WO2009096004A1 - Deteriorated portion reproducing method and deteriorated portion reproducing device - Google Patents

Deteriorated portion reproducing method and deteriorated portion reproducing device Download PDF

Info

Publication number
WO2009096004A1
WO2009096004A1 PCT/JP2008/051348 JP2008051348W WO2009096004A1 WO 2009096004 A1 WO2009096004 A1 WO 2009096004A1 JP 2008051348 W JP2008051348 W JP 2008051348W WO 2009096004 A1 WO2009096004 A1 WO 2009096004A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
deteriorated
region
heater
regenerating
Prior art date
Application number
PCT/JP2008/051348
Other languages
French (fr)
Japanese (ja)
Inventor
Masashi Ozaki
Nobuhiko Nishimura
Fumitoshi Sakata
Masaru Kodama
Masahiro Kobayashi
Akira Shiibashi
Hideshi Tezuka
Ko Takeuchi
Original Assignee
Mitsubishi Heavy Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries, Ltd. filed Critical Mitsubishi Heavy Industries, Ltd.
Priority to CN200880104423.0A priority Critical patent/CN101784682B/en
Priority to KR1020107004221A priority patent/KR101201659B1/en
Priority to PCT/JP2008/051348 priority patent/WO2009096004A1/en
Publication of WO2009096004A1 publication Critical patent/WO2009096004A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K13/00Welding by high-frequency current heating
    • B23K13/04Welding by high-frequency current heating by conduction heating
    • B23K13/043Seam welding
    • B23K13/046Seam welding for tubes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/42Induction heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
    • C21D9/505Cooling thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/06Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • C21D11/005Process control or regulation for heat treatments for cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a regeneration method suitable for, for example, regenerating a deteriorated portion caused by creep or the like generated in a metal member constituting a high-temperature pipe used in a boiler or turbine of a thermal power / nuclear power plant or chemical plant.
  • the reproduction technique described in Patent Document 1 locally heats a region including a deteriorated portion C by a heater 1 made of a high-frequency heating coil.
  • a region where the temperature is increased by this heating is referred to as a heating region 3.
  • the deteriorated portion C such as a creep void or a crack existing in the heating region 3 disappears by being pressed by this compressive stress.
  • it is effective to raise the temperature of the heating region 3 as much as possible.
  • the heating region 3 contracts in the process of cooling the region after the heat treatment.
  • the periphery of the heating region 3 restrains the shrinkage of the heating region 3, tensile stress is generated in the heating region 3.
  • the deteriorated portion C once pressed may open.
  • the crystal structure becomes coarse due to the void pressure treatment, the coarse structure is likely to remain only with a thermal cycle in which the temperature is raised and lowered across the transformation point in the subsequent recrystallization heat treatment. It was necessary to perform crystallization. Therefore, in order to reliably regenerate the deteriorated portion C, the pressure stress during heating is sufficiently large, the residual tensile stress during cooling is reduced, and the coarsened hardened structure is sufficient for a structure equivalent to the base material. It was necessary to recrystallize.
  • the present invention has been made in view of the above circumstances, and can easily and reliably repair and regenerate a deteriorated portion generated in a metal member, and maintain the repaired state for a long period of time, thereby extending the life of the metal member.
  • An object of the present invention is to provide a method for reproducing a deteriorated part.
  • Another object of the present invention is to provide a reproduction device for a deteriorated part that can implement the method for reproducing the deteriorated part.
  • a method for regenerating a deteriorated portion is a method for regenerating a deteriorated portion generated in a metal member, wherein a local region including the deteriorated portion is heated to form a first heating region.
  • a first heating step in which the deteriorated portion is pressed by compressive stress to the first heating region due to a surrounding constraint on the thermal expansion of the first heating region, and the first heating region is being heated while the first heating region is being heated.
  • the periphery of the first heating region is heated by heating the periphery of the first heating region by the second heating step.
  • the pressure due to the thermal expansion force of the portion acts on the first heating region, and the compressive stress acting on the deteriorated portion increases.
  • the first heating region and the second heating region are simultaneously heated by performing the second heating step after the first heating step is preceded and the compressive stress of the first heating region is sufficiently relaxed by creep.
  • the compressive stress applied to the deteriorated portion increases, and the deteriorated portion is surely pressed. That is, in the present invention, there is an effect that a compressive stress is further applied to the first heating region by the thermal expansion of the second heating region.
  • the present invention it is desirable to continue the first heating step and the second heating step for a predetermined time. This is because the heat applied from the outside by heating is sufficiently raised to the inside of the thickness of the metal member by heat conduction, and the deteriorated part is surely pressed.
  • the metal member targeted by the present invention usually includes a base material and a weld metal that connects the base material, and the deteriorated portion exists in a heat-affected portion of the base material generated by welding.
  • the base material portion excluding the heat affected zone is not deteriorated as much as the heat affected zone.
  • the first heating region is formed including the heat affected zone.
  • the base material portion excluding the heat-affected zone is less deteriorated than the heat-affected zone, and usually has a sufficient life even when the residual tensile stress due to the regeneration treatment is applied.
  • the present invention it is desirable to include a cooling step in which the cooling of the first heating region and the cooling of the second heating region are performed in synchronization.
  • produces at the time of cooling is received in the area
  • the absolute tensile stress is lowered. Therefore, the possibility that the deteriorated portion once pressed is reopened is reduced, and further, the tensile residual stress acting on the deteriorated reproducing portion during operation of the unit after the regeneration can be reduced.
  • the recrystallization heat treatment is a process in which a process of heating a metal member to a temperature above its transformation point and cooling to a temperature below the transformation point is repeated a plurality of times.
  • voids, precipitates, or grain boundary segregation existing along the grain boundaries of the structure are confined in the grains, the crack propagation speed is reduced, and the damage propagation speed can be reduced.
  • isothermal eutectoid transformation treatment in this heating and cooling process, the coarse hardened structure produced by the regeneration treatment can be eliminated. Therefore, the factor which impairs fracture ductility is suppressed and the good ductility is obtained at the location where the regeneration treatment is performed.
  • the present invention is an apparatus for regenerating a deteriorated portion generated in a metal member so as to perform the above-described regenerating method, the first heater being disposed at a position facing the deteriorated portion and locally heating the deteriorated portion And a second heater for heating the periphery of the heating area by the first heater.
  • the heating by the first heater is preceded by the heating by the second heater, so that the deteriorated portion generated in the metal member and its surroundings are heated and cooled while appropriately controlling the temperature. Optimal heat treatment can be easily performed.
  • the present invention performs isothermal eutectoid transformation processing in a heating and cooling process in which a metal member is heated to a temperature above the transformation point and cooled to below the transformation point, heating and cooling treatment is repeated a plurality of times, and the temperature is raised and lowered across the transformation point.
  • the recrystallization heat treatment method characterized by the above can be carried out independently.
  • the portion regenerated by the heat treatment is made into a highly ductile structure by the heating / cooling process after the heat treatment, and voids, precipitates or grain boundary segregation that existed along the grain boundaries of the structure are intragranular.
  • the crack propagation rate is slowed down and the damage propagation rate is lowered, and the coarse hardened structure disappears by the isothermal eutectoid transformation process, the inhibition of fracture ductility is suppressed, and further good ductility is obtained.
  • the method for regenerating a deteriorated part of the present invention since the periphery of the deteriorated part is heated after the heating of the deteriorated part, a large compressive stress can be applied to the deteriorated part. Further, since the deteriorated portion and its surroundings are cooled in synchronization, the tensile stress generated in the deteriorated portion during cooling can be dispersed over a wide range, and the influence of the tensile stress on the regenerated location can be suppressed as much as possible. Thereby, the residual stress of the tension
  • an isothermal eutectoid transformation step of maintaining the regeneration treatment site at a predetermined temperature for a predetermined time and continuing transformation is also performed.
  • Voids, precipitates or grain boundary segregation existing along the grain boundaries can be confined within the grains.
  • the first heater and the second heater are provided. Therefore, the temperature of the first heater and the second heater is controlled, so that the deterioration occurs in the metal member. It is possible to easily perform heat treatment optimal for regenerating the deteriorated part by heating and cooling the deteriorated part and its surroundings while appropriately controlling the temperature.
  • FIG. 1 is a perspective view showing a playback apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating the positional relationship of the heaters when the regeneration method is performed by the regeneration device.
  • FIG. 3 is a cross-sectional view showing an arrangement state of the heater with respect to the regenerated portion.
  • the regenerator 11 is attached to a pipe 12 made of, for example, a low alloy steel pipe.
  • a high-temperature pressure-resistant welded part (metal member) 14 in which the pipes 12 are welded together with the weld metal 13 the weld metal is formed at the boundary between the weld metal 13 and each pipe 12.
  • the HAZ part (heat-affected zone: Heat Affected Zone) 15 is generated due to the thermal effect when welding 13.
  • many deteriorated portions C such as creep voids and cracks may occur in the HAZ portion 15 due to long-term use. For this reason, the strength of the HAZ portion 15 is particularly lowered, which causes a breakage or the like in the high-temperature pressure-resistant welded portion 14.
  • the material of the pipe 12 is, for example, a low alloy steel (STPA22, STPA23, STPA24) having a Cr content of 3% or less (excluding 0) and a Mo content of 2% or less (excluding 0). ) Further, as the material of the weld metal 13, for example, the Cr content of the material of the pipe 12 and the common metal is 3% or less (however, 0 is not included), and the Mo content is 2% or less (however, 0 is not included). .
  • the present invention is not limited to the materials mentioned above, but can be applied to various other materials. Therefore, in the present embodiment, a case will be described as an example where the regenerator 11 is attached to the pipe 12 and the high-temperature pressure-resistant welded part 14 in which the degraded part C is generated in the HAZ part 15 is regenerated.
  • a main heater (first heater) 25 and a sub-heater (second heater) 26 each made of a high-frequency heating coil are arranged in parallel at an interval.
  • the main heater 25 and the sub-heater 26 have a flat plate shape and are arranged along the outer peripheral surface of the pipe 12 in a state where the regeneration device 11 is mounted on the pipe 12.
  • the main heater 25 is disposed at a position facing the boundary portion between the pipe 12 and the weld metal 13 (a position facing the deteriorated portion C) in a state where the regeneration device 11 is disposed along the outer peripheral surface of the pipe 12.
  • the sub-heater 26 is disposed so as to face the pipe 12 at a position deviated from the boundary between the pipe 12 and the weld metal 13.
  • the sub-heater 26 is disposed so as to face a portion outside the boundary between the pipe 12 and the weld metal 13 around the heating area by the main heater 25.
  • regenerating apparatus 11 can heat the high temperature pressure-resistant welding part 14 including the heating area
  • the main heater 25 and the sub heater 26 are not limited to a flat plate shape, and may be an annular shape or an arc shape over the entire circumference of the pipe 12.
  • the regenerator 11 includes a water cooling tube 27 and a power cable 29 for coil cooling. The main heater 25 and the sub heater 26 are controlled so that the member surface temperature detected by the thermocouple attached to the member surface immediately below each heater becomes a predetermined temperature.
  • the regeneration apparatus 11 performs regeneration heat treatment and recrystallization heat treatment.
  • FIG. 4 is a graph showing temperature changes during regenerative heat treatment
  • FIG. 5 is a cross-sectional view illustrating a method for regenerating a deteriorated portion.
  • region HA2 is restrained because the base material part on the opposite side (right side in FIG. 5) to the side adjacent to heating area
  • the pressure by the thermal expansion force of the heating part of this heating area HA2 acts as a compressive stress on the heating area HA1 softened by the heating by the main heater 25. Therefore, the pressure contact effect of the deteriorated portion C can be enhanced. In order to obtain this effect, it is necessary to continue the local heating process and the ambient heating process for a predetermined time.
  • the compressive stress acting on the heating area HA1 is indicated by an arrow in FIG.
  • the high-temperature pressure-resistant welded portion 14 including the heating area HA ⁇ b> 1 at the repair location by the main heater 25 and a wide area around it are heated by a synergistic effect with the heating by the main heater 25. .
  • the heating range in this way the tensile stress in the subsequent cooling process is reduced.
  • Cooling step As described above, after the local heating of the heating area HA1 by the main heater 25 and the heating of the surrounding heating area HA2 by the sub heater 26 are continued for a predetermined time, as shown in FIG.
  • the heating temperature by the main heater 25 and the sub heater 26 is lowered synchronously.
  • the cooling rate is preferably about 50 ° C./hr, for example. If it does in this way, the wide range including the reproduction
  • the tensile stress generated at the time of cooling is dispersed in a wide range of the high-temperature pressure-resistant welded portion 14, that is, the region including at least the heating region HA1 and the heating region HA2, the absolute value thereof is when only the heating region HA1 exists. Lower than Therefore, the influence of the tensile stress due to the heat shrinkage in the cooling process on the regenerated location is suppressed as much as possible. Therefore, there is no problem that the welded deteriorated portion C opens or a tensile residual stress is generated in the high-temperature pressure-resistant welded portion 14, and the repaired state of the high-temperature pressure-resistant welded portion 14 is maintained over a long period of time, thereby extending the life of the pipe 12. It becomes possible to plan.
  • FIG. 6 is a graph showing temperature changes and metallographic changes during the recrystallization heat treatment in the regeneration method according to the present embodiment.
  • the metal structure of the regenerated portion that has been gently cooled by the regenerative heat treatment described above is a bainite structure that partially includes ferrite, as indicated by reference numeral a1 in FIG.
  • Heating step In the recrystallization heat treatment, first, the regenerated portion is heated by the main heater 25 to a temperature T3 (for example, 900 to 950 ° C., preferably about 930 ° C.) exceeding the A3 transformation point, and predetermined. Hold for a time (eg, 30-120 minutes, preferably 60 minutes). In this heat treatment, the metal structure of the regenerated portion is changed to an austenite structure as indicated by reference numeral a2 in FIG. At this time, a coarse hardened structure formed at the time of the regeneration heat treatment partially remains in the metal structure. And this coarse hardened structure may hinder fracture ductility.
  • T3 for example, 900 to 950 ° C., preferably about 930 ° C.
  • the metal structure of the reproduction portion becomes a ferrite pearlite structure in which ferrite and pearlite are co-deposited, and the coarse hardened structure disappears.
  • the holding temperature of the isothermal eutectoid transformation is lower than the nose of the isothermal eutectoid transformation, it takes a long time for the isothermal eutectoid transformation at the reproduction site. Transformation becomes difficult. Therefore, the temperature T4 that is maintained in the isothermal eutectoid transformation step is preferably a temperature at which the metal structure at the reproduction site can be smoothly isothermal eutectoid transformed.
  • the regeneration portion is cooled to a temperature T5 (for example, 550 to 650 ° C., preferably about 500 ° C.) sufficiently lower than the A3 transformation point.
  • T5 for example, 550 to 650 ° C., preferably about 500 ° C.
  • the reclaimed portion is made into a metal structure in which ferrite and pearlite are co-deposited in a part of the austenite structure as indicated by reference numeral a5 in FIG.
  • Heating step The reproduction part is heated again to the temperature T3 exceeding the A3 transformation point by the main heater 25, and held for a predetermined time (for example, 30 to 120 minutes, preferably 60 minutes).
  • a predetermined time for example, 30 to 120 minutes, preferably 60 minutes.
  • the metal structure of the regenerated portion is changed to an austenite structure again as indicated by reference numeral a6 in FIG.
  • Cooling step Thereafter, the temperature of the main heater 25 is controlled, and the regenerated portion is cooled at a predetermined cooling rate (for example, about 50 ° C./hr). And by cooling in this way, as shown by the symbol a7 in FIG. 6, the austenite structure undergoes continuous cooling transformation, and the ferrite pearlite containing bainite is transformed as shown by the symbol a8 in FIG. Become an organization.
  • a predetermined cooling rate for example, about 50 ° C./hr
  • the regeneration portion is heated and cooled by the temperature control of the main heater 25 and the transformation treatment is repeated a plurality of times, so that the regeneration portion has a ductility equivalent to that of the pipe 12 as the base material. Ferrite pearlite structure.
  • the recrystallization heat treatment confines voids, precipitates, or grain boundary segregation existing along the grain boundaries during welding, thereby slowing the crack propagation rate and reducing the damage growth rate.
  • the coarse hardened structure is eliminated by the isothermal eutectoid transformation process performed in the course of the recrystallization heat treatment, inhibition of fracture ductility is suppressed, and good ductility is obtained.
  • the pressure due to the thermal expansion force of the heated portion composed of the heated region HA2 around the deteriorated portion C is applied to the heated region HA1 of the deteriorated portion C.
  • the deteriorated portion C can be reliably pressed by a high compressive force and can be reproduced well over the entire thickness of the heating area HA1 of the deteriorated portion C, and the reproduction quality can be improved.
  • the tensile stress generated in the deteriorated portion C during cooling can be dispersed over a wide range, and the influence of the tensile stress on the regenerated location can be suppressed as much as possible. Further, there is no inconvenience that a tensile residual stress is generated at the regenerated location, the repaired state of the high-temperature pressure-resistant welded portion 14 can be maintained for a long time, and the life of the pipe 12 can be extended.
  • the first heating and the second heating are shown twice. However, the number of times of heating is not limited to two as long as it is plural.
  • the regeneration part is connected to the pipe 12. It can be made into the structure
  • voids, precipitates, or grain boundary segregation existing along the grain boundaries of the structure are confined in the grains, so that the crack propagation rate is slowed and the damage propagation rate can be lowered.
  • inhibition of fracture ductility can be suppressed and good ductility can be obtained.
  • the main heater 25 and the sub heater 26 are provided. Therefore, by controlling the temperature of the main heater 25 and the sub heater 26, The generated deteriorated part C and its surroundings can be heated and cooled while appropriately controlling the temperature, and the optimum heat treatment in the deteriorated part C can be easily performed.
  • the number of repetitions of transformation of the regenerated portion by the heating / cooling step in the recrystallization heat treatment is preferably 3 to 5 times.
  • an apparatus including two heaters that is, the main heater 25 and the sub heater 26 is described as an example.
  • the number of heaters is not limited to two as long as the number of heaters is plural.
  • the main heater 25 and the sub heater 26 are not limited to the high-frequency heating coil, and various heaters capable of temperature control can be used.
  • the pipe 12 was made of STAP24 material (2.25% Cr-1% Mo steel), having a pipe diameter of 355 mm and a wall thickness of 77 mm.
  • the weld metal 13 was also made of the same material as the pipe 12.
  • FIG. 7A is a photomicrograph of the HAZ part 15 before the regenerative heat treatment, and the number density of voids (deteriorated part C) is 930 / mm 2 .
  • the main heater 25 was disposed 10 mm away from the surface of the pipe 12 in the radial direction at a position facing the boundary between the pipe 12 and the weld metal 13.
  • the heating temperature by the main heater 25 and the sub heater 26 was lowered synchronously at a cooling rate of 50 ° C./hr.
  • the regenerated portion was heated to 930 ° C. by the main heater 25 and held for 60 minutes.
  • the temperature of the main heater 25 was controlled, and the regenerated portion was cooled to 700 ° C. and held for 300 minutes to perform isothermal eutectoid transformation treatment.
  • FIG. 7B is a micrograph of the HAZ part 15 after the regenerative heat treatment.
  • the number density of voids (deteriorated part C) is 140 / mm 2, and the void number density is higher than that before the regenerative heat treatment. Was reduced by 85%. Further, it was confirmed that the voids were located at the grain boundaries before the regenerative heat treatment, but were confined in the grains after the regenerative heat treatment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

