JPS6237319A - Method for repairing metallic vessel or the like - Google Patents

Method for repairing metallic vessel or the like

Info

Publication number
JPS6237319A
JPS6237319A JP60176676A JP17667685A JPS6237319A JP S6237319 A JPS6237319 A JP S6237319A JP 60176676 A JP60176676 A JP 60176676A JP 17667685 A JP17667685 A JP 17667685A JP S6237319 A JPS6237319 A JP S6237319A
Authority
JP
Japan
Prior art keywords
defective part
stress
temp
difference
metal wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60176676A
Other languages
Japanese (ja)
Inventor
Hitoshi Nakamura
均 中村
Eiji Matsushima
栄次 松島
Akio Okamoto
岡本 旦夫
Tadahiro Umemoto
忠宏 梅本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP60176676A priority Critical patent/JPS6237319A/en
Publication of JPS6237319A publication Critical patent/JPS6237319A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To generate residual compressive stress near the front end of a defective part by heating a metallic wall near the defective part and cooling the exposed surface near the defective part to provide a temp. difference in the sheet thickness direction where the thermal stress above the yield point is generated to a metallic wall then removing the temp. difference. CONSTITUTION:A heating means 3 is operated to heat the metallic wall 1 near the defective part 2 of a metallic pipe which has a defect such as crack in the stage of repairing the above-mentioned metallic pipe. At the same time, cooling water is continuously forced into the metallic pipe to generate the temp. difference between both surfaces of the metallic wall 1. A temp. gradient is generated in the metallic wall 1 near the defective part 2 by such temp. difference. The residual compressive stress is generated near the defective part 2 when the heating means 3 is stopped and the pipe is allowed to cool of itself. The growth of the crack, etc. is thus prevented.

Description

【発明の詳細な説明】 「産業上の利用分野J 本発明は、金属容器等の補修方法に係わり、特にクラッ
ク等の欠陥が生じた部分に圧縮残留応力を付与して、ク
ラック等の成長を阻止する補修方法に関するものである
Detailed Description of the Invention "Industrial Application Field J The present invention relates to a method for repairing metal containers, etc., and in particular applies compressive residual stress to areas where defects such as cracks have occurred to prevent the growth of cracks etc. This relates to a repair method that prevents this.

「従来の技術とその問題点」 一般に、原子力や化学プラント等に多用されているオー
ステナイト系ステンレス鋼等の金属材料によって構成さ
れている容器、金属管等においては、例えば内面に、腐
食割れ、水素割れ、疲労等に起因してクラック等の欠陥
が発生すると、内圧により生じる引っ張り応力や、プラ
ント運転の起動、停止に伴う応力変動等により、欠陥が
さらに成長して、金属容器・管等の構成物の機械的強度
を損なう現象が起こり得る。
"Conventional technology and its problems" In general, containers, metal pipes, etc. made of metal materials such as austenitic stainless steel, which are often used in nuclear power plants, chemical plants, etc., have corrosion cracks, hydrogen cracks, etc. on the inner surface. When defects such as cracks occur due to cracks, fatigue, etc., the defects grow further due to tensile stress caused by internal pressure and stress fluctuations due to start-up and stoppage of plant operation, causing damage to the structure of metal containers, pipes, etc. Phenomena may occur that impair the mechanical strength of objects.

したがって、欠陥が生じた場合には、欠陥部を溶接等の
手段によって補修するか、または部品を交換するか等の
方法が採用される。
Therefore, when a defect occurs, methods such as repairing the defective part by means such as welding or replacing the part are adopted.

しかしながら、このような方法は、コスト高を。However, such methods involve high costs.

招くとともに、原子カプラントの場合であると、補修ま
たは部品交換作業時の作業員被曝の問題が生じる。
In addition, in the case of nuclear couplants, there is a problem of worker exposure during repair or parts replacement work.

