JPS5993586A - Method of relaxing stress of addition welding piping - Google Patents

Method of relaxing stress of addition welding piping

Info

Publication number
JPS5993586A
JPS5993586A JP20210382A JP20210382A JPS5993586A JP S5993586 A JPS5993586 A JP S5993586A JP 20210382 A JP20210382 A JP 20210382A JP 20210382 A JP20210382 A JP 20210382A JP S5993586 A JPS5993586 A JP S5993586A
Authority
JP
Japan
Prior art keywords
stress
welding
piping
pipe
tensile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20210382A
Other languages
Japanese (ja)
Inventor
榎本 邦夫
翼 清水
信二 坂田
小池 皓允
渉 佐川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20210382A priority Critical patent/JPS5993586A/en
Publication of JPS5993586A publication Critical patent/JPS5993586A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は付加物とくに円筒状付加物を嵌込み溶接によっ
て取付けた配管の溶接残留応力に係シ、特に原子カプラ
ント配管に通用するに好適な付加物溶接配管の応力緩和
法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to welding residual stress in piping in which an appendage, particularly a cylindrical appendage, is fitted and attached by welding. Concerning stress relaxation methods for welded piping.

〔従来技術〕[Prior art]

原子力をはじめとする発電プラントや化学プラントには
各種の溶接配管が使われている。これらの配′a溶接部
には一般にその材料の降伏応力種度の引張り応力が/A
貿している。この引張り残留応力は腐食環境中で使用さ
れる配管に応力腐食′dilJ。
Various types of welded piping are used in power plants, including nuclear power plants, and chemical plants. Generally, the tensile stress of the material's yield stress type is /A in these welds.
trading. This tensile residual stress causes stress corrosion in piping used in corrosive environments.

や腐食疲労割れ、水、A脆化側れの主原因となることが
多い。このような割れを防止するために過酷な条件で使
用される配・Uは溶接終了後に残留応力緩和熱処理が行
なわれる。
It is often the main cause of corrosion fatigue cracking, water, and A-embrittlement sidewalling. In order to prevent such cracks, the wires used under harsh conditions are subjected to residual stress relaxation heat treatment after welding.

この処理として従来からよく行なわれるのは、(1)加
熱炉中にて600 C&1度に数10分〜数時間保持後
徐冷する応力除去焼鈍、(2)火陥その他で当該溶接部
を局部的に加熱する局部的熱処理等がある。前者の方法
は組立途中で工場で製作される配管には適用でき、実際
によく映われている。しかし、組立完了後の配・Uある
いは現地Id接配Uには(1)の方法は適用できない場
合が多い。運転開始後に割れが発見され対米の必要が生
じたような場合、配管を解体しない限シ(1)の方法を
適用することは不可能である。一方、(2)の方法は通
用範囲は広いが、信頼性に欠け、その効果が明らかでな
い。方法を誤ると逆効果となるおそれもめる。
Conventionally, this process has been commonly carried out by (1) stress relief annealing, which involves holding the temperature at 600 C/1 degree for several tens of minutes to several hours in a heating furnace, and then slowly cooling it, (2) locally damaging the welded area by fire or other means. There are local heat treatments that heat the area. The former method can be applied to piping manufactured in a factory during assembly, and has been shown to work well in practice. However, in many cases, method (1) cannot be applied to the installation U after assembly is completed or to the on-site Id connection U. If a crack is discovered after the start of operation and it becomes necessary to send the pipe to the US, method (1) cannot be applied unless the pipe is dismantled. On the other hand, method (2) has a wide range of applications, but lacks reliability and its effectiveness is unclear. If the method is incorrect, it may have the opposite effect.

組立完了し、プラントの運転開始鎌、割れが生じて対策
が必要になった具体例としてBW几プラントの配管の場
合を以下に述べる。
After the assembly is completed and the plant begins operation, the following is a specific example of a pipe in a BW plant that cracked and required countermeasures.

