%基板としてn型InP基板5を用い、
この基板上に第1図に示した回折格子を形成し、その上
にn型jnGaAsP(ホトルミネセンス波長λPL=
1.3μm)の光ガイド層* InGaAsP活性層
(λPL=1.53μm)、p型InP層、p型I n
GaAsPキャップ層を成長した。その後、第1図に示
した垂直M1,2と平行な方向に500μm間隔で酸化
膜ストライブを形成した後5k3t−メタノール系ニツ
チ/グ液でエツチングを行い、メグの両側を結晶で埋込
みBH構造レーザを作製した。その後、両面に電極を形
成した後、へ午開、スクライプして、5g2図に示すよ
うな7本のレーザ6を集積化したバーを形成した。%素
子は電気的に分離され、独立に動作させることができる
。各素子を動作させたときの成流−光出力特性とスペク
トルを第3図に示す。第3図に示すように各スペクトル
の間の波長間隔は6.5±0.2nmと非常に均一な波
長間隔で発振する集積化分布帰還型半導体レーザが得ら
れた。An embodiment of the F1 invention will be described below with reference to FIGS. 1 and 2. FIG. FIG. 1 shows a part of a semiconductor substrate having a diffraction grating formed by transferring from a mask. An arbitrary one of the formed grids is considered as the reference grid 3, and grids a and b perpendicular to this are considered. Here vertical lines a and b are 1
mm apart. In this example, the distance between the vertical intersections of the grid 1 and each grid was set to 240 nm. Further, the interval between the intersection of the vertical line 2 and each grid was 238 nm. At this time, each grid is formed in a straight line. Therefore, if elements are formed parallel to the vertical line 1.2 and at equal intervals, and the spacing between elements is 500 μm, the period of the grating connected to each element will change at equal intervals of 1 mm. . Seven semiconductor lasers were formed on this substrate as shown in FIG. Here, an n-type InP substrate 5 is used as the substrate,
A diffraction grating shown in FIG. 1 is formed on this substrate, and n-type jnGaAsP (photoluminescence wavelength λPL=
1.3 μm) optical guide layer* InGaAsP active layer (λPL=1.53 μm), p-type InP layer, p-type InP layer
A GaAsP cap layer was grown. After that, oxide film stripes are formed at intervals of 500 μm in the direction parallel to the vertical M1 and M2 shown in Fig. 1, and then etched with a 5k3t-methanol-based nitrogen solution, and both sides of the MEG are filled with crystals to form a BH structure. We created a laser. Thereafter, electrodes were formed on both sides, and then the strip was opened and scribed to form a bar in which seven lasers 6 were integrated as shown in Fig. 5g2. % elements are electrically isolated and can be operated independently. FIG. 3 shows the flow-light output characteristics and spectra when each element is operated. As shown in FIG. 3, an integrated distributed feedback semiconductor laser was obtained which oscillated at a very uniform wavelength interval of 6.5±0.2 nm between each spectrum.
本実施例は発振波長が1.5μm?rfの分布帰還型レ
ーザについて述べたが、本発明は、1.3μm帯やGa
AS系の分布帰還型あるいは分布反射型し一部に対して
も有効である。また、半導体レーザ以外にも、波長選択
性を持たせた光スィッチ等の光半導体装置に対しても効
果がある。In this example, the oscillation wavelength is 1.5 μm? Although the RF distributed feedback laser has been described, the present invention is applicable to the 1.3 μm band and Ga laser.
It is also effective for some distributed feedback type or distributed reflection type AS systems. In addition to semiconductor lasers, the present invention is also effective for optical semiconductor devices such as optical switches with wavelength selectivity.
本発明によれば1位置の変化に対して線形な波長選択を
有する光半導体装tを容易に得ることができる。According to the present invention, an optical semiconductor device t having linear wavelength selection with respect to a change in one position can be easily obtained.
第1図は本発明による一実施例で、InP基板上にグレ
ーティングを形成した時の、InP基板の一部の表面を
示す図、第2図は第1図の基板を用いて7素子を集積化
した分布帰還を集積化半導体レーザの概観図および第3
図は第2図に示した7素子の屯流−光出力特性とスペク
トラム図である。
第1図
1 L、、P+反の一匍
第2図
等3図
工牝e基様、Figure 1 is an example of the present invention, which shows a partial surface of an InP substrate when a grating is formed on the InP substrate, and Figure 2 shows the integration of seven elements using the substrate shown in Figure 1. An overview diagram of a semiconductor laser integrated with distributed feedback and the third
The figure shows the current-light output characteristics and spectrum diagram of the seven elements shown in FIG. 2. Fig. 1 1 L,, P + anti-sample Fig. 2 etc. 3 Mr. E Ki,
Claims (1)
光半導体装置において、前記回折格子の格子が非平行で
且直線状に形成され、ある基準となる1本の格子と垂直
な線と各格子の各交点の間隔が等間隔である回折格子を
有することを特徴とする光半導体装置。 2、上記非平行な回折格子をマスクよりの光による転写
によつて形成したことを特徴とする特許請求の範囲第1
項記載の光半導体装置。[Claims] 1. In an optical semiconductor device formed on a single substrate and having a diffraction grating inside the device, the gratings of the diffraction grating are non-parallel and linear, and one reference An optical semiconductor device comprising a diffraction grating in which the intersections of each grating and a line perpendicular to the grating are equally spaced. 2. Claim 1, characterized in that the non-parallel diffraction grating is formed by transferring light from a mask.
Optical semiconductor device as described in section.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24293686A JPS6398176A (en) | 1986-10-15 | 1986-10-15 | Optical semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24293686A JPS6398176A (en) | 1986-10-15 | 1986-10-15 | Optical semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6398176A true JPS6398176A (en) | 1988-04-28 |
Family
ID=17096419
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24293686A Pending JPS6398176A (en) | 1986-10-15 | 1986-10-15 | Optical semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6398176A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5456385A (en) * | 1977-10-14 | 1979-05-07 | Nippon Telegr & Teleph Corp <Ntt> | Wavelength variable distribution feedback type semiconductor laser device |
JPS5994486A (en) * | 1983-10-31 | 1984-05-31 | Hitachi Ltd | Semiconductor laser device and driving method therefor |
-
1986
- 1986-10-15 JP JP24293686A patent/JPS6398176A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5456385A (en) * | 1977-10-14 | 1979-05-07 | Nippon Telegr & Teleph Corp <Ntt> | Wavelength variable distribution feedback type semiconductor laser device |
JPS5994486A (en) * | 1983-10-31 | 1984-05-31 | Hitachi Ltd | Semiconductor laser device and driving method therefor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4665528A (en) | Distributed-feedback semiconductor laser device | |
JPH0262090A (en) | Manufacture of optical semiconductor device | |
JPS6398176A (en) | Optical semiconductor device | |
US6643315B2 (en) | Distributed feedback semiconductor laser device and multi-wavelength laser array | |
JPH06132610A (en) | Semiconductor laser array element and manufacture thereof | |
JPS622478B2 (en) | ||
JPH08255947A (en) | Semiconductor laser and fabrication thereof | |
JPS63148692A (en) | Multiple wave length distribution bragg reflection type semiconductor laser array | |
JPH01270284A (en) | Semiconductor laser element and its manufacture | |
JP2008160130A (en) | Optoelectronic componet comprising diffraction grating with transverse structure | |
US5027368A (en) | Semiconductor laser device | |
JPS6273690A (en) | Semiconductor laser element | |
US5105431A (en) | Semiconductor laser | |
JPH02252284A (en) | Semiconductor laser array and manufacture thereof | |
JP2552504B2 (en) | Semiconductor laser array device | |
JPS61148890A (en) | Distribution feedback type semiconductor laser element | |
JPH02110986A (en) | Multi-wavelength semiconductor laser | |
JPS60211993A (en) | Semiconductor laser | |
JPH01186693A (en) | Semiconductor device and manufacture thereof | |
JPS6250998B2 (en) | ||
JPH1027936A (en) | Method of forming laser with modulator | |
JPH02154204A (en) | Manufacture of diffraction grating | |
JPS61134096A (en) | Distributed feedback type semiconductor laser | |
JPS60242686A (en) | Semiconductor laser array | |
JPH02237189A (en) | Manufacture of single wavelength laser |