本発明は、このような問題点を存効に解決べくなされた
ものであり、■低コスト化を図ること、■工期の短縮を
図ること、■作業員の被曝をすくなくすること、■欠陥
部の先端等に集中的に圧縮残留応力を付与してその後の
欠陥部の成長を阻止し、信頼性を向上させること等を特
徴とする特許である。
The present invention has been made in order to effectively solve these problems, and aims to: 1) reduce costs, 2) shorten the construction period, 2) reduce the exposure of workers to radiation, and 2) eliminate defective parts. This patent is characterized in that compressive residual stress is concentratedly applied to the tip, etc., to prevent the subsequent growth of defective parts and improve reliability.

「問題点を解決するための手段」 このような目的を達成するため、本発明は、クラック等
の欠陥が生じている金属容器等の補修方法において、欠
陥部付近の金属壁を加熱するとともに欠陥部付近の露出
面を冷却して、金属壁に降伏点以上の熱応力を発生させ
る板厚方向の温度差を付与した後、該温度差を除去する
ことにより、冷却後に欠陥部の先端付近に残留圧縮応力
を生じさせるものである。
"Means for Solving the Problems" To achieve the above object, the present invention provides a method for repairing metal containers, etc. that have defects such as cracks, in which the metal wall near the defect is heated and the defect is removed. After cooling the exposed surface near the defective part and applying a temperature difference in the thickness direction that generates thermal stress exceeding the yield point in the metal wall, by removing this temperature difference, the exposed surface near the tip of the defective part is cooled. This causes residual compressive stress.

「実施例」 まず、本発明に係る方法の概略を金属構成物が金属管で
ある例をとって、第1図ないし第3図に基づいて説明す
る。図中、符号1は金属管の壁(金属壁)、符号2は金
属壁lの内面に発生しているクラック等の欠陥部、符号
3は、誘導加熱コイル等の加熱手段である。また、方法
の実施のためには、第1図に矢印で示すように冷却水を
挿通させる等の冷却手段等が必要である。
"Example" First, an outline of the method according to the present invention will be explained based on FIGS. 1 to 3, using an example in which the metal component is a metal tube. In the figure, reference numeral 1 indicates a wall of a metal tube (metal wall), reference numeral 2 indicates a defective portion such as a crack occurring on the inner surface of the metal wall l, and reference numeral 3 indicates a heating means such as an induction heating coil. Further, in order to carry out the method, a cooling means such as passing cooling water as shown by the arrow in FIG. 1 is required.

加熱手段3を作動させることにより、欠陥部2の付近の
金属壁1を加熱するとともに、金属管゛の中に冷却水を
連続的に挿通さ什ること等により、金属壁Iの両面に温
度差を生じさせる。この温度差によって、欠陥部の付近
の金属壁1の中には、第2図に鎖線θnで示すような温
度勾配か生じる。
By operating the heating means 3, the metal wall 1 near the defective part 2 is heated, and by continuously passing cooling water into the metal tube, etc., the temperature is increased on both sides of the metal wall I. Make a difference. Due to this temperature difference, a temperature gradient as shown by the chain line θn in FIG. 2 is generated in the metal wall 1 near the defective portion.

次いで、加熱手段の作動を停止して自然冷却する等によ
り、金属壁lの温度差を除去した状態として、第2図に
鎖線θZで示すように常温状態まで戻す工程を経由させ
る。
Next, by stopping the operation of the heating means and allowing natural cooling, etc., the temperature difference in the metal wall 1 is removed, and the metal wall 1 is returned to a normal temperature state as indicated by the chain line θZ in FIG. 2.

そして、これらの加熱、温度差付与、温度差除去の各過
程を経由させることにより、金属壁1の中で応力発生等
の現象が生じる。即ち、常温状態あるいは金属壁1が均
一に加熱されるとと乙に、金属管が自由に熱膨張し得ろ
状態であると、金属壁Iの各部分には応力が発生しない
が、温度差によって金属壁lの中に、第2図の鎖線on
で示すような温度勾配が発生した状態とすると、平均温
度である箇所に対してその(旧対差分たけ伸縮しようと
するから、第3図に曲線σnで示すように、高fjL(
θhに近似した温度)である外面側には圧縮応力が生じ
、また、低温(冷却水に近い温度)である内面側は引っ
張り応力が発生する。
By going through these processes of heating, applying a temperature difference, and removing a temperature difference, phenomena such as stress generation occur in the metal wall 1. That is, when the metal wall 1 is heated uniformly at room temperature or when the metal tube can freely expand thermally, no stress is generated in each part of the metal wall I, but due to temperature differences, Inside the metal wall l, mark the chain line in Figure 2.
If a temperature gradient as shown in Fig. 3 occurs, a point with a certain average temperature will try to expand or contract by the difference from the (old), so as shown by the curve σn in Fig. 3, a high fjL(
Compressive stress is generated on the outer surface side, which is at a temperature close to θh), and tensile stress is generated on the inner surface side, which is at a low temperature (temperature close to cooling water).