An object is to provide a deteriorated portion reproducing method and a deteriorated portion reproducing device for easily and certainly repairing and reproducing a deteriorated portion generated in a metal member and certainly extending the life of the metal member. A local heating process for locally heating a deteriorated portion (C) using a main heater (25) and allowing the deteriorated portion (C) to be pressure-welded using compression force generated by heat expansion and a periphery heating process for heating the neighborhood of the periphery of a region (HA1) heated in the local heating process using a sub heater (26) are performed. Then, a cooling process for simultaneously cooling the region (HA1) heated by use of the main heater (25) and a region (HA2) heated by use of the sub heater (26) is performed.

Description

劣化部の再生方法、劣化部の再生装置Deterioration part reproduction method, degradation part reproduction device
 本発明は、例えば、火力・原子力発電プラントや化学プラントのボイラやタービンに用いられる高温配管を構成する金属部材に生じたクリープ等による劣化部を再生するのに好適な再生方法に関する。 The present invention relates to a regeneration method suitable for, for example, regenerating a deteriorated portion caused by creep or the like generated in a metal member constituting a high-temperature pipe used in a boiler or turbine of a thermal power / nuclear power plant or chemical plant.
 近年、例えば火力・原子力発電プラントや化学プラントのボイラやタービンに用いられる高温配管においては、運転時間が長時間に及ぶに従い、経時的な設備の劣化、起動および停止の繰り返しや急速な負荷変動による熱疲労を十分に考慮した保守管理が益々重要になってきている。
 例えば、高温耐圧金属部材が用いられる大口径厚肉配管では、その金属部材及びその溶接部における劣化を早期に発見するため、定期的に組織検査、超音波検査等の非破壊検査を行っている。そして、非破壊検査の結果に基づいて、劣化部分の補修を行っている。
In recent years, for example, in high-temperature piping used in boilers and turbines of thermal power / nuclear power plants and chemical plants, as the operation time increases, the equipment deteriorates over time, repeatedly starts and stops, and rapidly changes in load. Maintenance management that fully considers thermal fatigue is becoming increasingly important.
For example, in large-diameter thick-walled pipes that use high-temperature pressure-resistant metal members, nondestructive inspections such as tissue inspection and ultrasonic inspection are regularly performed in order to detect deterioration in the metal members and their welds at an early stage. . Based on the result of the non-destructive inspection, the deteriorated portion is repaired.
 ここで、金属部材を補修する技術としては、クリープボイドや亀裂を生じた劣化部に対して高周波加熱コイルを用いて局部的に熱処理を行い、熱膨張の内圧力によりクリープボイドや亀裂を圧接して再生する技術(例えば、特許文献1参照)がある。 Here, as a technique for repairing a metal member, a heat treatment is locally performed on a deteriorated portion where creep voids or cracks are generated using a high-frequency heating coil, and the creep voids or cracks are pressed by the internal pressure of thermal expansion. There is a technique for reproducing (see, for example, Patent Document 1).
特開2003-253337号公報JP 2003-253337 A
 特許文献1に記載の再生技術は、図8(a)に示すように、高周波加熱コイルからなるヒータ1によって劣化部Cを含む領域を局所的に加熱する。この加熱によって温度上昇がなされる領域を加熱領域3とする。このとき、金属部材2の加熱領域3の周囲は温度上昇がなされないため、加熱領域3には、その熱膨張が妨げられる結果、圧縮応力が生じる。したがって、加熱領域3内に存在するクリープボイドや亀裂などの劣化部Cは、この圧縮応力によって圧接されることにより消滅する。このボイド圧接処理の圧縮応力を大きくするためには加熱領域3の温度を出来るだけ高くすることが効果的である。しかし、加熱領域3の温度を高くするとヒータ1近傍の金属部材2の外表面が溶融するため、加熱温度はむやみに高くすることはできない。また、図8(b)に示すように、加熱処理後に当該領域が冷却する過程で、加熱領域3は収縮する。このとき、加熱領域3の周囲は加熱領域3の収縮を拘束することになるため、加熱領域3には引張応力が生じる。そのために、一旦圧接した劣化部Cが開いてしまうことがある。また補修後における加熱領域3に引張の残留応力が生じ、補修状態を長期にわたって維持することが望めない恐れがあった。さらに、ボイド圧接処理により結晶組織は粗大化するが、その後の再結晶熱処理において変態点を挟んで温度を上下させる熱サイクルだけでは粗大化した硬化組織が残留してしまう恐れがあり、十分な再結晶化を行う必要があった。
 したがって、劣化部Cを確実に再生させるためには、加熱時の圧接応力を十分大きく取り、冷却時の残留引張応力を低減し、また、粗大化した硬化組織を母材と同等の組織に十分に再結晶化することが必要であった。
As shown in FIG. 8A, the reproduction technique described in Patent Document 1 locally heats a region including a deteriorated portion C by a heater 1 made of a high-frequency heating coil. A region where the temperature is increased by this heating is referred to as a heating region 3. At this time, since the temperature around the heating region 3 of the metal member 2 is not increased, compressive stress is generated in the heating region 3 as a result of the thermal expansion being hindered. Therefore, the deteriorated portion C such as a creep void or a crack existing in the heating region 3 disappears by being pressed by this compressive stress. In order to increase the compressive stress of the void pressure welding process, it is effective to raise the temperature of the heating region 3 as much as possible. However, when the temperature of the heating region 3 is increased, the outer surface of the metal member 2 in the vicinity of the heater 1 is melted, so that the heating temperature cannot be increased excessively. Further, as shown in FIG. 8B, the heating region 3 contracts in the process of cooling the region after the heat treatment. At this time, since the periphery of the heating region 3 restrains the shrinkage of the heating region 3, tensile stress is generated in the heating region 3. For this reason, the deteriorated portion C once pressed may open. Further, there is a fear that a tensile residual stress is generated in the heating region 3 after repair, and it is impossible to maintain the repaired state for a long time. Furthermore, although the crystal structure becomes coarse due to the void pressure treatment, the coarse structure is likely to remain only with a thermal cycle in which the temperature is raised and lowered across the transformation point in the subsequent recrystallization heat treatment. It was necessary to perform crystallization.
Therefore, in order to reliably regenerate the deteriorated portion C, the pressure stress during heating is sufficiently large, the residual tensile stress during cooling is reduced, and the coarsened hardened structure is sufficient for a structure equivalent to the base material. It was necessary to recrystallize.
 本発明は、上記事情に鑑みてなされたもので、金属部材に生じた劣化部を容易にかつ確実に補修、再生し、補修状態を長期にわたって維持して金属部材の延命化を図ることができる劣化部の再生方法を提供することを目的とする。また、本発明は、劣化部の再生方法を実施することのできる劣化部の再生装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and can easily and reliably repair and regenerate a deteriorated portion generated in a metal member, and maintain the repaired state for a long period of time, thereby extending the life of the metal member. An object of the present invention is to provide a method for reproducing a deteriorated part. Another object of the present invention is to provide a reproduction device for a deteriorated part that can implement the method for reproducing the deteriorated part.
 上記目的を達成するために、本発明の劣化部の再生方法は、金属部材に生じた劣化部を再生する方法であって、劣化部を含む局所的な領域を加熱して第1の加熱領域を形成し、第1の加熱領域の熱膨張に対する周囲の拘束による第1の加熱領域への圧縮応力によって劣化部を圧接する第1の加熱工程と、第1の加熱領域を加熱中、第1の加熱工程における加熱の開始から予め定められた時間が経過した後に、第1の加熱領域の周囲を加熱することによって第2の加熱領域を形成する第2の加熱工程とを備えることを特徴とする。 In order to achieve the above object, a method for regenerating a deteriorated portion according to the present invention is a method for regenerating a deteriorated portion generated in a metal member, wherein a local region including the deteriorated portion is heated to form a first heating region. A first heating step in which the deteriorated portion is pressed by compressive stress to the first heating region due to a surrounding constraint on the thermal expansion of the first heating region, and the first heating region is being heated while the first heating region is being heated. And a second heating step of forming a second heating region by heating the periphery of the first heating region after a predetermined time has elapsed since the start of heating in the heating step of To do.
 この発明によれば、第1の加熱工程によって劣化部を局所的に加熱中に、第2の加熱工程によって第1の加熱領域の周囲を加熱することにより、第1の加熱領域の周囲の加熱部分の熱膨張力による圧力が第1の加熱領域に作用し、劣化部に働く圧縮応力が増大する。また、第1の加熱工程を先行させて第1の加熱領域の圧縮応力を十分クリープ緩和させた後に第2の加熱工程を行うことで、第1の加熱領域と第2の加熱領域を同時に加熱した場合に比べ、劣化部に加わる圧縮応力が増加し劣化部は確実に圧接される。つまり、本発明では、第2の加熱領域の熱膨張によって、第1の加熱領域へ圧縮応力がさらに付与される効果がある。 According to this invention, while the deteriorated part is locally heated by the first heating step, the periphery of the first heating region is heated by heating the periphery of the first heating region by the second heating step. The pressure due to the thermal expansion force of the portion acts on the first heating region, and the compressive stress acting on the deteriorated portion increases. In addition, the first heating region and the second heating region are simultaneously heated by performing the second heating step after the first heating step is preceded and the compressive stress of the first heating region is sufficiently relaxed by creep. Compared to the case, the compressive stress applied to the deteriorated portion increases, and the deteriorated portion is surely pressed. That is, in the present invention, there is an effect that a compressive stress is further applied to the first heating region by the thermal expansion of the second heating region.
 本発明では、第1の加熱工程及び第2の加熱工程を予め定められた時間継続することが望ましい。加熱により外部から加えられる熱を熱伝導により金属部材の肉厚内部まで十分に温度を上げて、劣化部を確実に圧接するためである。 In the present invention, it is desirable to continue the first heating step and the second heating step for a predetermined time. This is because the heat applied from the outside by heating is sufficiently raised to the inside of the thickness of the metal member by heat conduction, and the deteriorated part is surely pressed.