BW几発眠プラントの8US304鋼配管溶接部におい
て溶接熱サイクルによる材質劣化、引張残留応力が生じ
、高温水という腐食環境の重畳によって応力腐食割れが
発生した。しかし、この配管は解体が困難なこと、また
、仮シに解体したとしても先に述べた600C程度での
応力除去焼鈍は5O830,4鋼に対して鋭敏化組織を
発生させるので残留応力が除去できても材質劣化を招く
ので従来法の適用は・不可能である。そのため、高温水
に接する・U内面が材質劣化せずにしかも残留応力を除
去できる熱処理として、第1図に示すように溶接金属1
の外周部に譲状の溝2を力11工し、U3.3′の内面
を冷却材4で冷却して内向rlJh度が鋭敏化温度にま
で上昇しないようにしながら先に設けた溝を再溶」妥釡
属5で満して看内面の引張残留応力を低減する方法が開
発されでいる。この方法は本図のようl直U溶接部には
有効であり、すでに実プラントにも使われている。しか
し、この方法も第2図、第3図のような分岐dの1決込
み溶接部に対しては応力緩和効果がなく、通用配−#μ
限定される。
Material deterioration and tensile residual stress occurred in the welded part of the 8US304 steel piping at the BW Hanseong Plant due to the welding heat cycle, and stress corrosion cracking occurred due to the combination of the corrosive environment of high-temperature water. However, it is difficult to dismantle this pipe, and even if it is temporarily dismantled, the stress-relieving annealing at about 600C as mentioned earlier will generate a sensitized structure in 5O830.4 steel, so the residual stress will be removed. Even if it is possible, it is impossible to apply conventional methods because it will cause material deterioration. Therefore, as shown in Fig. 1, weld metal 1
A concession-shaped groove 2 is machined on the outer circumference of the U3.3', and the previously formed groove is re-done while cooling the inner surface of U3.3' with a coolant 4 to prevent the inward direction from rising to the sensitization temperature. A method has been developed to reduce the tensile residual stress on the viewing surface by filling it with a melting solution. This method is effective for straight U welds as shown in this figure, and is already used in actual plants. However, this method does not have a stress relaxation effect on the one-step weld of branch d as shown in Figs. 2 and 3, and
Limited.

〔発明の目的〕[Purpose of the invention]

本発明の目的は組立児T配#ヤ運転開始後のプラント配
管の分岐・U溶接部の残留応力緩オロを配管を分解せず
に実施できる方法を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for relieving residual stress at branching and U-welding portions of plant piping after the start of operation of an assembly T-distributor without disassembling the piping.

〔発明の概要〕[Summary of the invention]

第1図の方法で溶接部円囲の応力を緩和できる最大の理
由は内聞を冷却しlがら書溶接5を行なうことにより、
内面(低温)と外面(高温)に生ずる板厚方向のm t
i mΔ1゛によって第4図にボす如く゛u内面に再1
容接中は引張シ応力が、再溶接終了後は圧縮応力が発生
する。こhKより再溶接前に、ff在した引張り残留応
力が緩和されることになる。なお、ΔTによる上述の作
用の曲に再溶接によって第5図に示すように局部的に・
aが膨らむ変形が再溶接部の内外面の平均温度+11.
に依4して実する。これは・a内面に対してt与浴接中
は圧縮応力を、再溶接終了後は引張シ応力を発生させる
ことになる。しかし、このTmの効果は管を溶接した本
例のような周継手においてはΔIl+の効果に比しで小
さい7ヒめ応力緩和が得られる。
The biggest reason why the stress in the weld area can be alleviated by the method shown in Figure 1 is that by cooling the inner weld and performing the welding process 5,
m t in the thickness direction that occurs on the inner surface (low temperature) and outer surface (high temperature)
By i mΔ1゛, as shown in Fig. 4, the inner surface of u is 1
Tensile stress occurs during welding, and compressive stress occurs after rewelding. This means that the existing tensile residual stress will be relaxed before rewelding. In addition, due to the above-mentioned effect due to ΔT, rewelding causes local damage as shown in Figure 5.
The deformation in which a swells is the average temperature of the inner and outer surfaces of the re-welded part +11.
It depends on 4 and becomes fruit. This means that compressive stress is generated on the inner surface of a during bathing and contact, and tensile stress is generated after rewelding. However, in a circumferential joint such as this example in which pipes are welded, the effect of Tm is smaller than the effect of ΔIl+, and the relaxation of stress can be obtained.