第3図に示すように、欠陥部2のクラックが金属壁1の
中に入り込んでいる状態であると、欠陥部(クラック)
2の部分では、その幅方向(第3図では左右方向)に伸
縮自在となるので応力が生じないが、亀裂先端部近傍に
は、応力集中効果等のために、高い引っ張り応力に基づ
く大きな塑性変形が生じることになる。
As shown in FIG. 3, if the crack in the defective part 2 has entered the metal wall 1, the defective part (crack)
In the part 2, no stress is generated because it can expand and contract in the width direction (horizontal direction in Figure 3), but in the vicinity of the crack tip, large plasticity due to high tensile stress occurs due to the stress concentration effect, etc. Deformation will occur.

したがって、温度差を除去した状態にあっては、第3図
に曲線σZで示すように、金属壁の内部まで入り込んで
いる欠陥部の先端付近に、特に大きな圧縮残留応力が付
与されるようになるものである。
Therefore, when the temperature difference is removed, a particularly large compressive residual stress is applied near the tip of the defect that has penetrated into the interior of the metal wall, as shown by the curve σZ in Figure 3. It is what it is.

また、金属壁の表面部だけでなく、板厚の大部分に降伏
点を越えた応力を発生させるために必要な温度差(ΔT
c  )は、欠陥部2が小さく無視し得る範囲において
、次式で求められる。
In addition, the temperature difference (ΔT
c) is determined by the following formula within a range where the defective portion 2 is small and can be ignored.

ΔTc=4(1−ν)σy/Eα・−−−(i)ただ1
−5 v  ・ボア・ノ・71十σy :輔あるいは円
周方向の応力 E  ・ヤング係数 α  :線膨張係数 なお、欠陥部が生じているときは、その先端に残留圧縮
応力が集中して発生する理由により、深さの程度(どよ
っては、(1)式よりも少ない温度差で良い場合らあり
得る。
ΔTc=4(1-ν)σy/Eα・---(i) Only 1
-5 v ・Bore No. 710σy: Stress E in the circumferential direction ・Young's coefficient α: Coefficient of linear expansion Note that when a defect occurs, residual compressive stress is concentrated at the tip and occurs. For this reason, depending on the depth (depending on the degree of depth), it may be possible to require a smaller temperature difference than in equation (1).

次いで、金属構成物が第4図に示すステンレス鋼管(S
US304  )である場合において、その寸法が72
0 mm、管壁厚さが30mm、また管壁厚さの30%
まで全周亀裂を付与して欠陥部としたサンプルを形成し
、該サンプルに第1図ないし第3図例の補修、つまり熱
処理を行なった場合の解析例について第4図ないし第7
図に基づいて説明する。
The metal composition is then replaced with a stainless steel tube (S) as shown in FIG.
US304), its dimensions are 72
0 mm, tube wall thickness is 30 mm, and 30% of tube wall thickness
Figures 4 to 7 show analysis examples in which a sample is formed as a defective part by adding cracks all around the circumference, and the sample is repaired as shown in Figures 1 to 3, that is, heat treated.
This will be explained based on the diagram.

この場合、前記捕修のための熱処理に必要な温度差は、
前述した(1)に、(7Y = 25 kg/mm’、
30%亀裂、E= 19500kg/+nm’ 、a=
 12の条件を加えて算出すると、約200 ’Cとな
るので、この200℃の温度差を付与した場合において
、第4図に鎖線で示す欠陥部と、第4図に鎖線■で示す
正常部でかつ欠陥部の影響を受けない部分とを比較した
In this case, the temperature difference required for the heat treatment for said repair is:
In (1) mentioned above, (7Y = 25 kg/mm',
30% crack, E= 19500kg/+nm', a=
When calculated by adding the 12 conditions, the result is approximately 200'C, so when this 200°C temperature difference is applied, the defective part shown by the chain line in Figure 4 and the normal part shown by the chain line ■ in Figure 4 A comparison was made with a part that is large and unaffected by the defect.

第5図に示すように、欠陥部には応力の発生が認められ
ないが、応力の成長が懸念される先端部分には、約88
 kgf/’cm’程度の残留圧縮応力が付与された状
態となっており、後のクラックの成長を効果的に阻止す
ることができる。
As shown in Figure 5, no stress is observed in the defect, but the tip, where stress growth is a concern, is approximately 88.
A residual compressive stress of about kgf/cm is applied, and subsequent crack growth can be effectively prevented.

第6図に示すように、正常な部分における金属壁の内面
にも、約27 kgf/cm2の残留圧縮応力を付与す
ることができるが、第5図の欠陥部の先端の残留圧縮応
力の30%程度である。
As shown in Fig. 6, a residual compressive stress of approximately 27 kgf/cm2 can be applied to the inner surface of the metal wall in the normal part, but the residual compressive stress at the tip of the defective part in Fig. 5 is 30 kgf/cm2. It is about %.

次いて、第7図により外荷重が複合して加わった場合に
ついて説明する。前記処理がなされたステンレス鋼管に
、使用状態における内圧等が作用して、軸方向の引っ張
り応力が重複すると、その重複応力の程度により△−ム
ー〇−・のように残留応力曲線が変化する。ただし、△
は外部荷重によって生じる軸方向の引っ張り応力が0、
ムは62 kgf/mm2、○は9 、 2 kgf/
mm2、・は12.3kgf/mm’である場合を示し
ている。
Next, the case where a combination of external loads is applied will be explained with reference to FIG. When internal pressure or the like acts on the stainless steel pipe subjected to the above treatment and tensile stress in the axial direction overlaps during use, the residual stress curve changes like Δ-Mu〇-. depending on the degree of the overlapping stress. However, △
is the axial tensile stress caused by external load is 0,
62 kgf/mm2, ○ is 9, 2 kgf/mm2
mm2, · indicates a case of 12.3 kgf/mm'.

この結果、例えば原子力発電プラントの一般配管等の運
転時に付与されろ応力、6〜7 Jf’/’mm’程度
以下の範囲であれば、欠陥部の先端に圧縮残留応力を付
与した状態に保持することができるので、欠陥部が成長
する現象の発生を阻止し得ることになる。
As a result, if the stress applied during the operation of general piping in a nuclear power plant, for example, is within the range of about 6 to 7 Jf'/'mm', compressive residual stress is maintained at the tip of the defective part. Therefore, it is possible to prevent the phenomenon of defective portions from growing.

なお、第4図ないし第7図ではステンレス鋼管の場合を
説明したが、炭素鋼管の場合では、前記(1)式により
温度差約300°Cが求められ、その他、類似する他の
管体、容器等にも適用することができる。また、温度差
を付与する手段は、第1図例以外に、バーナ等により金
属壁を加熱状態とした後に冷却水を吹き込む表面急冷法
、内面に冷却水を存在させた状態で金属壁を加熱する方
法等の他の方法とすることかできる。さらに、管軸方向
の残留応力改善について述べたが、円周方向にも適用し
得る。
In addition, although the case of stainless steel pipes has been explained in FIGS. 4 to 7, in the case of carbon steel pipes, a temperature difference of about 300°C is determined by the above equation (1), and other similar pipes, It can also be applied to containers etc. In addition to the example shown in Figure 1, methods for applying a temperature difference include surface quenching, in which cooling water is blown into the metal wall after heating it with a burner, and heating the metal wall while cooling water is present on the inner surface. It is also possible to use other methods such as Furthermore, although the residual stress improvement in the tube axis direction has been described, it can also be applied in the circumferential direction.

「発明の効果」 以上説明したように本発明は、欠陥部付近の金属壁を加
熱するとともに欠陥部付近の露出面を冷却して、金属壁
に降伏点以上の熱応力を発生させる板厚方向の温度差を
付与した後、該温度差を除去することにより欠陥部の付
近に残留圧縮応力を生じさせるものであるから、次のよ
うな効果を奏することができる。
"Effects of the Invention" As explained above, the present invention heats the metal wall near the defective part and cools the exposed surface near the defective part, thereby generating thermal stress in the metal wall in the thickness direction that is higher than the yield point. After applying a temperature difference of , the temperature difference is removed to generate residual compressive stress in the vicinity of the defective part, so that the following effects can be achieved.

(a)金属構成材を加熱及び冷却して温度差を付与する
ものであるから、欠陥部を除去し、溶接補修する方法と
比較して、容易に実施することができるとともに、補修
対象物の形状や大きさの制限が少なく、適用範囲が広く
実用性が高い。
(a) Since the metal component is heated and cooled to create a temperature difference, it is easier to carry out than the method of removing defective parts and repairing by welding. It has few restrictions on shape and size, has a wide range of applications, and is highly practical.

(b)欠陥部の先端等に集中的に圧縮残留応力を付与す
ることになるため、欠陥部の成長を阻止し、また、内圧
等に起因する引っ張り応力が金属壁に作用した場合でも
、圧縮残留応力を付与した状態に保持することにより、
安全性を確保して信頼性を向上させることができる。
(b) Compressive residual stress is applied intensively to the tip of the defect, which prevents the defect from growing, and even when tensile stress due to internal pressure acts on the metal wall, compressive residual stress is applied intensively to the tip of the defect. By maintaining residual stress,
It is possible to ensure safety and improve reliability.

(c)欠陥部の補修とともに、その付近の表面に圧縮残
留応力を付与した安定状態とすることができ、また、そ
の後の腐食割れ、疲労割れ等の発生、成長を抑制するこ
とができる。
(c) In addition to repairing the defective part, it is possible to bring the surface in the vicinity to a stable state with compressive residual stress, and to suppress the subsequent occurrence and growth of corrosion cracks, fatigue cracks, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る方法の概略を説明する金属構成物
が金属管である例の一部を切欠した斜視図、第2図は第
1図における欠陥部付近の金属壁の温度の説明図、第3
図は第2図の各温度における金属壁の応力曲線図、第4
図は解析例におけるステンレス鋼管の一部を切欠した斜
視図、第5図は第4図の鎖線v部分における金属壁の厚
さ方向の残留応力曲線図、第6図は第4図の鎖線■部分
における金属壁の厚さ方向の残留応力曲線図、第7図は
外荷重示複合して加わった状態の残留応力の解析例の残
留芯ツノ曲線図である。 1・・・・・・金属壁、2・・・・・・欠陥部、3・・
・・・・加熱手段。 出願人  石川島播磨重工業株式会社 第1図 oooo○○
Fig. 1 is a partially cutaway perspective view of an example in which the metal component is a metal tube, illustrating the outline of the method according to the present invention, and Fig. 2 is an explanation of the temperature of the metal wall near the defective part in Fig. 1. Figure, 3rd
The figure is the stress curve diagram of the metal wall at each temperature in Figure 2, and Figure 4.
The figure is a partially cutaway perspective view of the stainless steel pipe in the analysis example, Figure 5 is a residual stress curve diagram in the thickness direction of the metal wall at the chain line v in Figure 4, and Figure 6 is the chain line ■ in Figure 4. Fig. 7 is a residual stress curve diagram in the thickness direction of the metal wall at a portion, and Fig. 7 is a residual core horn curve diagram of an analysis example of residual stress in a state where external loads are combined and applied. 1...Metal wall, 2...Defect part, 3...
・・・Heating means. Applicant Ishikawajima Harima Heavy Industries Co., Ltd. Figure 1 ooooo○○

Claims (1)

【特許請求の範囲】[Claims] クラック等の欠陥が生じている金属容器等の補修方法に
おいて、欠陥部付近の金属壁を加熱するとともに欠陥部
付近の露出面を冷却して、金属壁に降伏点以上の熱応力
を発生させる板厚方向の温度差を付与した後、該温度差
を除去することを特徴とする金属容器等の補修方法。
In a method for repairing metal containers, etc. that have defects such as cracks, a plate that heats the metal wall near the defect and cools the exposed surface near the defect to generate thermal stress in the metal wall that exceeds the yield point. A method for repairing metal containers, etc., characterized by applying a temperature difference in the thickness direction and then removing the temperature difference.
JP60176676A 1985-08-10 1985-08-10 Method for repairing metallic vessel or the like Pending JPS6237319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60176676A JPS6237319A (en) 1985-08-10 1985-08-10 Method for repairing metallic vessel or the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60176676A JPS6237319A (en) 1985-08-10 1985-08-10 Method for repairing metallic vessel or the like

Publications (1)

Publication Number Publication Date
JPS6237319A true JPS6237319A (en) 1987-02-18

Family

ID=16017773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60176676A Pending JPS6237319A (en) 1985-08-10 1985-08-10 Method for repairing metallic vessel or the like

Country Status (1)

Country Link
JP (1) JPS6237319A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0565530A (en) * 1991-09-10 1993-03-19 Hitachi Ltd Stress corrosion cracking resistant austenitic material and its manufacture

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5338246A (en) * 1976-09-21 1978-04-08 Toshiba Corp Amplifier circuit
JPS56150134A (en) * 1980-04-19 1981-11-20 Ishikawajima Harima Heavy Ind Co Ltd Prevention of stress corrosion cracking

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5338246A (en) * 1976-09-21 1978-04-08 Toshiba Corp Amplifier circuit
JPS56150134A (en) * 1980-04-19 1981-11-20 Ishikawajima Harima Heavy Ind Co Ltd Prevention of stress corrosion cracking

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0565530A (en) * 1991-09-10 1993-03-19 Hitachi Ltd Stress corrosion cracking resistant austenitic material and its manufacture

Similar Documents

Publication Publication Date Title
EP1927668B1 (en) Restoration method for deteriorated part and restoration apparatus for deteriorated part
US4505763A (en) Heat-treating method of weld portion of piping system and heating coil for the heat treatment
CN111676351A (en) Heat treatment method for regulating residual stress by local temperature difference
JPS622903B2 (en)
JP4176412B2 (en) Method and apparatus for regenerating creep degraded part
JPH0724577A (en) Butt welding method for clad tubes
Natesan et al. Preliminary materials selection issues for the next generation nuclear plant reactor pressure vessel.
JPS6237319A (en) Method for repairing metallic vessel or the like
JP2011125921A (en) Improvement structure in creep strength of welded joint
JP2006258621A (en) Creep damage estimation method of ferritic heat resisting steel
JPS5817807B2 (en) Heat treatment method for piping
US4209123A (en) Prevention of sensitization of welded-heat affected zones in structures primarily made from austenitic stainless steel
JP2008036682A (en) Method of repairing nuclear reactor structure
JPS6130626A (en) Heat treatment of metal tube
Croft Heat treatment of welded steel structures
JPS5952689B2 (en) Method for improving residual stress on the inner and outer surfaces of steel pipes
Chinese Society for Metals (CSM) and The Minerals, Metals & Materials Society (TMS) et al. Alloy 740H component manufacturing development
JPS60131923A (en) Heat treatment of weld zone of double-walled pipe
Veiga et al. Residual stress evolution in repair welds
JPS61197892A (en) Method of locking pipe
Sugimoto et al. Development of outer surface irradiated laser stress improvement Process (L-SIP)
JP2002113576A (en) Fillet welding structure
JPH02133191A (en) Preventing method for stress corrosion cracking of vessel through-pipe
JPS6018292A (en) Treatment of residual stress of welded joint part
Lu et al. Mechanical behavior in local post weld heat treatment (report IV)