 本発明が対象とする金属部材は、通常、母材と、母材を接続する溶接金属とを備え、劣化部は、溶接によって生じた母材の熱影響部に存在する。熱影響部を除く母材部分は熱影響部ほど劣化していないことが多い。その場合、第1の加熱領域は熱影響部を含んで形成される。そして、第2の加熱領域は熱影響部に近接する母材部分に形成されることが望ましい。熱影響部を除く母材部分は熱影響部よりも劣化が少なく、再生処理による残留引張応力が作用しても通常は十分な寿命を有す。また、溶接金属はクリープ損傷によってボイドが発生している可能性があるため,この領域を加熱すると、冷却時に引張応力が作用して損傷を加速させる危険性がある。したがって、溶接金属の部分は、第1の加熱領域及び第2の加熱領域の対象とすることは回避するのが好ましい。 The metal member targeted by the present invention usually includes a base material and a weld metal that connects the base material, and the deteriorated portion exists in a heat-affected portion of the base material generated by welding. In many cases, the base material portion excluding the heat affected zone is not deteriorated as much as the heat affected zone. In that case, the first heating region is formed including the heat affected zone. And it is desirable for the 2nd heating field to be formed in the base material part near the heat affected zone. The base material portion excluding the heat-affected zone is less deteriorated than the heat-affected zone, and usually has a sufficient life even when the residual tensile stress due to the regeneration treatment is applied. In addition, since there is a possibility that voids are generated due to creep damage in the weld metal, there is a risk that if this region is heated, tensile stress acts during cooling to accelerate the damage. Therefore, it is preferable to avoid making the weld metal portion the target of the first heating region and the second heating region.
 本発明において、第1の加熱領域の冷却及び第2の加熱領域の冷却を同期して行う冷却工程を含むことが望ましい。このようにすることにより、第1の加熱領域及び第2の加熱領域を合わせた領域で、冷却時に発生する引張応力を受ける。そして、第1の加熱領域のみで引張応力を受けていた図8の場合に比べて、本発明のように第1の加熱領域及び第2の加熱領域を合わせた領域で引張応力を受けると、絶対的な引張応力が低くなるからである。したがって、一旦圧接された劣化部が再度開口するおそれが低くなり、さらに再生後のユニット運転中に劣化再生部に作用する引張残留応力も低減できる。 In the present invention, it is desirable to include a cooling step in which the cooling of the first heating region and the cooling of the second heating region are performed in synchronization. By doing in this way, the tensile stress which generate | occur | produces at the time of cooling is received in the area | region which combined the 1st heating area | region and the 2nd heating area | region. And, compared with the case of FIG. 8 where only the first heating region was subjected to tensile stress, when receiving the tensile stress in the region combining the first heating region and the second heating region as in the present invention, This is because the absolute tensile stress is lowered. Therefore, the possibility that the deteriorated portion once pressed is reopened is reduced, and further, the tensile residual stress acting on the deteriorated reproducing portion during operation of the unit after the regeneration can be reduced.
 冷却工程終了後、金属部材に第1、第2の加熱処理をした再生処理箇所に対し、再結晶熱処理を施すことが望ましい。再結晶熱処理は、金属部材をその変態点以上に加熱し、変態点未満に冷却する処理を複数回繰り返す処理である。この処理を施すことにより、組織の粒界に沿って存在していたボイド、析出物あるいは粒界偏析が粒内に閉じ込められて亀裂伝播速度が遅くなり、損傷進展速度を低下させることができる。さらに、この加熱冷却過程で等温共析変態処理を行うことにより、再生処理で生じた粗大な硬化組織を消失させることができる。そのために、再生処理を行った箇所において、破断延性を阻害する要因が抑えられ良好な延性が得られる。 After completion of the cooling step, it is desirable to perform a recrystallization heat treatment on the reclaimed portion where the first and second heat treatments have been performed on the metal member. The recrystallization heat treatment is a process in which a process of heating a metal member to a temperature above its transformation point and cooling to a temperature below the transformation point is repeated a plurality of times. By applying this treatment, voids, precipitates, or grain boundary segregation existing along the grain boundaries of the structure are confined in the grains, the crack propagation speed is reduced, and the damage propagation speed can be reduced. Furthermore, by performing isothermal eutectoid transformation treatment in this heating and cooling process, the coarse hardened structure produced by the regeneration treatment can be eliminated. Therefore, the factor which impairs fracture ductility is suppressed and the good ductility is obtained at the location where the regeneration treatment is performed.
 本発明は、以上の再生方法を実施するべく、金属部材に生じた劣化部を再生する装置であって、劣化部を臨む位置に配置されて劣化部を局所的に加熱する第1のヒータと、第1のヒータによる加熱領域の周囲を加熱する第2のヒータと、を備えたことを特徴とする劣化部の再生装置を提供する。
 この装置において、第1のヒータによる加熱を、第2のヒータによる加熱に先行させることにより、金属部材に生じた劣化部及びその周囲を適切に温度制御しながら加熱、冷却して、劣化部における最適な熱処理を容易に施すことが可能となる。
The present invention is an apparatus for regenerating a deteriorated portion generated in a metal member so as to perform the above-described regenerating method, the first heater being disposed at a position facing the deteriorated portion and locally heating the deteriorated portion And a second heater for heating the periphery of the heating area by the first heater.
In this apparatus, the heating by the first heater is preceded by the heating by the second heater, so that the deteriorated portion generated in the metal member and its surroundings are heated and cooled while appropriately controlling the temperature. Optimal heat treatment can be easily performed.
 本発明は、金属部材を変態点以上に加熱し、変態点未満に冷却する、加熱・冷却処理を複数回繰り返し、変態点を挟んで温度を上下させる加熱冷却過程で等温共析変態処理を実行することを特徴とする再結晶熱処理方法を独立して実施することができる。 The present invention performs isothermal eutectoid transformation processing in a heating and cooling process in which a metal member is heated to a temperature above the transformation point and cooled to below the transformation point, heating and cooling treatment is repeated a plurality of times, and the temperature is raised and lowered across the transformation point. The recrystallization heat treatment method characterized by the above can be carried out independently.
 これにより、熱処理により再生した箇所が、熱処理後の加熱・冷却工程によって延性に富んだ組織にされ、また、組織の粒界に沿って存在していたボイド、析出物あるいは粒界偏析が粒内に閉じ込められて亀裂伝播速度が遅くされ、損傷進展速度が下げられ、しかも、等温共析変態工程によって粗大な硬化組織が消滅され、破断延性の阻害が抑えられ、さらなる良好な延性が得られる。 As a result, the portion regenerated by the heat treatment is made into a highly ductile structure by the heating / cooling process after the heat treatment, and voids, precipitates or grain boundary segregation that existed along the grain boundaries of the structure are intragranular. The crack propagation rate is slowed down and the damage propagation rate is lowered, and the coarse hardened structure disappears by the isothermal eutectoid transformation process, the inhibition of fracture ductility is suppressed, and further good ductility is obtained.
 本発明の劣化部の再生方法によれば、劣化部の加熱に遅れて劣化部の周囲を加熱するので、劣化部に大きな圧縮応力を作用させることができる。また、劣化部及びその周囲を同期して冷却するので、冷却時に劣化部にて生じる引張応力を広範囲に分散することができ、引張応力の再生箇所への影響を極力抑えることができる。
 これにより、再生箇所における引張の残留応力も低減出来、金属部材の延命化を図ることができる。
 また、再生処理箇所を複数回変態させる加熱・冷却工程に加え、再生処理箇所を予め定められた温度で一所定時間保持して変態を継続させる等温共析変態工程をも行うことにより、組織の粒界に沿って存在していたボイド、析出物あるいは粒界偏析を粒内に閉じ込めることができる。また、粗大な硬化組織を消滅させ、破断延性の阻害を抑えて良好な延性を得ることができる。その結果、亀裂伝播速度を遅くして損傷進展速度を下げることができる。
According to the method for regenerating a deteriorated part of the present invention, since the periphery of the deteriorated part is heated after the heating of the deteriorated part, a large compressive stress can be applied to the deteriorated part. Further, since the deteriorated portion and its surroundings are cooled in synchronization, the tensile stress generated in the deteriorated portion during cooling can be dispersed over a wide range, and the influence of the tensile stress on the regenerated location can be suppressed as much as possible.
Thereby, the residual stress of the tension | tensile_strength in a reproduction | regeneration location can also be reduced, and the life extension of a metal member can be aimed at.
In addition to the heating / cooling step of transforming the regeneration treatment site multiple times, an isothermal eutectoid transformation step of maintaining the regeneration treatment site at a predetermined temperature for a predetermined time and continuing transformation is also performed. Voids, precipitates or grain boundary segregation existing along the grain boundaries can be confined within the grains. In addition, it is possible to obtain a good ductility by eliminating the coarse hardened structure and suppressing the break ductility. As a result, the crack propagation rate can be slowed down and the damage propagation rate can be lowered.
 また、本発明の劣化部の再生装置によれば、第1のヒータ及び第2のヒータを備えているので、これら第1のヒータ及び第2のヒータを温度制御することにより、金属部材に生じた劣化部及びその周囲を適切に温度制御しながら加熱、冷却して、劣化部を再生するのに最適な熱処理を容易に施すことができる。 In addition, according to the deteriorated part regeneration apparatus of the present invention, the first heater and the second heater are provided. Therefore, the temperature of the first heater and the second heater is controlled, so that the deterioration occurs in the metal member. It is possible to easily perform heat treatment optimal for regenerating the deteriorated part by heating and cooling the deteriorated part and its surroundings while appropriately controlling the temperature.
本発明の実施形態に係る再生装置を示す斜視図である。It is a perspective view which shows the reproducing | regenerating apparatus which concerns on embodiment of this invention. 再生装置による再生時におけるヒータの位置関係を示す図である。It is a figure which shows the positional relationship of the heater at the time of reproduction | regeneration with a reproducing | regenerating apparatus. 再生箇所に対するヒータの配置状態を示す断面図である。It is sectional drawing which shows the arrangement | positioning state of the heater with respect to the reproduction | regeneration location. 再生時における温度変化を示すグラフ図である。It is a graph which shows the temperature change at the time of reproduction | regeneration. 劣化部の再生方法を説明する図であり、(a)はメインヒータによって加熱を行っている状態を示す断面図、(b)はメインヒータおよびサブヒータによって加熱を行っている状態を示す断面図である。It is a figure explaining the reproduction | regeneration method of a degradation part, (a) is sectional drawing which shows the state currently heated with the main heater, (b) is sectional drawing which shows the state currently heated with the main heater and a sub heater. is there. 本実施形態に係る再生方法における再結晶熱処理時の温度変化及び金属組織の変化を示すグラフ図である。It is a graph which shows the temperature change at the time of the recrystallization heat processing in the reproduction | regenerating method which concerns on this embodiment, and the change of a metal structure. HAZ部15の顕微鏡写真であり、(a)は、再生熱処理前の顕微鏡写真、(b)は再生熱処理後の顕微鏡写真である。It is a microscope picture of the HAZ part 15, (a) is a microscope picture before regenerative heat processing, (b) is a micrograph after regenerative heat treatment. 従来の再生方法を説明する図であり、(a)は加熱を行っている状態を示す断面図、(b)は冷却過程の状態を示す断面図である。It is a figure explaining the conventional reproduction | regeneration method, (a) is sectional drawing which shows the state which is heating, (b) is sectional drawing which shows the state of a cooling process.