ところが、第2図、第3図のような分岐′nm接都に対
して拳法を適用すると1゛ヨの効果がΔTのそれより強
いために応力緩和が得られない。しかし、第5図の内面
溶接部から少し軸方向に離れたところはT、によって圧
縮応力が残留する。本発明の装点けこのIll、、の作
用を活用するために再溶接部位と最初の浴接部と一致さ
せずに離してrテなうことにある。
However, when Kenpo is applied to the branch 'nm junctions as shown in Figs. 2 and 3, stress relaxation cannot be obtained because the effect of 1゛Yo is stronger than that of ∆T. However, compressive stress remains due to T at a location a little axially distant from the inner weld in FIG. In order to take advantage of the effect of the mounting rod of the present invention, the re-welding area and the initial bath contact area should not be aligned but separated from each other.

実施例 第2図は本発明の適用対象とする配・d分岐構造の−し
Uを示すもので大口径の母管6に小口径の枝=#7(7
’)’を分岐サセルfcメ(D’tt 台8 (8’ 
)が嵌込み溶接9(9’)よって取付けられている。
Embodiment FIG. 2 shows a branch U of a distribution/d branch structure to which the present invention is applied, in which a small diameter branch = #7 (7
')' Branch Sacell fc me (D'tt 8 (8'
) is attached by inset welding 9 (9').

7(7’)と8(8/)は突合溶接10(10’)によ
って接合されている。第2図は第1図の分岐管部分の横
断面を示すものである。この配aに本発明を実施するに
際してはまず、第6図のように9から8だけ離れた6の
外周面KI1mB、深さhの開先溝11を9に沿って力
11工する。その後、管内面を冷却材4で冷却しつつ1
1に肉盛り溶接を行なう。第7図はこのようにして内面
ケ冷却しながら肉盛り溶接12を行なった後の状態を示
す。第8図は肉盛り溶接中の模式的な変形状態を示す。
7 (7') and 8 (8/) are joined by butt welding 10 (10'). FIG. 2 shows a cross section of the branch pipe portion of FIG. 1. When implementing the present invention in this arrangement a, first, as shown in FIG. 6, a bevel groove 11 with a depth h on the outer peripheral surface KI1mB of 6, which is 8 apart from 9, is machined along 9 with a force 11. After that, while cooling the inner surface of the tube with coolant 4,
1. Perform overlay welding. FIG. 7 shows the state after overlay welding 12 is performed while cooling the inner surface in this manner. FIG. 8 schematically shows a deformed state during build-up welding.

肉盛シ溶接中、外面の最高温! (’I’、、 、)は
溶融温度にまで上昇するため局部的に48図の実線のよ
うに膨らむ。しかし、内面温度(T−)は冷却されてい
るために300C程度にしかならない。
Maximum temperature on the outside surface during overlay welding! ('I', , , ) rises to the melting temperature, so it expands locally as shown by the solid line in Figure 48. However, the inner surface temperature (T-) is only about 300C because it is cooled.

この熱変形によって9の内面の溶接残留応力が効果的に
緩オ■される。以下、本発明の効果の該当部位のみを取
υ出して説明する。
This thermal deformation effectively relieves the welding residual stress on the inner surface of 9. Hereinafter, only relevant portions of the effects of the present invention will be selected and explained.