符号の説明Explanation of symbols
 11…再生装置、14…高温耐圧溶接部(金属部材)、15…HAZ部(熱影響部)、25…メインヒータ(第1のヒータ)、26…サブヒータ(第2のヒータ)、C…劣化部、HA1…加熱領域(第1の加熱領域)、HA2…加熱領域(第2の加熱領域) DESCRIPTION OF SYMBOLS 11 ... Reproduction | regeneration apparatus, 14 ... High temperature pressure-resistant welding part (metal member), 15 ... HAZ part (heat influence part), 25 ... Main heater (1st heater), 26 ... Sub heater (2nd heater), C ... Deterioration Part, HA1... Heating region (first heating region), HA2... Heating region (second heating region)
 以下、本発明に係る劣化部の再生方法及び装置の実施形態について、図面を参照して説明する。
 図1は、本発明の実施形態に係る再生装置を示す斜視図である。図2は、再生装置により再生方法を実施している時のヒータの位置関係を示す図である。図3は、再生箇所に対するヒータの配置状態を示す断面図である。
 図1に示すように、この再生装置11は、例えば低合金鋼管からなる配管12に装着される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a method and an apparatus for reproducing a deteriorated portion according to the present invention will be described below with reference to the drawings.
FIG. 1 is a perspective view showing a playback apparatus according to an embodiment of the present invention. FIG. 2 is a diagram illustrating the positional relationship of the heaters when the regeneration method is performed by the regeneration device. FIG. 3 is a cross-sectional view showing an arrangement state of the heater with respect to the regenerated portion.
As shown in FIG. 1, the regenerator 11 is attached to a pipe 12 made of, for example, a low alloy steel pipe.
 ここで、図2及び図3に示すように、配管12同士を溶接金属13によって溶接接合した高温耐圧溶接部(金属部材)14では、溶接金属13と各配管12との境界部に、溶接金属13を溶接した際の熱影響によりHAZ部(熱影響部:Heat Affected Zone)15が生じる。そして、この高温耐圧溶接部14では、長期の使用により、HAZ部15に多くのクリープボイドや亀裂などの劣化部Cが生じることがある。このため、特にHAZ部15の強度が低下し、高温耐圧溶接部14における破断等の要因となる。
 ここで、配管12の材質としては、例えばCr含有量が3%以下(ただし0を含まない)、Mo含有量が2%以下(ただし0を含まない)の低合金鋼(STPA22、STPA23、STPA24)がある。また、溶接金属13の材質としては、例えば配管12の材質と共金のCr含有量が3%以下(ただし0を含まない)、Mo含有量が2%以下(ただし0を含まない)がある。もちろん、本発明は、前記で挙げた材質に限らず、他の様々な材質に適用することが可能である。
 そこで、本実施形態では、再生装置11を配管12に装着し、HAZ部15に劣化部Cが生じた高温耐圧溶接部14を再生する場合を例にとって説明する。
Here, as shown in FIGS. 2 and 3, in a high-temperature pressure-resistant welded part (metal member) 14 in which the pipes 12 are welded together with the weld metal 13, the weld metal is formed at the boundary between the weld metal 13 and each pipe 12. The HAZ part (heat-affected zone: Heat Affected Zone) 15 is generated due to the thermal effect when welding 13. In the high-temperature pressure-resistant welded portion 14, many deteriorated portions C such as creep voids and cracks may occur in the HAZ portion 15 due to long-term use. For this reason, the strength of the HAZ portion 15 is particularly lowered, which causes a breakage or the like in the high-temperature pressure-resistant welded portion 14.
Here, the material of the pipe 12 is, for example, a low alloy steel (STPA22, STPA23, STPA24) having a Cr content of 3% or less (excluding 0) and a Mo content of 2% or less (excluding 0). ) Further, as the material of the weld metal 13, for example, the Cr content of the material of the pipe 12 and the common metal is 3% or less (however, 0 is not included), and the Mo content is 2% or less (however, 0 is not included). . Of course, the present invention is not limited to the materials mentioned above, but can be applied to various other materials.
Therefore, in the present embodiment, a case will be described as an example where the regenerator 11 is attached to the pipe 12 and the high-temperature pressure-resistant welded part 14 in which the degraded part C is generated in the HAZ part 15 is regenerated.
 この再生装置11は、それぞれ高周波加熱コイルからなるメインヒータ(第1のヒータ)25及びサブヒータ(第2のヒータ)26が、互いに間隔をあけて並列に配置されている。これらメインヒータ25及びサブヒータ26は平板状で、再生装置11を配管12に装着した状態で、配管12の外周面に沿って配置される。
 メインヒータ25は、再生装置11が配管12の外周面に沿って配置された状態で、配管12と溶接金属13との境界部に対向した位置(劣化部Cを臨む位置)に配置される。さらに、サブヒータ26は、配管12と溶接金属13との境界部から外れた位置で配管12に対向するよう配置される。つまり、サブヒータ26は、メインヒータ25による加熱領域の周囲の、配管12と溶接金属13との境界部から外れた部分を臨むように配置される。これにより、再生装置11は、メインヒータ25による加熱領域HA1(図5)を含む、高温耐圧溶接部14及びその周囲の広範囲を加熱することができる。なお、これらメインヒータ25及びサブヒータ26は、平板状に限らず、配管12の全周に亘る環状や円弧状であっても良い。
 また、再生装置11は、コイル冷却用の水冷管27及びパワーケーブル29を備えている。メインヒータ25及びサブヒータ26は,各ヒータ直下の部材表面に取り付けられた熱電対によって検知した部材表面温度が,予め定められた温度となるように制御される。
In the reproducing apparatus 11, a main heater (first heater) 25 and a sub-heater (second heater) 26 each made of a high-frequency heating coil are arranged in parallel at an interval. The main heater 25 and the sub-heater 26 have a flat plate shape and are arranged along the outer peripheral surface of the pipe 12 in a state where the regeneration device 11 is mounted on the pipe 12.
The main heater 25 is disposed at a position facing the boundary portion between the pipe 12 and the weld metal 13 (a position facing the deteriorated portion C) in a state where the regeneration device 11 is disposed along the outer peripheral surface of the pipe 12. Further, the sub-heater 26 is disposed so as to face the pipe 12 at a position deviated from the boundary between the pipe 12 and the weld metal 13. That is, the sub-heater 26 is disposed so as to face a portion outside the boundary between the pipe 12 and the weld metal 13 around the heating area by the main heater 25. Thereby, the reproducing | regenerating apparatus 11 can heat the high temperature pressure-resistant welding part 14 including the heating area | region HA1 (FIG. 5) by the main heater 25, and its circumference | surroundings. The main heater 25 and the sub heater 26 are not limited to a flat plate shape, and may be an annular shape or an arc shape over the entire circumference of the pipe 12.
Further, the regenerator 11 includes a water cooling tube 27 and a power cable 29 for coil cooling. The main heater 25 and the sub heater 26 are controlled so that the member surface temperature detected by the thermocouple attached to the member surface immediately below each heater becomes a predetermined temperature.
 次に、上記再生装置11を用いて配管12の高温耐圧溶接部14の再生を行う手順について説明する。
 本実施形態では、再生装置11によって再生熱処理及び再結晶熱処理を行う。
Next, a procedure for regenerating the high-temperature pressure-resistant welded portion 14 of the pipe 12 using the regenerator 11 will be described.
In the present embodiment, the regeneration apparatus 11 performs regeneration heat treatment and recrystallization heat treatment.
(再生熱処理)
 まず、再生熱処理について説明する。図4は、再生熱処理時における温度変化を示すグラフ図、図5は、劣化部の再生方法を説明する断面図である。
(Regenerative heat treatment)
First, regenerative heat treatment will be described. FIG. 4 is a graph showing temperature changes during regenerative heat treatment, and FIG. 5 is a cross-sectional view illustrating a method for regenerating a deteriorated portion.
(1)前処理工程
 まず、必要に応じて補修対象部である高温耐圧溶接部14の酸化膜を除去する。
 次に、メインヒータ25を、配管12と溶接金属13との境界部を臨む位置に配置する。このようにすると、サブヒータ26が、配管12と溶接金属13との境界部から外れた位置で配管12を臨むように配置される。
(1) Pretreatment process First, the oxide film of the high temperature pressure-resistant welding part 14 which is a repair object part is removed as needed.
Next, the main heater 25 is disposed at a position facing the boundary between the pipe 12 and the weld metal 13. If it does in this way, the sub-heater 26 will be arrange | positioned so that the piping 12 may be faced in the position remove | deviated from the boundary part of the piping 12 and the weld metal 13. FIG.
(2)局所加熱工程(第1の加熱工程)
 この状態において、まず、メインヒータ25によって、高温耐圧溶接部14の配管12と溶接金属13との境界部材の表面を、図4に実線で示すように、温度T1まで急速加熱する(例えば、10分間で1050~1250℃、好ましくは1200℃まで加熱する)。なお、この温度T1は、材料の変態点(例えば、α-Feとγ-Feとの変態点であるA3変態点)より高い温度とするのが好ましい。
 これにより、高温耐圧溶接部14におけるメインヒータ25による加熱領域(第1の加熱領域)HA1では、加熱部分の熱膨張が生じる。このとき、加熱領域HA1の周囲は熱膨張していないため、加熱領域HA1の熱膨張に対して拘束力を発揮する。したがって、加熱領域HA1には、自身の熱膨張、周囲の拘束によって圧縮応力が作用する。この圧縮応力によって、クリープボイド等からなる劣化部Cが圧接される。加熱領域HA1に作用する圧縮応力は、図5(a)に矢印で示されている。
(2) Local heating process (first heating process)
In this state, first, the surface of the boundary member between the pipe 12 and the weld metal 13 of the high-temperature pressure-resistant welded portion 14 is rapidly heated by the main heater 25 to the temperature T1 as indicated by a solid line in FIG. Heat to 1050-1250 ° C., preferably 1200 ° C. for minutes). The temperature T1 is preferably higher than the transformation point of the material (for example, the A3 transformation point which is a transformation point between α-Fe and γ-Fe).
Thereby, in the heating area | region (1st heating area | region) HA1 by the main heater 25 in the high temperature pressure-proof welding part 14, the thermal expansion of a heating part arises. At this time, since the periphery of the heating area HA1 is not thermally expanded, a restraining force is exerted against the thermal expansion of the heating area HA1. Therefore, compressive stress acts on the heating area HA1 due to its own thermal expansion and surrounding constraints. Due to this compressive stress, the deteriorated portion C made of creep voids or the like is pressed. The compressive stress acting on the heating area HA1 is indicated by an arrow in FIG.
(3)周囲加熱工程(第2の加熱工程)
 メインヒータ25による加熱を開始して予め定められた時間が経過した後、メインヒータ25による加熱を継続している間に、サブヒータ26による加熱を開始し、メインヒータ25による加熱領域HA1の近傍を、図4中破線にて示すようなプロファイルで温度T1まで加熱する。サブヒータ26による加熱は、メインヒータ25直下の部材表面が目的温度(温度T1)に到達してから、例えば、300秒後に開始される。
 このようにすると、サブヒータ26によって加熱される配管12の加熱領域(第2加熱領域)HA2に熱膨張が生じる。そして、加熱領域HA2の加熱部分は、加熱領域HA1に隣接する側とは反対側(図5中右側)の母材部分が熱膨張しないために拘束されている。これにより、この加熱領域HA2の加熱部分の熱膨張力による圧力が、メインヒータ25による加熱により軟化した加熱領域HA1に、圧縮応力として作用する。したがって、劣化部Cの圧接効果を高めることができる。この効果を得るためには、局所加熱工程及び周囲加熱工程を予め定められた時間継続する必要がある。加熱領域HA1に作用する圧縮応力は、図5(b)に矢印で示されている。
 また、このサブヒータ26による加熱を行うことにより、メインヒータ25による加熱との相乗効果により、メインヒータ25による補修箇所の加熱領域HA1を含む、高温耐圧溶接部14及びその周囲の広範囲が加熱される。このように加熱範囲が広がることにより、引き続き行われる冷却工程での引張応力が低減される。
(3) Ambient heating process (second heating process)
After the heating by the main heater 25 is started and a predetermined time elapses, the heating by the sub heater 26 is started while the heating by the main heater 25 is continued, and the vicinity of the heating area HA1 by the main heater 25 is observed. 4 is heated to a temperature T1 with a profile as indicated by a broken line in FIG. The heating by the sub heater 26 is started, for example, 300 seconds after the surface of the member just below the main heater 25 reaches the target temperature (temperature T1).
If it does in this way, thermal expansion will arise in the heating area | region (2nd heating area | region) HA2 of the piping 12 heated by the subheater 26. FIG. And the heating part of heating area | region HA2 is restrained because the base material part on the opposite side (right side in FIG. 5) to the side adjacent to heating area | region HA1 does not thermally expand. Thereby, the pressure by the thermal expansion force of the heating part of this heating area HA2 acts as a compressive stress on the heating area HA1 softened by the heating by the main heater 25. Therefore, the pressure contact effect of the deteriorated portion C can be enhanced. In order to obtain this effect, it is necessary to continue the local heating process and the ambient heating process for a predetermined time. The compressive stress acting on the heating area HA1 is indicated by an arrow in FIG.
In addition, by performing the heating by the sub-heater 26, the high-temperature pressure-resistant welded portion 14 including the heating area HA <b> 1 at the repair location by the main heater 25 and a wide area around it are heated by a synergistic effect with the heating by the main heater 25. . By extending the heating range in this way, the tensile stress in the subsequent cooling process is reduced.
(4)冷却工程
 上記のようにして、メインヒータ25による加熱領域HA1の局所加熱の後に、サブヒータ26による周囲の加熱領域HA2の加熱を予め定められた時間継続したら、図4に示すように、メインヒータ25及びサブヒータ26による加熱温度を同期して低下させる。なお、冷却速度は、例えば50℃/hr程度とするのが好ましい。このようにすると、高温耐圧溶接部14の再生箇所を含む広範囲が緩やかに冷却される。
(4) Cooling step As described above, after the local heating of the heating area HA1 by the main heater 25 and the heating of the surrounding heating area HA2 by the sub heater 26 are continued for a predetermined time, as shown in FIG. The heating temperature by the main heater 25 and the sub heater 26 is lowered synchronously. The cooling rate is preferably about 50 ° C./hr, for example. If it does in this way, the wide range including the reproduction | regeneration location of the high temperature pressure-resistant welding part 14 will be cooled slowly.
 これにより、冷却時に生じる引張応力が、高温耐圧溶接部14の広範囲、つまり加熱領域HA1及び加熱領域HA2を少なくとも含む領域に分散されるため、その絶対的な値は加熱領域HA1のみが存在する場合に比べて低くなる。したがって、冷却工程での熱収縮による引張応力の再生箇所への影響が極力抑えられる。
 したがって、圧接した劣化部Cが開いたり、高温耐圧溶接部14に引張の残留応力が生じるような不具合がなくなり、この高温耐圧溶接部14の補修状態を長期にわたって維持し、配管12の延命化を図ることが可能となる。
Thereby, since the tensile stress generated at the time of cooling is dispersed in a wide range of the high-temperature pressure-resistant welded portion 14, that is, the region including at least the heating region HA1 and the heating region HA2, the absolute value thereof is when only the heating region HA1 exists. Lower than Therefore, the influence of the tensile stress due to the heat shrinkage in the cooling process on the regenerated location is suppressed as much as possible.
Therefore, there is no problem that the welded deteriorated portion C opens or a tensile residual stress is generated in the high-temperature pressure-resistant welded portion 14, and the repaired state of the high-temperature pressure-resistant welded portion 14 is maintained over a long period of time, thereby extending the life of the pipe 12. It becomes possible to plan.
[規則91に基づく訂正 21.02.2008]
(再結晶熱処理)
 次に、再結晶熱処理について説明する。図6は、本実施形態に係る再生方法における再結晶熱処理時の温度変化及び金属組織の変化を示すグラフ図である。
 前述の再生熱処理にて緩やかに冷却された再生箇所の金属組織は、図6中符号a1で示すように、一部にフェライトを含むベイナイト組織とされる。
[Correction 21.02.2008 based on Rule 91]
(Recrystallization heat treatment)
Next, the recrystallization heat treatment will be described. FIG. 6 is a graph showing temperature changes and metallographic changes during the recrystallization heat treatment in the regeneration method according to the present embodiment.
The metal structure of the regenerated portion that has been gently cooled by the regenerative heat treatment described above is a bainite structure that partially includes ferrite, as indicated by reference numeral a1 in FIG.
[規則91に基づく訂正 21.02.2008]
(1)加熱工程
 再結晶熱処理では、まず、この再生箇所を、メインヒータ25によってA3変態点を越える温度T3(例えば、900~950℃、好ましくは約930℃)に加熱し、予め定められた時間(例えば、30~120分、好ましくは60分)保持する。この熱処理は、再生箇所の金属組織を、図6に符号a2で示すように、オーステナイト組織とさせる。このとき、金属組織には、再生熱処理時に形成された粗大な硬化組織が一部に残留している。そして、この粗大な硬化組織は、破断延性を阻害する恐れがある。
[Correction 21.02.2008 based on Rule 91]
(1) Heating step In the recrystallization heat treatment, first, the regenerated portion is heated by the main heater 25 to a temperature T3 (for example, 900 to 950 ° C., preferably about 930 ° C.) exceeding the A3 transformation point, and predetermined. Hold for a time (eg, 30-120 minutes, preferably 60 minutes). In this heat treatment, the metal structure of the regenerated portion is changed to an austenite structure as indicated by reference numeral a2 in FIG. At this time, a coarse hardened structure formed at the time of the regeneration heat treatment partially remains in the metal structure. And this coarse hardened structure may hinder fracture ductility.
[規則91に基づく訂正 21.02.2008]
(2)等温共析変態工程
 次に、メインヒータ25を温度制御し、再生箇所をA3変態点よりも低い温度T4(例えば、680~730℃、好ましくは約700℃)に冷却し、この温度T4にて一定時間(例えば、180から600分、好ましくは300分)保持する等温共析変態処理を施す。この熱処理は、オーステナイト組織を共析変態させる。したがって、図6に符号a3で示すように、再生箇所の金属組織は、フェライト及びパーライトが共析したフェライトパーライト組織となるとともに、粗大な硬化組織が消滅する。
 ここで、等温共析変態の保持温度が、等温共析変態のノーズより低いと、再生箇所の等温共析変態に長時間を要し、また、これを大きく越えると、再生箇所における等温共析変態が困難となる。したがって、等温共析変態工程にて保持する温度T4としては、再生箇所の金属組織を円滑に等温共析変態させることができる温度が好ましい。
 また、等温共析変態工程にて温度T4に保持する時間としては、前記第1の加熱工程と第2の加熱工程において結晶粒が粗大化した領域が等温共析変態を完了する時間であれば良い。
[Correction 21.02.2008 based on Rule 91]
(2) Isothermal eutectoid transformation step Next, the temperature of the main heater 25 is controlled, and the regeneration portion is cooled to a temperature T4 lower than the A3 transformation point (for example, 680 to 730 ° C., preferably about 700 ° C.). Isothermal eutectoid transformation treatment is performed at T4 for a certain time (for example, 180 to 600 minutes, preferably 300 minutes). This heat treatment causes eutectoid transformation of the austenite structure. Therefore, as indicated by reference numeral a3 in FIG. 6, the metal structure of the reproduction portion becomes a ferrite pearlite structure in which ferrite and pearlite are co-deposited, and the coarse hardened structure disappears.
Here, if the holding temperature of the isothermal eutectoid transformation is lower than the nose of the isothermal eutectoid transformation, it takes a long time for the isothermal eutectoid transformation at the reproduction site. Transformation becomes difficult. Therefore, the temperature T4 that is maintained in the isothermal eutectoid transformation step is preferably a temperature at which the metal structure at the reproduction site can be smoothly isothermal eutectoid transformed.
Moreover, as time to hold | maintain to temperature T4 in an isothermal eutectoid transformation process, if the area | region where the crystal grain coarsened in the said 1st heating process and 2nd heating process is the time which completes isothermal eutectoid transformation good.
[規則91に基づく訂正 21.02.2008]
(3)加熱工程
 再生箇所を、メインヒータ25によって再度A3変態点を越える温度T3に加熱し、予め定められた時間(例えば、30~120分、好ましくは60分)保持する。この熱処理は、再生箇所の金属組織を、図6に符号a4で示すように、再びオーステナイト組織とする。このとき、金属組織は、前の等温共析変態工程にて粗大な硬化組織が消滅しているため、この粗大な硬化組織のないオーステナイト組織となる。
[Correction 21.02.2008 based on Rule 91]
(3) Heating step The regenerated portion is heated again to the temperature T3 exceeding the A3 transformation point by the main heater 25, and held for a predetermined time (for example, 30 to 120 minutes, preferably 60 minutes). In this heat treatment, the metal structure of the regenerated portion is changed to an austenite structure again as indicated by reference numeral a4 in FIG. At this time, since the coarse hardened structure has disappeared in the previous isothermal eutectoid transformation step, the metal structure becomes an austenitic structure without the coarse hardened structure.
[規則91に基づく訂正 21.02.2008]
(4)冷却工程
 次に、再生箇所を、A3変態点よりも十分に低い温度T5(例えば、550~650℃、好ましくは約500℃)に冷却する。この熱処理により、再生箇所を図6に符号a5で示すようにオーステナイト組織の一部にフェライト及びパーライトが共析された金属組織とする。
[Correction 21.02.2008 based on Rule 91]
(4) Cooling step Next, the regeneration portion is cooled to a temperature T5 (for example, 550 to 650 ° C., preferably about 500 ° C.) sufficiently lower than the A3 transformation point. By this heat treatment, the reclaimed portion is made into a metal structure in which ferrite and pearlite are co-deposited in a part of the austenite structure as indicated by reference numeral a5 in FIG.
[規則91に基づく訂正 21.02.2008]
(5)加熱工程
 再生箇所を、メインヒータ25によって再度A3変態点を越える温度T3に加熱し、予め定められた時間(例えば、30~120分、好ましくは60分)保持する。この熱処理は、再生箇所の金属組織を、図6に符号a6で示すように、再びオーステナイト組織とする。
[Correction 21.02.2008 based on Rule 91]
(5) Heating step The reproduction part is heated again to the temperature T3 exceeding the A3 transformation point by the main heater 25, and held for a predetermined time (for example, 30 to 120 minutes, preferably 60 minutes). In this heat treatment, the metal structure of the regenerated portion is changed to an austenite structure again as indicated by reference numeral a6 in FIG.
[規則91に基づく訂正 21.02.2008]