第9図は、肉盛ル溶接中において12の部分は内外面の
平均温[’l’、 = (1’、、、十Tm)/ 2に
対応した半径方向膨張変形をしようとするが12の近傍
の拘束のために局部的な曲は変形が生じている状況を示
す。図よりわかるように肉盛再溶接中は、12は引張シ
応力(+)、その部分の内面は圧縮応力(−L12の近
傍の9の外面は圧縮応力、その内面は引張応力が発生す
る。これらの応力が全て降伏応力以上であれば肉Ji1
.シ浴接が終了して内外面の温度が一様になった後にお
いて肉盛り中と反対符号の応力が残留して第9図の下図
のようになる。すなわち、膨張変形曲げ応力によって9
の内面には圧縮応力が残留することになる。
Figure 9 shows that during overlay welding, part 12 attempts to expand and deform in the radial direction corresponding to the average temperature of the inner and outer surfaces ['l', = (1',, 10 Tm)/2, but 12 Local bending indicates a situation where deformation occurs due to constraints in the vicinity of . As can be seen from the figure, during overlay rewelding, 12 is tensile stress (+), the inner surface of that part is compressive stress (-L12, the outer surface of 9 is compressive stress, and the inner surface is tensile stress). If all of these stresses are greater than the yield stress, the meat Ji1
.. After the bath welding is completed and the temperatures on the inner and outer surfaces become uniform, stress of the opposite sign to that during build-up remains, resulting in a situation as shown in the lower diagram of FIG. 9. That is, due to expansion deformation bending stress, 9
Compressive stress will remain on the inner surface.

次に平均温度T1によって12の内外…」は一様に伸び
ようとするが6の拘束のために肉lO溶接中は膜応力的
圧縮応力が発生し、9の内外1fljには膜応力的引張
膜応力が元止する。この様子を第1O図に示すが、第7
図において、12の閉曲、原曲な肉盛シ溶接が一様に高
温となったことを、固定し、これを枝a7の側から眺め
ると、12は70半匝方向に伸びようとすることから膜
応力的な応力の発生が理解される(枝I77に対し、母
管6が相対的に非常に大きい分岐・aを想定すると一層
よく理)!I11!できる)。
Next, due to the average temperature T1, the inside and outside of 12 tries to expand uniformly, but due to the constraint of 6, compressive stress due to membrane stress occurs during welding, and the tensile stress due to membrane stress occurs on the inside and outside 1flj of 9. Membrane stress is stopped. This situation is shown in Figure 1O.
In the figure, when we fix that the closed and original overlay welds of 12 are uniformly hot, and look at this from the side of branch a7, 12 tries to extend in the 70-half-inch direction. From this, the generation of membrane stress can be understood (it becomes even more understandable if we assume that the main pipe 6 is a relatively large branch a compared to the branch I77)! I11! can).

この膜応力が降伏点を越えると、因盛り終r時には第1
O図のF図の如く9の内外面に圧縮が、12の内外面に
は引張応力が残留するCとになる、仄に、第11図は内
外間1品度差ΔT(外111:高温、内面二低温)によ
って、肉盛り溶4m中の外面に圧縮応ノへ内聞に引張応
力が生じ、終了後には外面に引張膜応力、内面に圧縮応
力が残留する状況を示している。これは内外面温[差支
配形の曲げ応力といえる。
When this film stress exceeds the yield point, the first
As shown in Fig. O and F, there is compression on the inner and outer surfaces of 9, and tensile stress remains on the inner and outer surfaces of 12. , inner surface and two low temperatures), tensile stress is generated on the outer surface during the build-up melt 4m, and after completion of the build-up, tensile film stress remains on the outer surface and compressive stress remains on the inner surface. This can be said to be bending stress dominated by the difference in internal and external surface temperatures.

すなわち、9から離れた1lls分の外面に肉盛り溶接
12を行なうことによつで9の内面には、膨張変形依存
曲げ応力(第9図)、膜応力(第1O図)、内外面温度
差依存曲げ応力(iTii図)の三者によって圧縮残留
応力が発生することになる。一方、12の内面は第11
図の効果が第9図と第10図の和の効果よシ大さいとき
にのみ圧縮残留応力となる。
That is, by performing overlay welding 12 on the outer surface of 1lls apart from 9, the inner surface of 9 has the following effects: expansion deformation dependent bending stress (Fig. 9), membrane stress (Fig. 1O), inner and outer surface temperature. Compressive residual stress is generated by three types of differentially dependent bending stress (iTii diagram). On the other hand, the inner surface of 12 is the 11th
A compressive residual stress occurs only when the effect shown in FIG. 9 is greater than the sum of the effects shown in FIGS. 9 and 10.

上述の例では肉盛シ溶j&12によって9の内面の引張
シ残留応力r緩A日シたが、i’l) 12図は9から
S離れた部位に9に沿って高置加熱コイル14を設け、
これにクープル15及びトジンス16を介して接続した
高周波電源から高周波磁流を流すようにしたもめくめる
。この場佇も・U内は冷却材4を流して内面を冷却しつ
つ電流をυ11.す。コイル14の直−ドの母・aの外
面は誘導電流が誘起され、抵抗熱が生じて温度が上昇す
る。一方、内面は冷却されているから低温に保持される
。すなわち、先の例では肉盛溶接によって熱を与えてい
たが、この列では高周波誘導加熱によって熱を与えるも
のでめ郵、その効果は基本的に第9図〜41411図と
同じでめる。異なるところは、肉盛りの場合は厳密には
溶jχ−が移動するために膜応力効果が少ないが、本例
でtよコイルIM、”Fが同時に発熱するために膜応力
効果が先の例よりも大きい。
In the above example, the tensile residual stress on the inner surface of 9 was relaxed due to overlay welding, but in Figure 12, an elevated heating coil 14 is placed along 9 at a distance S from 9. established,
A high frequency magnetic current is applied to this from a high frequency power supply connected via a couple 15 and a torsion 16. In this case, the coolant 4 is flowing inside U to cool the inner surface and the current is υ11. vinegar. An induced current is induced on the outer surface of the mother wire (a) of the coil 14, resistance heat is generated, and the temperature rises. On the other hand, since the inner surface is cooled, it is kept at a low temperature. That is, in the previous example, heat was applied by overlay welding, but in this row, heat is applied by high frequency induction heating, and the effect is basically the same as in Figs. 9 to 41411. The difference is that in the case of overlaying, strictly speaking, the film stress effect is small because the molten jχ- moves, but in this example, the film stress effect is smaller than in the previous example because t, coil IM, and F generate heat at the same time. larger than

第13図は膜応力効果を第12図のクリよりもさらに効
果的にするために母it−磯状につつんだものでおる。
In order to make the film stress effect even more effective than the chestnut shown in FIG. 12, FIG.

以上述べた例は母管に枝管を接続する分岐・Uについて
説明したが、別の例として、円筒容g′4あるいは方形
容器(角形容器)に管あるいtよノズルを接続するfa
接部にも全く上述と同様にして適用することができる。
The above example describes the branch U that connects a branch pipe to the main pipe, but as another example, fa connects a pipe or nozzle to a cylindrical volume g'4 or a rectangular container.
It can also be applied to the contact portion in exactly the same manner as described above.

[し説明の効果〕 本発明によれば管台はめ込み溶接部の内面の引張シ溶接
IAwl応力を効果的に緩和することができる。
[Effects of the Explanation] According to the present invention, the tensile welding IAwl stress on the inner surface of the nozzle fitting welding portion can be effectively alleviated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来技術の説明図、j42図、第3図は本発明
の主対象でるる分岐・U構造を示す説明図、第4図、第
5図は従来技術の効果を示す説明図、第6図は本発明を
実施するだめの準備段階を示す説明図、第7図は実施結
果を示す説明図、第8図は本発明実施中の管の変形を示
す説明図、第9図〜第11図は本発明の効果を示すI説
明図、第12図は本発明の応用例を示す装置+1゛q成
と実施方法を示す説明図、第13図は第12図の変形例
を示す説明図である。 6・・・母管、8・・・・8台、9・・・談込溶接、1
1・・・開先溝、4・・・冷却材、12・・・肉盛り溶
接、14・・・加熱コイル、17・・・尚Jtd波C「
源。 ”  −’iLi〒。 $ I 目 寮2 凹 察3図 感4図 鰻ろ口 め′T力 嘱g口 第9阻 第(1図 $12国 鰻13(2)
FIG. 1 is an explanatory diagram of the prior art, FIG. FIG. 6 is an explanatory diagram showing the preparatory stage for implementing the present invention, FIG. 7 is an explanatory diagram showing the implementation results, FIG. 8 is an explanatory diagram showing the deformation of the pipe during implementation of the present invention, and FIGS. FIG. 11 is an explanatory diagram showing the effect of the present invention, FIG. 12 is an explanatory diagram showing an apparatus+1Q configuration and implementation method showing an application example of the present invention, and FIG. 13 is a modification of FIG. 12. It is an explanatory diagram. 6...Main pipe, 8...8 units, 9...Built-in welding, 1
1... Bevel groove, 4... Coolant, 12... Overlay welding, 14... Heating coil, 17... Jtd wave C"
source. ” -'iLi 〒. $ I Eye Dormitory 2 Concave Survey 3 Image Kansai 4 Figure Eel's Mouth Me'T Force 嘱g口 9th Block (1 Figure $ 12 Country Eel 13 (2)

Claims (1)

【特許請求の範囲】[Claims] 1、外周面に嵌め込み溶接によって取付けられた付加物
を有する配′gの溶接残留応力緩オロにおいて、前記配
管内面を冷却材で冷却しクク前記嵌込み溶接部近傍でか
つ該溶接部を含まない配管外周面上の局部的領域を該溶
接部に沿って加熱することケ特徴とする付加物溶接配管
の応力緩和法。
1. In the welding residual stress relief system for a pipe having an appendage attached by fitting and welding to the outer peripheral surface, the inner surface of the pipe is cooled with a coolant, and the inner surface of the pipe is cooled in the vicinity of the fitting weld and not including the weld. A stress relaxation method for appendage welded piping, which is characterized by heating a localized region on the outer peripheral surface of the piping along the welded part.
JP20210382A 1982-11-19 1982-11-19 Method of relaxing stress of addition welding piping Pending JPS5993586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20210382A JPS5993586A (en) 1982-11-19 1982-11-19 Method of relaxing stress of addition welding piping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20210382A JPS5993586A (en) 1982-11-19 1982-11-19 Method of relaxing stress of addition welding piping

Publications (1)

Publication Number Publication Date
JPS5993586A true JPS5993586A (en) 1984-05-30

Family

ID=16452009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20210382A Pending JPS5993586A (en) 1982-11-19 1982-11-19 Method of relaxing stress of addition welding piping

Country Status (1)

Country Link
JP (1) JPS5993586A (en)

Similar Documents

Publication Publication Date Title
EP1927668B1 (en) Restoration method for deteriorated part and restoration apparatus for deteriorated part
US4178022A (en) Welded austenitic steel pipe assembly
JP4176412B2 (en) Method and apparatus for regenerating creep degraded part
WO2009096004A1 (en) Deteriorated portion reproducing method and deteriorated portion reproducing device
JPS5993586A (en) Method of relaxing stress of addition welding piping
US4608101A (en) Method for heat treating pipe with double-pipe section
US4588869A (en) Method for relieving residual stresses by controlling weld heat input
JPS63112089A (en) Improving method for residual stress of double metal pipe and the like
JPS6130626A (en) Heat treatment of metal tube
JPS6018293A (en) Method for relieving residual stress of welded joint part
JPS5952689B2 (en) Method for improving residual stress on the inner and outer surfaces of steel pipes
JPS5941425A (en) Improvement in residual stress of hollow body
JPS61197892A (en) Method of locking pipe
JPH038568A (en) Method for improving stress corrosion cracking in metal pipe
JP3675463B2 (en) Heat treatment method for piping system
JPS61227133A (en) Heat treatment
JPS60131923A (en) Heat treatment of weld zone of double-walled pipe
JP2001138080A (en) Laser clad welding method
JPS61104029A (en) Heat treatment of pipeline
WO1990015418A1 (en) A method for repair of system parts of a nuclear reactor which are contacted by process medium
JPH06182578A (en) Method and equipment for welding pipings
JPS61245090A (en) Method of thermally treating piping system
JPS6237319A (en) Method for repairing metallic vessel or the like
JPH0910984A (en) Heat treatment method for pressure container nozzle of nuclear reactor
JPH02133191A (en) Preventing method for stress corrosion cracking of vessel through-pipe