(6)冷却工程
 その後、メインヒータ25を温度制御し、再生箇所を予め定められた冷却速度(例えば50℃/hr程度)にて冷却する。
 そして、このように冷却することにより、再生箇所の金属組織は、図6に符号a7で示すように、オーステナイト組織が連続冷却変態し、図6に符号a8で示すように、ベイナイトを含むフェライトパーライト組織となる。
[Correction 21.02.2008 based on Rule 91]
(6) Cooling step Thereafter, the temperature of the main heater 25 is controlled, and the regenerated portion is cooled at a predetermined cooling rate (for example, about 50 ° C./hr).
And by cooling in this way, as shown by the symbol a7 in FIG. 6, the austenite structure undergoes continuous cooling transformation, and the ferrite pearlite containing bainite is transformed as shown by the symbol a8 in FIG. Become an organization.
 そして、上記再結晶熱処理では、メインヒータ25の温度制御により、再生箇所を加熱、冷却して変態処理を複数回繰り返すことにより、再生箇所が、母材である配管12と同等の延性に富んだフェライトパーライト組織になる。また、上記再結晶熱処理により、溶接時に粒界に沿って存在していたボイド、析出物あるいは粒界偏析が粒内に閉じ込められて亀裂伝播速度が遅くなり、損傷進展速度が下げられる。しかも、再結晶熱処理の過程で行われる等温共析変態工程によって、粗大な硬化組織が消滅されるので、破断延性の阻害が抑えられ、良好な延性が得られる。 In the recrystallization heat treatment, the regeneration portion is heated and cooled by the temperature control of the main heater 25 and the transformation treatment is repeated a plurality of times, so that the regeneration portion has a ductility equivalent to that of the pipe 12 as the base material. Ferrite pearlite structure. In addition, the recrystallization heat treatment confines voids, precipitates, or grain boundary segregation existing along the grain boundaries during welding, thereby slowing the crack propagation rate and reducing the damage growth rate. In addition, since the coarse hardened structure is eliminated by the isothermal eutectoid transformation process performed in the course of the recrystallization heat treatment, inhibition of fracture ductility is suppressed, and good ductility is obtained.
 以上、説明したように、本実施形態に係る劣化部の再生方法によれば、劣化部Cの周囲の加熱領域HA2からなる加熱部分の熱膨張力による圧力を、劣化部Cの加熱領域HA1に作用させることができる。これにより、劣化部Cを高い圧縮力により確実に圧接し、劣化部Cの加熱領域HA1の全厚に亘って良好に再生することができ、再生品質の向上を図ることができる。 As described above, according to the method for regenerating a deteriorated portion according to the present embodiment, the pressure due to the thermal expansion force of the heated portion composed of the heated region HA2 around the deteriorated portion C is applied to the heated region HA1 of the deteriorated portion C. Can act. As a result, the deteriorated portion C can be reliably pressed by a high compressive force and can be reproduced well over the entire thickness of the heating area HA1 of the deteriorated portion C, and the reproduction quality can be improved.
 また、劣化部C及びその周囲を同時に冷却するので、冷却時に劣化部Cにて生じる引張応力を広範囲に分散することができ、引張応力の再生箇所への影響を極力抑えることができる。また、再生箇所における引張の残留応力が生じるような不具合もなくなり、高温耐圧溶接部14の補修状態を長期にわたって維持することができ、配管12の延命化を図ることができる。なお、本実施形態では、第1の加熱と第2の加熱の2回の加熱を示したが加熱の回数は複数であれば2回に限定されない。 Further, since the deteriorated portion C and its surroundings are cooled at the same time, the tensile stress generated in the deteriorated portion C during cooling can be dispersed over a wide range, and the influence of the tensile stress on the regenerated location can be suppressed as much as possible. Further, there is no inconvenience that a tensile residual stress is generated at the regenerated location, the repaired state of the high-temperature pressure-resistant welded portion 14 can be maintained for a long time, and the life of the pipe 12 can be extended. In the present embodiment, the first heating and the second heating are shown twice. However, the number of times of heating is not limited to two as long as it is plural.
 さらに、再生箇所において複数回変態させる加熱・冷却工程と、再生箇所を予め定められた温度で一定時間保持して変態を継続させる等温共析変態工程とを行うことにより、再生箇所を、配管12からなる母材と同等の延性に富んだ組織とすることができる。また、組織の粒界に沿って存在していたボイド、析出物あるいは粒界偏析が粒内に閉じ込められることにより、亀裂伝播速度が遅くなって損傷進展速度を下げることができる。しかも、粗大な硬化組織を消滅することにより、破断延性の阻害が抑えられて良好な延性を得ることができる。 Further, by performing a heating / cooling process in which the regeneration part is transformed a plurality of times and an isothermal eutectoid transformation process in which the regeneration part is maintained at a predetermined temperature for a certain period of time and the transformation is continued, the regeneration part is connected to the pipe 12. It can be made into the structure | tissue rich in ductility equivalent to the base material which consists of. In addition, voids, precipitates, or grain boundary segregation existing along the grain boundaries of the structure are confined in the grains, so that the crack propagation rate is slowed and the damage propagation rate can be lowered. In addition, by eliminating the coarse hardened structure, inhibition of fracture ductility can be suppressed and good ductility can be obtained.
 また、本実施形態に係る劣化部Cの再生装置11によれば、メインヒータ25及びサブヒータ26を備えているので、これらメインヒータ25及びサブヒータ26を温度制御することにより、高温耐圧溶接部14に生じた劣化部C及びその周囲を適切に温度制御しながら加熱、冷却して、劣化部Cにおける最適な熱処理を容易に施すことができる。 In addition, according to the regeneration device 11 for the deteriorated portion C according to the present embodiment, the main heater 25 and the sub heater 26 are provided. Therefore, by controlling the temperature of the main heater 25 and the sub heater 26, The generated deteriorated part C and its surroundings can be heated and cooled while appropriately controlling the temperature, and the optimum heat treatment in the deteriorated part C can be easily performed.
 さらに、再結晶熱処理における加熱・冷却工程による再生箇所の変態の繰り返し回数としては、3~5回が好ましい。
 また、本実施形態では、メインヒータ25及びサブヒータ26の二つのヒータを備えた装置を例にとって説明したが、ヒータの数量は複数であれば二つに限定されない。
 なお、メインヒータ25及びサブヒータ26としては、高周波加熱コイルに限定されず、温度制御が可能な各種のヒータを用いることができる。
Furthermore, the number of repetitions of transformation of the regenerated portion by the heating / cooling step in the recrystallization heat treatment is preferably 3 to 5 times.
In the present embodiment, an apparatus including two heaters, that is, the main heater 25 and the sub heater 26 is described as an example. However, the number of heaters is not limited to two as long as the number of heaters is plural.
The main heater 25 and the sub heater 26 are not limited to the high-frequency heating coil, and various heaters capable of temperature control can be used.
 上記に説明した手法について確認した。
 配管12には、STAP24材(2.25%Cr-1%Mo鋼)からなり、その管径が355mm、肉厚が77mmのものを用いた。また、溶接金属13も、配管12と同材料を用いた。
 図7(a)は、再生熱処理前のHAZ部15の顕微鏡写真であり、ボイド(劣化部C)の個数密度が930個/mmとなっている。
 メインヒータ25は、配管12と溶接金属13との境界部に対向した位置に、配管12の表面から径方向に10mm離して配置した。サブヒータ26は、配管12と溶接金属13との境界部から配管12の周方向に50mm、径方向に10mm外れた位置に配置した。
 そして、メインヒータ25によって、高温耐圧溶接部14の配管12と溶接金属13との境界部材の表面を、温度T1=1200℃まで急速加熱した。
 メインヒータ25による加熱によって、高温耐圧溶接部14の配管12と溶接金属13との境界部材の表面が温度T1=1200℃に到達してから300秒後、メインヒータ25による加熱を継続している間に、サブヒータ26による加熱を開始し、メインヒータ25による加熱領域HA1の近傍を温度T1=1200℃まで加熱した。
 サブヒータ26による周囲の加熱領域HA2の加熱を1200秒継続した後、メインヒータ25及びサブヒータ26による加熱温度を50℃/hrの冷却速度で同期して低下させた。
 この後、再生箇所を、メインヒータ25によって930℃に加熱し、60分保持した。
 次に、メインヒータ25を温度制御し、再生箇所を700℃に冷却し、300分保持して等温共析変態処理を施した。
 続いて、再生箇所を、メインヒータ25によって930℃に加熱し、60分保持した後、再生箇所を、500℃に冷却した。
 さらに、再生箇所を、メインヒータ25によって930℃に加熱し、60分保持した後、再生箇所を50℃/hr程度にて冷却した。
 図7(b)は、再生熱処理後のHAZ部15の顕微鏡写真であり、ボイド(劣化部C)の個数密度が140個/mmとなっており、再生熱処理前に比較してボイド個数密度が85%減少していることが確認された。さらに、ボイドが、再生熱処理前は粒界に位置していたのに対し、再生熱処理後は粒内に閉じ込められていることが確認された。
The method described above was confirmed.
The pipe 12 was made of STAP24 material (2.25% Cr-1% Mo steel), having a pipe diameter of 355 mm and a wall thickness of 77 mm. The weld metal 13 was also made of the same material as the pipe 12.
FIG. 7A is a photomicrograph of the HAZ part 15 before the regenerative heat treatment, and the number density of voids (deteriorated part C) is 930 / mm 2 .
The main heater 25 was disposed 10 mm away from the surface of the pipe 12 in the radial direction at a position facing the boundary between the pipe 12 and the weld metal 13. The sub-heater 26 was disposed at a position 50 mm away from the boundary between the pipe 12 and the weld metal 13 in the circumferential direction of the pipe 12 and 10 mm in the radial direction.
Then, the surface of the boundary member between the pipe 12 and the weld metal 13 of the high-temperature pressure-resistant welded portion 14 was rapidly heated by the main heater 25 to a temperature T1 = 1200 ° C.
Heating by the main heater 25 is continued 300 seconds after the surface of the boundary member between the pipe 12 and the weld metal 13 of the high-temperature pressure-resistant welded portion 14 reaches the temperature T1 = 1200 ° C. due to the heating by the main heater 25. In the meantime, heating by the sub-heater 26 was started, and the vicinity of the heating area HA1 by the main heater 25 was heated to a temperature T1 = 1200 ° C.
After the heating of the surrounding heating area HA2 by the sub heater 26 was continued for 1200 seconds, the heating temperature by the main heater 25 and the sub heater 26 was lowered synchronously at a cooling rate of 50 ° C./hr.
Thereafter, the regenerated portion was heated to 930 ° C. by the main heater 25 and held for 60 minutes.
Next, the temperature of the main heater 25 was controlled, and the regenerated portion was cooled to 700 ° C. and held for 300 minutes to perform isothermal eutectoid transformation treatment.
Subsequently, the regenerated portion was heated to 930 ° C. by the main heater 25 and held for 60 minutes, and then the regenerated portion was cooled to 500 ° C.
Further, the regenerated portion was heated to 930 ° C. by the main heater 25 and held for 60 minutes, and then the regenerated portion was cooled at about 50 ° C./hr.
FIG. 7B is a micrograph of the HAZ part 15 after the regenerative heat treatment. The number density of voids (deteriorated part C) is 140 / mm 2, and the void number density is higher than that before the regenerative heat treatment. Was reduced by 85%. Further, it was confirmed that the voids were located at the grain boundaries before the regenerative heat treatment, but were confined in the grains after the regenerative heat treatment.

Claims (10)

  1.  金属部材に生じた劣化部を再生する方法であって、
     前記劣化部を含む局所的な領域を加熱して第1の加熱領域を形成し、前記第1の加熱領域の熱膨張に対する周囲の拘束による前記第1の加熱領域への圧縮応力によって前記劣化部を圧接する第1の加熱工程と、
     前記第1の加熱領域を加熱中、前記第1の加熱工程による加熱開始から所定時間経過した後に、前記第1の加熱領域の周囲を加熱することによって第2の加熱領域を形成する第2の加熱工程と、
    を備えることを特徴とする劣化部の再生方法。
    A method for regenerating a deteriorated part generated in a metal member,
    A local region including the deteriorated portion is heated to form a first heated region, and the deteriorated portion is caused by a compressive stress applied to the first heated region due to a surrounding constraint on thermal expansion of the first heated region. A first heating step for pressure welding,
    During the heating of the first heating region, a second heating region is formed by heating the periphery of the first heating region after elapse of a predetermined time from the start of heating in the first heating step. Heating process;
    A method for reproducing a deteriorated portion, comprising:
  2.  前記第1の加熱工程及び前記第2の加熱工程を予め定められた時間継続することを特徴とする請求項1に記載の劣化部の再生方法。 The method for regenerating a deteriorated part according to claim 1, wherein the first heating step and the second heating step are continued for a predetermined time.
  3.  前記金属部材は、母材と、前記母材を接続する溶接金属とを備え、
     前記劣化部は、溶接によって生じた前記母材の熱影響部に存在し、
     前記第1の加熱領域は前記熱影響部を含んで形成されることを特徴とする請求項1に記載の劣化部の再生方法。
    The metal member includes a base material and a weld metal that connects the base material,
    The deteriorated portion exists in a heat affected zone of the base material generated by welding,
    The method for regenerating a deteriorated part according to claim 1, wherein the first heating region includes the heat affected part.
  4.  前記第2の加熱領域は前記熱影響部に近接する前記母材に形成されることを特徴とする請求項3に記載の劣化部の再生方法。 The method for regenerating a deteriorated part according to claim 3, wherein the second heating region is formed in the base material adjacent to the heat affected part.
  5.  前記第1の加熱領域の冷却及び前記第2の加熱領域の冷却を同期して行う冷却工程を含むことを特徴とする請求項1に記載の劣化部の再生方法。 The method for regenerating a deteriorated part according to claim 1, further comprising a cooling step in which the cooling of the first heating region and the cooling of the second heating region are performed in synchronization.
  6.  前記冷却工程終了後、前記第1および第2の加熱領域に対して再結晶熱処理を施すことを特徴とする請求項5に記載の劣化部の再生方法。 6. The method for regenerating a deteriorated portion according to claim 5, wherein after the cooling step, recrystallization heat treatment is performed on the first and second heating regions.
  7.  前記再結晶熱処理は、前記金属部材をその変態点以上に加熱し、前記変態点未満に冷却する処理を複数回繰り返すことを特徴とする請求項6に記載の劣化部の再生方法。 The method for regenerating a deteriorated part according to claim 6, wherein in the recrystallization heat treatment, the metal member is heated to a temperature above its transformation point and cooled to a temperature below the transformation point a plurality of times.
  8.  前記再結晶熱処理を施す過程で、等温共析変態処理を行うことを特徴とする請求項6に記載の劣化部の再生方法。 The method for regenerating a deteriorated part according to claim 6, wherein an isothermal eutectoid transformation treatment is performed in the course of performing the recrystallization heat treatment.
  9.  金属部材に生じた劣化部を再生する装置であって、
     前記劣化部を臨む位置に配置されて前記劣化部を局所的に加熱する第1のヒータと、
     前記第1のヒータによる加熱領域の周囲を加熱する第2のヒータと、
    を備えたことを特徴とする劣化部の再生装置。
    An apparatus for regenerating a deteriorated part generated in a metal member,
    A first heater which is disposed at a position facing the deteriorated portion and locally heats the deteriorated portion;
    A second heater for heating the periphery of the heating area by the first heater;
    An apparatus for reproducing a deteriorated part, comprising:
  10.  前記第1のヒータによる加熱は、前記第2のヒータによる加熱に先行することを特徴とする請求項9に記載の劣化部の再生装置。 The regeneration device for a deteriorated part according to claim 9, wherein the heating by the first heater precedes the heating by the second heater.
PCT/JP2008/051348 2008-01-30 2008-01-30 Deteriorated portion reproducing method and deteriorated portion reproducing device WO2009096004A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200880104423.0A CN101784682B (en) 2008-01-30 2008-01-30 Deteriorated portion reproducing method
KR1020107004221A KR101201659B1 (en) 2008-01-30 2008-01-30 Deteriorated portion reproducing method and deteriorated portion reproducing device
PCT/JP2008/051348 WO2009096004A1 (en) 2008-01-30 2008-01-30 Deteriorated portion reproducing method and deteriorated portion reproducing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/051348 WO2009096004A1 (en) 2008-01-30 2008-01-30 Deteriorated portion reproducing method and deteriorated portion reproducing device

Publications (1)

Publication Number Publication Date
WO2009096004A1 true WO2009096004A1 (en) 2009-08-06

Family

ID=40912373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/051348 WO2009096004A1 (en) 2008-01-30 2008-01-30 Deteriorated portion reproducing method and deteriorated portion reproducing device

Country Status (3)

Country Link
KR (1) KR101201659B1 (en)
CN (1) CN101784682B (en)
WO (1) WO2009096004A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101359120B1 (en) * 2011-03-31 2014-02-05 주식회사 포스코 High frequency heat treatment method of welding part and plate having welding part of fine structure using the same
CN104162762B (en) * 2014-08-18 2016-08-24 青岛海之冠汽车配件制造有限公司 Utilize the method that nickel-cobalt-molybdenum-manganese-base alloy carries out flywheel repairing
KR20160068293A (en) 2014-12-05 2016-06-15 (주)아모레퍼시픽 Composition for preventing gray hair and for treatment of leukoplakia containing panasenoside
KR20160068294A (en) 2014-12-05 2016-06-15 (주)아모레퍼시픽 Composition containing panasenoside for antibacterial
CN111576378B (en) * 2020-04-30 2021-08-24 中铁隧道局集团有限公司 Deviational survey pipe prosthetic devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61104029A (en) * 1984-10-29 1986-05-22 Hitachi Ltd Heat treatment of pipeline
JPH0230716A (en) * 1988-07-21 1990-02-01 Hokkaido Electric Power Co Inc:The Method for improving residual stress in circumferential weld zone
JP2003253337A (en) * 2001-12-27 2003-09-10 Mitsubishi Heavy Ind Ltd Process and apparatus for regenerating creep deteriorated part
JP2006083440A (en) * 2004-09-17 2006-03-30 Tohoku Univ Method for restraining generation or progression of stress corrosion crack

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61104029A (en) * 1984-10-29 1986-05-22 Hitachi Ltd Heat treatment of pipeline
JPH0230716A (en) * 1988-07-21 1990-02-01 Hokkaido Electric Power Co Inc:The Method for improving residual stress in circumferential weld zone
JP2003253337A (en) * 2001-12-27 2003-09-10 Mitsubishi Heavy Ind Ltd Process and apparatus for regenerating creep deteriorated part
JP2006083440A (en) * 2004-09-17 2006-03-30 Tohoku Univ Method for restraining generation or progression of stress corrosion crack

Also Published As

Publication number Publication date
KR101201659B1 (en) 2012-11-14
CN101784682B (en) 2014-11-19
KR20100049087A (en) 2010-05-11
CN101784682A (en) 2010-07-21

Similar Documents

Publication Publication Date Title
JP4969221B2 (en) Deterioration part reproduction method, degradation part reproduction device
CN105414878B (en) A kind of repair method of high heat-resisting alloy steel casting defect
WO2009096004A1 (en) Deteriorated portion reproducing method and deteriorated portion reproducing device
JP2004211187A (en) Method and apparatus for heat treatment of piping system
JP5859305B2 (en) Regeneration apparatus for creep part of large-diameter metal pipe and regeneration method using the regeneration apparatus
JP4176412B2 (en) Method and apparatus for regenerating creep degraded part
JP2008105050A (en) Method and apparatus for reducing residual stress
JP5480974B2 (en) Joining method for parts with high fatigue strength
JPH06159007A (en) Metallurgical strengthening method of damaged bolthole
WO2004046392A1 (en) Delayed fracture prevention method for steel structure and steel structure manufacturing method
JP2008036682A (en) Method of repairing nuclear reactor structure
RU2439170C2 (en) Defective section recovery method and defective section recovery device
JP3674085B2 (en) Heat treatment method for reactor pressure vessel nozzle
JP2006208227A (en) Repair method of nozzle of reactor pressure vessel
JPH048488B2 (en)
JP2001138080A (en) Laser clad welding method
JPH06289184A (en) Repair welding execution for neutron irradiation member
JPS63118017A (en) Improving method for residual stress in weld zone
JPS59150674A (en) Joining method of steel pipe
JPH02133191A (en) Preventing method for stress corrosion cracking of vessel through-pipe
JPH03180274A (en) Method for engaging pipe with pipe plate
JP2005046858A (en) Method for preventing generation of stress corrosion cracking
JP2005319494A (en) Method for welding stainless steel tube and joint structure
JPH06182578A (en) Method and equipment for welding pipings
JP2008260024A (en) Welded structure and method of welding structure

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880104423.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08704130

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 319/MUMNP/2010

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20107004221

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010107037

Country of ref document: RU

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08704130

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP