JPS5993292A - Measuring head for robot - Google Patents

Measuring head for robot

Info

Publication number
JPS5993292A
JPS5993292A JP20028882A JP20028882A JPS5993292A JP S5993292 A JPS5993292 A JP S5993292A JP 20028882 A JP20028882 A JP 20028882A JP 20028882 A JP20028882 A JP 20028882A JP S5993292 A JPS5993292 A JP S5993292A
Authority
JP
Japan
Prior art keywords
light
line
sight
receiving element
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20028882A
Other languages
Japanese (ja)
Other versions
JPH0146279B2 (en
Inventor
義一 伊藤
中野 一造
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIHON TSUUSHIN GIJUTSU KK
NIPPON TSUSHIN GIJUTSU KK
Original Assignee
NIHON TSUUSHIN GIJUTSU KK
NIPPON TSUSHIN GIJUTSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIHON TSUUSHIN GIJUTSU KK, NIPPON TSUSHIN GIJUTSU KK filed Critical NIHON TSUUSHIN GIJUTSU KK
Priority to JP20028882A priority Critical patent/JPS5993292A/en
Publication of JPS5993292A publication Critical patent/JPS5993292A/en
Publication of JPH0146279B2 publication Critical patent/JPH0146279B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、作業用ロボットにおいて、作業対象物とロボ
ットとの関係位置を計測する計測ヘッドに関するもので
あって、特に作業対象物の表面が平面あるいは緩い曲面
で構成されている場合、例えば厚板の溶接等で有効に使
用できる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a measurement head for measuring the relative position between a work object and the robot in a work robot, and particularly when the surface of the work object is a flat or gently curved surface. It can be effectively used, for example, when welding thick plates.

アーク溶接ロボットで、溶接線に浴うて、溶接を進める
場合の従来の例を第1〜第3図に示す。
A conventional example of a case where an arc welding robot advances welding by touching a welding line is shown in FIGS. 1 to 3.

図においてG、 l G、は被溶接物CGt、Gtk区
別する必要のないときは単にGとかく)その表面なJl
 、Jt (JI J2の区別の必要のないとぎは単に
Jとか()、Tは溶接トーチ、Wは溶接すべき線状部(
以下溶接線と称する)である。
In the figure, G, l G, is simply written as G when there is no need to distinguish between the objects to be welded CGt, Gtk), and its surface Jl
, Jt (JI J2 sharpeners that do not need to be distinguished are simply J or (), T is the welding torch, W is the linear part to be welded (
(hereinafter referred to as the weld line).

第1図は溶接トーチTの両側にとりつけた磁気センサA
1・2.によってTとG、・G2  との関係位置を検
出し、溶接トーチを正しい浴接作業位iに保つものであ
る。
Figure 1 shows magnetic sensors A attached to both sides of welding torch T.
1・2. This detects the relative position between T and G, .G2, and maintains the welding torch at the correct bath welding position i.

第1図(イ)は光ビーム投光器りから光ビームL′を被
測定物表面に投射し、その方向を左右に振ったとき生ず
る輝線をイメージカメラIで捉え、その画像を処理して
溶接線Wを検出して、作業を進めるものである。図(ロ
)にこの時得られる画像を示す。この場合、測定点と溶
接点の距離DTは、溶接アーク光の妨害防止のために、
約1otyrb程度以上を要し、Tを正しい位置に保つ
上で好ましくない。
Figure 1 (a) shows a light beam L' projected from a light beam projector onto the surface of the object to be measured, and an image camera I that captures the bright line produced when the light beam L' is swung left and right. It detects W and proceeds with the work. Figure (b) shows the image obtained at this time. In this case, the distance DT between the measurement point and the welding point is set to prevent interference with the welding arc light.
It requires about 1 otyrb or more, which is not preferable in terms of keeping the T in the correct position.

第3図は、溶接トーチTを左右に一定角だけ振り動かし
て、溶接を進めるが、この場合の左・右におけるアーク
電流が等しくなるようにトーチ位置を制御しながら、溶
接線Wに溢って作業を進めるようにしたものである。図
ピ)はトーチの位置flit制御が行なわれないときの
状態図、仲)は制御実行後の状態図である。
In Figure 3, the welding torch T is swung left and right by a certain angle to proceed with welding, but the torch position is controlled so that the arc currents on the left and right sides are equal, and the welding line W is overflowed. This allows you to proceed with your work. Figure P) is a state diagram when the torch position flit control is not performed, and Figure P) is a state diagram after the control is executed.

上記の第1図、第3図の場合は溶接作業時、溶接l・−
チTを正しい作業位置に%いてからの制御であり、完全
自動化には適しない。第1図の場合は′rと測定点との
距離が大きくなり精度がおちるのが欠点である。
In the case of Fig. 1 and Fig. 3 above, during welding work, welding l・-
Control is performed after the machine is in the correct working position, and is not suitable for complete automation. In the case of FIG. 1, the disadvantage is that the distance between 'r and the measurement point becomes large and the accuracy deteriorates.

本発明は比較的簡単な構成で物体の表面の計測ができる
ようにし、溶接の全自動化を可能にするものである。以
下これについて説明する。
The present invention makes it possible to measure the surface of an object with a relatively simple configuration, and makes it possible to fully automate welding. This will be explained below.

第≠図に本発明のロボット用計測ヘッドの全体的構成を
示す。図においてMは計測ヘッドで、それに固定の軸ξ
、η、(のまわりに回転され、かつ空間軸X+y+Zに
関して平行移動される。したがってMは平行移動と回転
により空間内で任意の位置で任意の姿勢をもつことがで
きる。また、Mの片側には図のようにそれぞれ投光器り
、受光器几がξ軸上で一定距離dを一\だてて取付けら
れ、その側で、80面を含む方向4Mの正面方向と称し
、この正面方向は、軸ξのまわりのMの回転によって±
9に振ることができる。
Figure ≠ shows the overall configuration of a measuring head for a robot according to the present invention. In the figure, M is the measurement head, and the axis ξ fixed to it
, η, (and translated about the spatial axis X+y+Z. Therefore, M can have any pose at any position in space by translation and rotation. Also, As shown in the figure, the emitter and receiver are mounted at a certain distance d on the ξ axis, and on that side, the direction 4M including the 80th plane is called the front direction, and this front direction is ± by the rotation of M around the axis ξ
You can roll it to 9.

投光器りは例えばレーザビームのような細いビームf(
t)を発射する。f(t)は必ずξC面内にあり、ξ軸
とのなす角θLを数ステップに変えることができる。こ
のθLの値をθ−′、L=t、 2.・・・で表わす。
The projector is a thin beam f (such as a laser beam).
t). f(t) is always within the ξC plane, and the angle θL with the ξ axis can be changed in several steps. The value of this θL is θ-', L=t, 2. It is expressed as...

f(tlを被測定物体の表面Jに投射すれば、投射点は
明るい点、すなわち輝点となり、一般に表面Jかも乱反
射される。
When f(tl is projected onto the surface J of the object to be measured, the projected point becomes a bright point, that is, a bright spot, and generally the surface J is also diffusely reflected.

受光器几は第5図に示すように、レンズ乙と点状受光素
子Bとからなり、tの中心はORに一致し、ORとBを
結ぶ線の方向、すなわち受光器1tの視線は必ずξζ面
内にあり、その方向はξ軸とBO□とのなす角で示し、
また、視線はその中心方向θRの両側に、すなわち0R
±φに変動させるものとする。視線方向を変えるために
は、受光器几全体1kORを中心に士φだけ振ってもよ
いが、几全体が重いので、軽址で小さい受光素子Bのみ
を/の軸の両側に±φに相等するだけ振ってもよい。
As shown in Fig. 5, the light receiver 1t consists of a lens A and a dot-like light receiving element B, and the center of t coincides with OR, and the direction of the line connecting OR and B, that is, the line of sight of the light receiver 1t, is always It is in the ξζ plane, and its direction is indicated by the angle between the ξ axis and BO□,
Also, the line of sight is on both sides of the central direction θR, that is, 0R
It shall be varied within ±φ. In order to change the line of sight direction, the entire photoreceiver box may be swung by φ φ around 1kOR, but since the entire photoreceptor is heavy, only the light receiving element B, which is light and small, can be placed on both sides of the / axis equally ±φ. You can shake it as much as you like.

受光器は物体表面の輝点A7の像yLvcよってBに結
ぶようにされている。このため距離ORBはZとA 5
との距離tRLに応じて調整されるべきであるが、この
調整が多小不充分な場合は、Bの位置におけるAbO像
がぼけて太さく結像されるので、Atの位置が一定で、
視線方向を振り動かすと、受光素子Bより生ずる電気出
力eは、φの変動に対して例えば第6図のようになるの
で、eを一定レベルでスライスした時の中心値φ(Qを
用いれば、はぼ正確に輝点位置を捉えることができる。
The light receiver is arranged to be focused on B by the image yLvc of the bright spot A7 on the object surface. Therefore, the distance ORB is Z and A 5
It should be adjusted according to the distance tRL from the At position, but if this adjustment is insufficient, the AbO image at the position B will be blurred and formed thickly, so the position of At will remain constant,
When the line of sight is moved, the electric output e generated by the light receiving element B changes as shown in Fig. 6 with respect to the fluctuation of φ. Therefore, when e is sliced at a constant level, the central value φ (using Q , it is possible to accurately capture the bright spot position.

θ只は受光器の視線方向をりB+φ(【)で変化したと
き、必ずALが捕捉できるような値にとってお(。これ
は計測ヘッドMと被測定物とのおおよその距離から、十
分な安全度を見込んできめればよい。
θ should be set to a value that ensures that AL can be captured when the line of sight direction of the receiver changes by B + φ ([). You just have to take into account the degree of accuracy.

マタ光ヒ−ムf(tlはその波長をアーク光スペクトル
で小さいエネルギの波長にとり、かつ、アーク光の変動
に含まれない適当な波で変調しcおく。
The light beam f(tl) has a wavelength of low energy in the arc light spectrum, and is modulated with an appropriate wave that is not included in the fluctuations of the arc light.

このようにすると、受光器Rの出方中の変調波の有無に
よって信号と雑音の弁別を行なうようにして、アーク光
の妨害を軽減することができる。
In this way, interference of arc light can be reduced by distinguishing signals from noise depending on the presence or absence of modulated waves emerging from the light receiver R.

物体表面の測定においては、計測ヘッドMの正面方向を
、Mをξ軸のまわりに往復回転させることによって、土
Lf、の範囲に振る。この方向を時間tの関数Q(t)
で表わす。9(t)の変化速度を緩やかにしておけば、
輝点Aとは物体の表面を緩やかに移動する。この時θb
=i にしておけば輝点の移動軌跡は、光の平面で被測
定物体を切った時の断面の形状を示すことになる。輝点
は被測定物体表面1■の凹凸に応じて上下する。
In measuring the surface of an object, the front direction of the measurement head M is swung over a range Lf by reciprocally rotating M around the ξ axis. This direction is expressed as a function Q(t) of time t
It is expressed as If we keep the rate of change of 9(t) slow,
The bright spot A moves slowly on the surface of the object. At this time θb
If =i is set, the moving locus of the bright spot will show the shape of the cross section when the object to be measured is cut by the plane of light. The bright spot moves up and down depending on the unevenness of the surface 1 of the object to be measured.

次に、受光器几の視線の方向を十分広(とって、ORA
・の方向が常にUH±φの中に含まれるようし にし、受光器Rの視線の方向角をφ(1)なる時間の関
数とし、f(t)に比して遥に速い速さで周期的に変化
するようにする。
Next, widen the direction of the line of sight of the receiver sufficiently (take the ORA
The direction of ・ is always included in UH±φ, and the direction angle of the line of sight of the receiver R is set as a function of time to be φ(1), and the direction is much faster than f(t). Make it change periodically.

このようにすればφ(1)の1周期毎に、受光器の視線
は必ず1回以上(φ(1)が往復振動の時は2回、φ(
1)が一方向変化の時は1回)、輝線を通ることになり
、視線と輝線の交わる時に受光器凡の受光素子Bから電
気出力が得られる。この電気信号を時間信号に用いてφ
(r) 、 9 (t)を求めることができる。
In this way, for each cycle of φ(1), the line of sight of the receiver will always change at least once (twice when φ(1) is a reciprocating vibration, and twice when φ(1) is a reciprocating vibration,
1) When the change is in one direction, the light passes through the bright line once), and when the line of sight and the bright line intersect, an electrical output is obtained from the light receiving element B of the light receiver. Using this electrical signal as a time signal, φ
(r), 9 (t) can be obtained.

θL−一の時、φ(1)が求められると、t、 = d
 tan (IJR+φ(t))、 tR45,=d〆
Xl5(ejH+φ(t))・・・・・・・・・(1ン
第弘図の輝点A、−より、9(t)=0の光ビームO,
AMに下した垂線なA、;Q、、とし、A、Q、 = 
1. 、 oゎQムーことすれば。
When θL-1, when φ(1) is found, t, = d
tan (IJR + φ (t)), tR45, = d〆 light beam O,
Let A, ;Q, be a perpendicular line drawn to AM, and A, Q, =
1. , oゎQmu.

jL=dsln%t)jan(θ8+φ(t))、p、
=dcxs9G)lJ+Jl(On+φ(tl) −(
2)一般に、任意のσL、に対しては ξ軸のまわりに計測ヘッドMを回転させて輝点AJ を
移動させたときの輝線の形は、θ、−一の場合は物体を
平面できった場合の断面の形を示すが、栓′キ7r/a
  の場合は物体を円錐面で切断した場合の断面形状を
示す曲線になるので、複雑となる。
jL=dsln%t)jan(θ8+φ(t)), p,
=dcxs9G)lJ+Jl(On+φ(tl) −(
2) Generally, for any σL, the shape of the bright line when the measuring head M is rotated around the ξ axis and the bright spot AJ is moved is such that when θ, -1, the object cannot be flattened. The cross-sectional shape is shown when the stopper is 7r/a.
In this case, the curve becomes complicated because it represents the cross-sectional shape when the object is cut by a conical surface.

したがって、断面の形状を知るためには主としてθ、=
π/2として測定を行ない、U富キπ/Qで測定を行な
うのは、制御に必要な情報をうるためにのみ用い、それ
rvc必要な諸址は式(3)〜(6ンにより算出される
Therefore, in order to know the shape of the cross section, mainly θ, =
The reason for measuring π/2 and measuring π/Q is used only to obtain the information necessary for control. be done.

φ(1)の変化の周期はハt)のそれに比して遥に短い
ので、輝線上にはAI + A2 +・・・Anl  
のように多数の視線と輝線の交線が求められるので、物
体の1つの断面の形状が求められることになる。
Since the period of change of φ(1) is much shorter than that of φ(1), there are AI + A2 +...Anl on the emission line.
Since the lines of intersection of a large number of lines of sight and emission lines are determined, the shape of one cross section of the object is determined.

計測ヘッドMを例えばξ軸方向に移動しながら、上記測
定を行なってゆけば被測定物体の表面Jの形状が決定さ
れる。
By performing the above measurements while moving the measurement head M in the ξ-axis direction, for example, the shape of the surface J of the object to be measured is determined.

上述の計測ヘッドを用いて平面を測定する場合について
述べる。まづθフ′−五  としてit 測ヘッドを平
面に対向させると、平面J、上に生ずる軌跡は明らかに
直線となり第7図のA、 AMAlのようになる。θ1
をかえて瞠′〈ηとすると5光ビームのり(る面は円錐
となり、この円錐面と平面J。
A case will be described in which a plane is measured using the above-mentioned measurement head. First, when the measuring head is faced to a plane with θ f'-5, the locus generated on the plane J becomes clearly a straight line, as shown by A and AMAl in FIG. θ1
If we change ′〈η, the surface on which the five light beams rest becomes a cone, and this conical surface and the plane J.

との交線は2次曲線であって、楕円または双曲線となる
。この様子を第7図に示した。
The line of intersection with is a quadratic curve, which is an ellipse or a hyperbola. This situation is shown in FIG.

計測ヘッドのζ軸15平面の場合は、次の2条件が成立
つ。
In the case of the ζ-axis 15 plane of the measurement head, the following two conditions hold true.

’LL ”” 114、   につ=し    ・・・
・・・・・・・・・・・叩・・(7)計測ヘッドのη軸
It J平面の場合はtL□=trJ2    ・・・
・曲・明・・・・・明・・・・・・・・・・・明・・町
・(8)計測ヘッドのξ軸II J平面の場合は!、u
=l−M     ・・・・・・・・・・・・・・・四
旧曲・叩・・曲・・・・・す・・・・(9)上の間係を
用いると物体の表面が平面で構成されている場合、その
表面の平面と平面との交線Wを検出し、かつその面交叉
がV形かΔ形かft識別することが9能である。次にそ
の大略について述べる。
'LL "" 114, Nitsu=shi...
・・・・・・・・・・・・Tap (7) η-axis It of the measurement head In case of J plane, tL□=trJ2 ・・・
・Song・・・・・・・・・・・・・・・ (8) Measurement head's ξ axis II In case of J plane! , u
=l-M ・・・・・・・・・・・・・・・Four old songs・hit・・song・・・su・・・・(9) Using the above interlude, the surface of an object When the plane is formed of a plane, it is possible to detect the intersection line W between the planes of the surface and to identify whether the plane intersection is V-shaped or Δ-shaped. Next, I will explain the outline.

今、計測ヘッドを平面J、に正対させた状態(ζ軸上J
平面)を保って進行してゆき、J、と・平面J2との交
線Wにさしかかったとすると、第♂し」(イ)または(
ロ)の状態になるので、式(7)の榮件が成立しな(な
る。交IIMWllη軸なる場合は図0)のようになり
心キメ/MtLよ=t1.  また交線Wがη軸に平行
でない場合は、図←)のようになり心−滴LX、□キ1
.となり、さらに計測ヘッドが進行すると、心キに二 
tL1キtL、となる。
Now, the measurement head is directly facing the plane J (J on the ζ axis
Suppose that the plane continues to move along the plane J2 and approaches the intersection line W between J and the plane J2, then
Since the condition of equation (7) does not hold (b), the condition of equation (7) does not hold (if the cross IIMWllη axis is shown in Fig. 0), then the condition of mind/MtL = t1. In addition, if the intersection line W is not parallel to the η axis, it will be as shown in the figure ←), and the center-droplet LX, □ki1
.. , and as the measuring head advances further, the second
tL1kitL.

図(イ)の場合心〉に↓ならば△膨面交叉(心が増加す
る)xM<y:;、ならば膨面交叉(lつが減少する)
図(ロ)の場合tLよ〉tI、、ならば△膨面交叉(t
L□が増加する)tL□<tL、ならばv膨面交叉(L
L□が減少する)溶接線がV膨面交叉とすれば上述の識
別法で膨面交叉のところで次の方法によって、計測ヘッ
ドχ第り図に示すように溶接線W0に正対位置(J。
In the case of figure (a), if ↓ to the center, then △ bulge plane intersection (the center increases). If xM<y:;, then the bulge plane intersection (l decreases)
In the case of figure (b), tL〉tI, , then △bulge plane intersection (t
L□ increases)tL□<tL, then v bulge plane intersection (L
If the weld line intersects the V bulge surface (L□ decreases), then at the intersection of the bulge surfaces using the identification method described above, use the following method to locate the measuring head directly facing the weld line W0 (J .

J2の2等分面上で、Woに正対し、Woとの距離乞所
定の値X4とする)をとって溶接作業?開始する。
On the bisecting plane of J2, directly facing Wo, and taking the distance from Wo to a predetermined value of X4), do welding work? Start.

計測ヘッドをさらに移動し%l = 0なる光ビーム(
この光ビームはぐ軸方向と一致する)がW。
The measurement head is further moved to create a light beam with %l = 0 (
This light beam coincides with the axis direction) is W.

に輝点な生じた位置で計測ヘッドの移動を止める。Stop moving the measuring head at the position where a bright spot appears.

この位置は第り図のAMσノ値が一定値から外れること
で検知される。ここでθL’a:0′Lに変え、計測ヘ
ッドをぐ軸のまわりに回転して、れが一定値からそれる
点を検出することによって、図のAMA′h1をWOに
一致させる。
This position is detected when the value of AMσ in the diagram deviates from a constant value. Here, by changing θL'a to 0'L, rotating the measurement head around the axis, and detecting a point where the deviation deviates from a constant value, AMA'h1 in the figure is made to coincide with WO.

次に第1O図に示すように、計測ヘッドをξ軸のまわり
に回転して、面J、に正対させる。図では、この時の記
号として輝点A・に対してサフィックスJt kつけて
示した。この時の回転角は明らかに面J、と面J、のな
す角虱に等しい。ol、を角JIWOJ2のコ等分面上
にのせるには、図に示すようにOX、を0LAutan
%だけ左l\平行移動して01、へうつし、ξ軸のまわ
りの回転により、計測ヘッドを浴接線W、 K正対させ
る(第io図のoI、Aつ、。
Next, as shown in FIG. 1O, the measurement head is rotated around the ξ axis so as to directly face the surface J. In the figure, the suffix Jtk is added to the bright spot A as a symbol at this time. The rotation angle at this time is clearly equal to the angle formed by the planes J and J. To place ol, on the co-equal surface of angle JIWOJ2, convert OX, to 0LAutan as shown in the figure.
% to the left l\, then 01, and rotate around the ξ axis to bring the measurement head directly facing the bath tangents W and K (oI, A in Figure io).

方向に対して!/2だけJ、側・\回転すればξ軸はW
oに直交しO5□AMに一致する)。次にOL□を01
゜にうつして01.、AMを溶接作業に適する値4とす
る。
Against the direction! /2 J, side \ rotation, the ξ axis becomes W
o and coincides with O5□AM). Next, OL□01
Transfer it to ゜01. , AM is set to a value of 4, which is suitable for welding work.

以上の処置によって計測ヘッドが溶接作業状態の姿勢に
なるから、溶接トーチも当然溶接作業位置を占める。
Since the measuring head is placed in the welding position by the above procedure, the welding torch is also in the welding position.

溶接作業中における計測ヘッドの制御は1次の簡単なチ
ェックを行えばよい。
The measurement head can be controlled during welding work by performing a simple first check.

(11)  θL〈に対してtTJ□=LXJ8.4=
/4で極大値上の(1)、(ii)の条件はOI、がコ
面J1+J2のなす角の2等分面上にあり、かつ浴接線
からの距離が所定の値4イになって8つ、ξ軸If W
oになって(・ることを示すものである。
(11) tTJ□=LXJ8.4= for θL〈
The conditions (1) and (ii) for the maximum value at /4 are that OI is on the bisector of the angle formed by the plane J1 + J2, and the distance from the bath tangent is a predetermined value of 4. 8, ξ axis If W
This indicates that it has become (・).

溶接アーク光(雑音光)TK−よる妨害を軽減すること
、および測定回路について説明ずろ。溶接アークは・強
い光を発し、その光が測定に用いる光ビーム(信号光)
の入射点に入り、両者の重畳された光が受光6几に入る
ので受光素子Bの電気出力には当然大きな雑音が含まれ
てくる。この信号と雑音の分離を容易にするためには、
信号光の波長として溶接アーク光のスペクトルに含まれ
ぬものを用い、アーク光を遮蔽するための遮蔽板を用い
る。あるいは光フィルタを用いて雑音光を除く等の工夫
をすることは轟然のことであるが、光ビームf(t)を
、雑音光に含まれていない波で変調すると、受光器出力
にこの変調成分が有るか無いかによって、受光器の視線
が、輝点な捕捉したか、どうかを識別することができる
Explain how to reduce interference caused by welding arc light (noise light) TK- and the measurement circuit. Welding arc emits strong light, which is used as a light beam (signal light) for measurement.
Since the superimposed light of both enters the incident point of the light receiving element B, the electrical output of the light receiving element B naturally contains a large amount of noise. To facilitate separation of this signal and noise,
A wavelength of the signal light that is not included in the spectrum of the welding arc light is used, and a shielding plate is used to shield the arc light. Alternatively, it is a great idea to remove noise light using an optical filter, but if the light beam f(t) is modulated with a wave that is not included in the noise light, this modulation will be reflected in the output of the photoreceiver. Depending on whether the component is present or absent, it can be determined whether the line of sight of the light receiver has captured a bright spot or not.

測定回路の例を第11図に示した。図において、LIT
、8.Dは投光器りから変調された光ビームを発射させ
るための電気信号を死生する発振器、この出力は増巾器
AMP、/で増巾されて後投光器しに入り、光ビームf
(t)を発射させる。一方LIT、S、Dの出力は標準
電圧−発生回路8TAND、V Vc入り、一定の標準
電圧を発生し、この電圧は比測定器几A、TIOに入る
。光ビームf(t)は被測定物体の表面Jで反射されて
受光6几の受光素子Bに入り、受光素子の出力は増巾善
人MP、、2で増巾された後、変調波と同じ成分だけを
通すフィルタBPFt通り、さらに、変調周波数を検出
し、それを出力する回路F、S、Dを通った後、比測定
器几AT IOに入って、標準電圧発生回路5TND、
Vの出力との比が求められ、この比の値をDIFT8回
路に入れるとこの値と一定の水準値との差が求められ、
この比の値が水準値により大きい時は、差をとる回路D
IP:TSより7(ルス信号が出力され、この信号をO
R(t) +テ(t)、θ1)(t)のアナログ値をサ
ンプリングするための時間信号として用いる。前記の比
の値が丙より小さい時は、回路DIF、TSからは出力
を生じない。回路θB (t) +p(tl 、 6.
)は、それぞれ、受光6几のOR(tl、投光5 器りの計測ヘッドMの’/(t)、投光器りのθX、(
1)なる角変動を与えるための駆動出力を発生するとと
もに、θ1(t)、 9(tL /J2(t)の値を出
力して、それぞれのサンプリングとA/D変換を行な5
回路8AMP。
An example of the measurement circuit is shown in FIG. In the figure, LIT
, 8. D is an oscillator that generates an electric signal to emit a modulated light beam from the projector; this output is amplified by an amplifier AMP, / and enters the rear projector, producing a light beam f.
(t) is fired. On the other hand, the outputs of LIT, S, and D enter the standard voltage generator circuit 8TAND, VVc, which generates a constant standard voltage, and this voltage enters the ratio measuring device A, TIO. The light beam f(t) is reflected by the surface J of the object to be measured and enters the light receiving element B, which has 6 light receivers, and the output of the light receiving element is amplified by the amplification filter MP, , 2, and is the same as the modulated wave. After passing through the filter BPFt that only passes the component, and circuits F, S, and D that detect the modulation frequency and output it, it enters the ratio measuring device AT IO, and then the standard voltage generating circuit 5TND,
The ratio between the output of
When the value of this ratio is larger than the standard value, circuit D that takes the difference
IP: 7 (Russ signal is output from TS, and this signal is
The analog value of R(t) + Te(t), θ1)(t) is used as a time signal for sampling. When the value of said ratio is less than C, no output is produced from the circuit DIF, TS. Circuit θB (t) +p(tl, 6.
) are the OR (tl) of the 6 light receivers, '/(t) of the measuring head M of the 5 light emitter, θX of the light emitter, (
1) Generate a drive output to give the angular fluctuation as follows, output the values of θ1(t) and 9(tL/J2(t), and perform sampling and A/D conversion on each of them.
Circuit 8AMP.

人/Dに入力する。この場合、各θ這t1. f(tl
、’b (tlはDIF’、T8回路との間で時間の遅
れのないよう調整されている。
Enter person/D. In this case, each θ t1. f(tl
, 'b (tl is adjusted so that there is no time delay with the DIF' and T8 circuits.

0R(tl + ’7’ (t) 、θ’、”(t)が
図に示すようにマイクロコンピュータMIO几、ooM
pに入力されれば、あらかじめ準備されているプログラ
ムを用いて、これまでのべたLL、+ 、 ZRH、f
j、 n、等の算出が行なわれるとともに、計測ヘッド
の制御に必要な制御信号かつ(られる。
0R(tl + '7' (t), θ', "(t) is the microcomputer MIO 几, ooM
If input to p, the previously prepared programs LL, +, ZRH, f
Calculations of j, n, etc. are performed, and control signals necessary for controlling the measurement head are generated.

以上説明したことは、投光器りと受光6几を交換しても
成立つ。すなわち、計測ヘッドMに(i9砲なる角振動
を与え受光器I7)視線方向をθ?なる数ステップの角
をとるようにし、投光器の光ビームの方向を(fR<t
lよりはるかに速(・時間的周期関数0秒+φ(1)で
変化させ、視線と輝線の交わる点で受光器から電気出力
を得るようにしても、前述とほぼ同様の結果が得られる
What has been explained above also holds true even if the emitter and six light receivers are replaced. That is, the measurement head M is given angular vibration (i9 gun) and the line of sight direction of the light receiver I7 is set to θ? The direction of the light beam of the projector is set so that (fR<t
Almost the same results as described above can be obtained even if the time periodic function is changed much faster than l (temporal periodic function 0 seconds + φ (1) and the electrical output is obtained from the photoreceiver at the point where the line of sight and the emission line intersect.

以上述べたところでは、受光器(ルンズとその光軸上に
ある点状受光素子を用(・、物体上の輝点像を受光素子
上に結ばせるようにし、受光器の受光方向な4′+φ(
tlのように振って、視線と輝線との交点を求めるよう
にしtこが、受光器の視線を振るかわりに、線状に、稠
flllVC受光素子をブよら−4た受光アレーA几を
用いても全く同様の演1j定を5なうことができる。こ
の場合の受光器の構成を第1.2図に示した。この場合
は、OI、に関してV1前述の場合と全く同じであるが
、ORとして受光6几の中心軸方向とξ軸とのなす角を
とり、被6itl定物体表面上の輝点が@72図で示す
ように、中心軸ORA・から動いてOR人・ になった
場合のALAンにノ                
     一相等する視線方向の変化は前に述べたφi
)に相等するものとして、次式により求める。
In the above description, we used a light receiver (luns and a point-like light receiving element on its optical axis) to focus a bright spot image on the object onto the light receiving element, and +φ(
tl to find the intersection of the line of sight and the bright line.However, instead of waving the line of sight of the receiver, use a light receiving array A in which the full VC light receiving elements are swayed in a linear manner. However, we can make exactly the same expression 1j as 5. The configuration of the light receiver in this case is shown in Figure 1.2. In this case, regarding OI, V1 is exactly the same as the above case, but the angle between the central axis direction of the receiving light 6 and the ξ axis is taken as the OR, and the bright spot on the surface of the target 6 itl constant object is As shown in , there is a note in ALA when moving from the central axis ORA and becoming OR person.
The change in the line of sight direction that is equivalent to one phase is the previously mentioned φi
) is calculated using the following formula.

ここに f : レンズズの焦点距離 t+7−、:17の像を結ぶ位置に受光アレーへ几をお
いたときの受光アレーとレンズの中心ORとの距離実際
に受光アレーA几Y9の結像位置に、常に正確に調整す
ることはむづかしいので、A、のA庇上の像は多少ぼけ
て大きさをもち、複数個の受光素子から″電気出力が得
られる。そこでりとして、それら受光素子の中央に位置
するものをとって中央からの距離ヲやとして用いればよ
い。このようにして、時間tを与えて、同時刻における
θ□+φ(t)。
Here, f: Distance between the light receiving array and the center OR of the lens when the light receiving array is placed at the position where the image of the lens focal length t+7-, :17 is formed.The actual distance between the light receiving array and the center OR of the lens is the image forming position of the light receiving array A. Since it is difficult to always adjust accurately, the image on the A eaves of A is somewhat blurred and large, and electrical output is obtained from multiple light receiving elements. It is sufficient to take the value located at and use it as the distance from the center.In this way, given time t, θ□+φ(t) at the same time.

?(tL OL7を読みとっていけば、剪と全(同様の
測定が可能であり、ロボット用計測ヘッドとしては前と
等価になる。測定回路は若干異るが、簡単であるから省
略する。
? (If you read tL OL7, it is possible to perform the same measurements as the previous measurement head for robots.The measurement circuit is slightly different, but it will be omitted because it is simple.

また、計測−\ラドと浴接トーチとはあらかじめきめら
れた関係で結合されており、計測ヘッドからの制御信号
で容易に溶接作業位置におくことができるものとする。
Further, it is assumed that the measurement head and the bath welding torch are connected in a predetermined relationship, and can be easily placed in the welding work position by a control signal from the measurement head.

このことは、実行上も容易なことである。This is also easy to implement.

最後に第5図において、受光素子Bの位置をξζ面内で
レンズ1面に平行に振動させて受光器几の受光方向角な
φ(1)で変化させる方法について説明する。第13図
に示すように、2枚の板ばねN、N。
Finally, referring to FIG. 5, a method will be described in which the position of the light receiving element B is vibrated in the ξζ plane parallel to the first lens surface to change the light receiving direction angle φ(1) of the light receiver. As shown in FIG. 13, two leaf springs N, N.

の下端をベースDにクランプし、その上端に磁性材料製
支持台Uを取付け、tft磁石0の励磁コイルに交流を
流を流せば、支持台Uは図(ロ)に示すように、Uはそ
の上面がベースDの上面に平行に振動するので、支持台
Uの上に取付けた受光素子Bは所期の振動を行なう。さ
らにまた、第144図(イ)に示すような構造にすれば
受光素子Bの支持台Uと対接された!磁石0の励磁コイ
ルに交流を流して駆動すれば、Bは(ロ)図のように左
右に平行方向に振動する。図において、lはレンズ、F
は支持フレームである。ηη′は受光器全体の回転軸で
、θ8の調整に用いるものである。
If the lower end of the is clamped to the base D, and the support stand U made of magnetic material is attached to the upper end, and an alternating current is passed through the excitation coil of the TFT magnet 0, the support stand U will be as shown in figure (b). Since its upper surface vibrates in parallel to the upper surface of the base D, the light receiving element B mounted on the support U performs the desired vibration. Furthermore, if the structure is as shown in FIG. 144(a), the light-receiving element B can be brought into contact with the support base U! If an alternating current is applied to the excitation coil of magnet 0 to drive it, B will vibrate in parallel to the left and right as shown in figure (b). In the figure, l is a lens, F
is the supporting frame. ηη' is the rotation axis of the entire photoreceiver, and is used for adjusting θ8.

このようにして、支持台Uを平行移動振動させることに
よって、受光素子Bに振動を加えて、φ(0を比較的高
い周波数で振動させることができる。
In this way, by vibrating the support U in parallel motion, it is possible to apply vibration to the light receiving element B and vibrate φ(0) at a relatively high frequency.

なJ6、上の例では起振力として電磁力を用いたが、電
歪力等その他の駆動力を用いても同様な駆′l1)Jを
行えることはいうまでもないことである。
In the above example, electromagnetic force was used as the excitation force, but it goes without saying that the same driving force can be achieved using other driving forces such as electrostrictive force.

以上の説明から明らかなように、本発明のロボット用計
測ヘッドを用いることにより1次のような著しい効果が
ある。
As is clear from the above description, the use of the robot measurement head of the present invention provides the following remarkable effects.

(1ン被浴接物の溶接線を自動検出し、計測ヘッドおよ
び溶接トーチ等を溶接に適した位置を占めるようにし、
溶接作業を自動的に進めることが可能になる。また溶接
作業中も溶接線と計測ヘッドとの関係位置を簡単な方法
で検知し、位置修正を行ないながら作業を進めることが
できるので、多少的った溶接線にも容易に対応できる。
(1) Automatically detects the welding line of the object to be bathed and positions the measuring head, welding torch, etc. in an appropriate position for welding.
It becomes possible to proceed with welding work automatically. Furthermore, even during welding work, the relative position between the welding line and the measurement head can be detected using a simple method, and the work can be continued while making positional corrections, so it is possible to easily cope with welding lines that are somewhat unfocused.

(2)光切断に用いる光ビーム(信号光)に、溶接アー
ク光(雑音光)に含まれない波形の変調(例えば正弦波
変調、パルス変調、位相変調等)を加えることによって
、受光器の電気出力の信号と雑音の分離が容易になり測
定の精度がよくなる。
(2) By adding waveform modulation (for example, sine wave modulation, pulse modulation, phase modulation, etc.) that is not included in the welding arc light (noise light) to the light beam (signal light) used for optical cutting, the It becomes easier to separate electrical output signals and noise, improving measurement accuracy.

(3)装置が簡単であり、比較的低価格になる。(3) The device is simple and relatively inexpensive.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第λ図、第3図は従来のアーク溶接用ロボット
の計測法の説明図、第≠図は本発明のロボットの計測ヘ
ッドの構成概要を示す図、第5図はその受光器の構成図
、第6図は受光器の写像位置調整不備の場合における受
光器電気出力の形と時間との関係を示す図、第7図は計
測ヘッドが平面を測定する場合の光ビームと輝線の様子
を示す図、第r図は計測ヘッドで2平面の交叉を測定し
て面交叉の形を識別する場合の様子を示す図で(イ)は
計測ヘッドのη軸が平面の交線)■に平行の場合、(ロ
)はη軸が平面の交線Wに平行でない場合である。 第り図及び第io図は計1tlljヘッドff:溶接線
に正対1−て溶接作業に適した位置にだ(過程を示す図
で、第り図は計測ヘッドのξ軸を浴接線W。K平行にす
る過程、第io図は計測ヘッドを2平面の交叉角の2等
分面上で溶接線に正対した溶接最適位置にお(過程を示
す図、第11図は本発明の計測ヘッドの測定回路を示す
図、第12図は本発明の計測ヘッドの受光器の受光部に
受光素子のアレーな用いた場合の構成概要を示す図、第
13図及び第1弘図は受光器の視線方向に小さい角振動
を与える機構例を示す図である。 M:ロボットの計測ヘッド、ξ、ηl (: ロボット
計測ヘッドの軸、L二股光器、几:受光器、d:Lと凡
の距離、1゛:浴接トーチ、G1 + (J2  :被
溶接物、Jl+ J2 :Gl + G2の表面、W:
浴接線、乙:レンズ、B:受光素子、礼:輝点、LIT
、8.D=発振器、5TAND、V 二種準電圧発生回
路、几ATIO:比測定器、AMP/、、2:増巾器、
EPF :フィルタ、F、S、D:検出回路、DIF、
T8 :水準値1・〔どの差回路、M I O几、oo
Mp:マイクロコンピュタ、U:支持台、D:ベース、
0:電磁石、Nl。 N、:支持ばね、F:支持フレーム。 特許出願人 日本通信技術株式会社 オ/閃 j  tIr         Cロン端・3菌 j4ヒ13ψ(tbl!1乏はφ(t]牙乙酊 冑”74記 手  続  補  正  書 昭和依年7月 乙「 特許庁長官若杉和夫殿 l、事件の聚示  昭和57年特許願第2002rr号
2、発明の名称  ロボット用計測ヘッド3、補正をす
る者 よ 補正の内容  明細書第it頁乙行目の[ψ(R)
(t)Jとあシを「ψ(υ」と訂正する。 )
Figures 1, λ, and 3 are explanatory diagrams of the measurement method of conventional arc welding robots, Figure ≠ is a diagram showing the configuration outline of the measurement head of the robot of the present invention, and Figure 5 is its light receiver. Fig. 6 is a diagram showing the relationship between the shape of the electrical output of the photoreceiver and time in the case where the mapping position of the photoreceiver is incorrectly adjusted, and Fig. 7 is a diagram showing the light beam and bright line when the measurement head measures a flat surface. Figure R is a diagram showing the situation when the measuring head measures the intersection of two planes and identifies the shape of the plane intersection. (2) is the case where the η-axis is not parallel to the intersection line W of the plane. Figures 1 and 2 show a total of 1tllj head ff: directly facing the welding line and at a position suitable for welding work. The process of making K parallel, Figure io shows the measuring head at the optimal welding position directly facing the welding line on the bisecting plane of the intersecting angle of the two planes. A diagram showing the measurement circuit of the head, FIG. 12 is a diagram showing a configuration overview when an array of light receiving elements is used in the light receiving part of the light receiver of the measurement head of the present invention, and FIGS. 13 and 1 are the light receivers. It is a diagram showing an example of a mechanism that gives a small angular vibration in the direction of the line of sight. distance, 1゛: bath welding torch, G1 + (J2: workpiece, Jl+ J2: surface of Gl + G2, W:
Bath tangent, B: lens, B: light receiving element, R: bright spot, LIT
, 8. D=oscillator, 5TAND, V two-type quasi-voltage generation circuit, ATIO: ratio measuring device, AMP/, 2: amplifier,
EPF: Filter, F, S, D: Detection circuit, DIF,
T8: Level value 1 [Which difference circuit, MIO, oo
Mp: microcomputer, U: support stand, D: base,
0: Electromagnet, Nl. N: Support spring, F: Support frame. Patent Applicant Japan Telecommunications Technology Co., Ltd. O/Senj tIr Cron end, 3 bacteria j4hi13ψ (tbl! 1 deficiency is φ(t) Fang Otsu drunkenness” 74th Proceedings Amendment Book Showa Ei July 2013 Otsu "Mr. Kazuo Wakasugi, Commissioner of the Japan Patent Office, Statement of the Case Patent Application No. 2002rr 1982, Title of the Invention Measuring head for robot 3, Person making the amendment Contents of the amendment [ ψ(R)
(t) Correct J and Ashi as “ψ(υ)”.)

Claims (1)

【特許請求の範囲】 (υ ロボット用計測ヘッドの中心軸ξ上で一定距離d
をへだてたコ点01.0Rに、それぞれ投光器りおよび
受光器几を相対して設け、投光器はOLを原点とする直
交軸ξ、η、(のξCC平向内おいて、OL、を通り、
ξ軸と角θLをなす方向に鋭い光ビームを放射し、角θ
X、を、lないし数段階に変えられるようにし、受光器
はORにレンズの中心をもち投光器の光ビームが被測定
物表面につくる輝点の像を結ぶためのレンズと輝点像を
受けて電気出力を生ずる受光素子から構成され、受光器
の視線はξζ平面内に2いて、ORを通り、ξ軸とoR
十φ(1)なる角をなし、ORの方向で視線は輝点近傍
の方向をとり、時間的周期関数φ(1)によって、視線
方向が小さい振動を繰返して、その角振動中のある角度
で輝点を捕捉して受光素子が電気出力を生ずるようにし
、さらに、計測ヘッド全体を、ξ軸のまわりに%)なる
周期関数で与えられる角振動をし、上記の視線が輝点を
捕捉したとき受光素子から生ずる電気出力を時間信号と
して用いて、φ(,1)および9<t)を求め、これに
よりOR+φ(t)、 9<t)を知り、この値とd+
’j@を用いて、計測ヘッドと被測物体との関係位置あ
るいは、被測定物体の表面の形を求めるようにしたこと
を特徴とするロボット用計測ヘッド。 (2、特許請求の範囲第1項において、受光器の受光素
子の代りに、受光素子の位置に、ξ(面内で、視線とほ
ぼ直交して、線状に多数の受光素子を配列してなる受光
アレーを設け、輝点像位置の素子より生ずる電気信号に
より、その素子の位置を求めて視線方向を知り、前記電
気信号により@(1+を求めるようにしたことを特徴と
するロボット用計測ヘッド。 (3)特許請求の範囲第1項において、受光器の視線方
向をθR+φ(1)  なる時間関数にしたがって周期
的に変化させる場合、ORは受光器のレンズおよび受光
素子全体をORを通りη軸に平行な軸のまわりに回転さ
せて調整し、φ(tlは受光素子のみを小振巾の振動を
行なわせるようにして、受光器の視線方向を変化させる
ようにしたことを特徴とするロボット用計測ヘッド。 (4)特許請求の範囲第3項において、受光素子を2枚
の平行ばねで支持して、受光素子が平行運動を行なうよ
うにしたことを特徴とするロボット用計測ヘッド。 (5)特許請求の範囲第1項において、受光器の視線方
向角′4g:/ないし数段階の値θRL(1=l・コ、
3・・)をとるように、投光器の方向角なθL+ψ(【
)として、σLをあらかじめ、受光器の視線と被測定物
表面との交点すなわち視点の近傍の値にとっておき、ψ
(tlなる小振巾の角振動によって、輝点が視点上を通
るようにし、輝点と視点とが重なったとき生ずる受光素
子の電気出力を時間信号として用いて、%) 、ψ(1
)を求め、d+liL十ψ(t)、θしを用いて計測ヘ
ッドと被測定物表面の関係位置あるいは被測定物体の表
面形状を求めるようにしたことを特徴とするロボット用
計測ヘッド。 (6)特許請求の範囲第1項、第λ項、第3項。 第弘項及び第5項において、投光器の光ビームを正弦波
、繰返しパルス等により 変調することによ□って、受
光器出力側での信号検出に対する雑音妨害の軽減をはか
ったことを特徴とするロボット用計測ヘッド。
[Claims] (υ a certain distance d on the central axis ξ of the robot measuring head
At a point 01.0R separated from , an emitter and a receiver are installed facing each other, and the emitter passes through OL within the ξCC plane of orthogonal axes ξ, η, (with OL as the origin,
A sharp light beam is emitted in the direction that makes an angle θL with the ξ axis, and the angle θ
X, can be changed from 1 to several steps, and the receiver has a lens center at the OR, and a lens for focusing the image of the bright spot formed by the light beam of the projector on the surface of the object to be measured, and a lens for receiving the bright spot image. The line of sight of the light receiver is within the ξζ plane, passes through the OR, and connects the ξ axis and the oR.
It forms an angle of 10φ(1), and in the direction of OR, the line of sight takes a direction near the bright spot, and due to the temporal periodic function φ(1), the line of sight repeats small oscillations, and a certain angle during the angular oscillations. to capture the bright spot so that the light-receiving element generates an electrical output, and then vibrate the entire measuring head around the ξ axis at an angle given by a periodic function of %), so that the above line of sight captures the bright spot. Using the electrical output generated from the light-receiving element as a time signal, find φ(,1) and 9<t), find OR+φ(t), 9<t), and combine this value with d+
A measuring head for a robot, characterized in that the relative position between the measuring head and the object to be measured or the shape of the surface of the object to be measured is determined by using 'j@. (2. In claim 1, instead of the light-receiving element of the light receiver, a large number of light-receiving elements are arranged in a line at the position of the light-receiving element within ξ (plane, substantially orthogonal to the line of sight) For a robot, the robot is equipped with a light-receiving array consisting of a light-receiving array, the position of the element is determined by an electric signal generated from the element at the position of the bright spot image, the direction of the line of sight is determined, and @(1+ is determined by the electric signal). Measurement head. (3) In claim 1, when the line of sight direction of the light receiver is changed periodically according to a time function of θR + φ (1), OR means that the lens of the light receiver and the entire light receiving element are ORed. The φ(tl) is adjusted by rotating around an axis parallel to the η-axis, and the φ(tl) causes only the light-receiving element to vibrate with a small amplitude, thereby changing the viewing direction of the light-receiving device. (4) A measuring head for a robot according to claim 3, characterized in that the light receiving element is supported by two parallel springs so that the light receiving element moves in parallel. Head. (5) In claim 1, the line-of-sight direction angle of the light receiver '4g: / or a value of several steps θRL (1=l・ko,
3...), the direction angle of the projector is θL+ψ([
), σL is set in advance as a value near the intersection of the line of sight of the receiver and the surface of the object to be measured, that is, the viewpoint, and ψ
(By angular vibration with a small amplitude tl, the bright spot is caused to pass over the viewpoint, and the electric output of the light receiving element that is generated when the bright spot and the viewpoint overlap is used as a time signal, %), ψ (1
), and the relative position between the measuring head and the surface of the object to be measured or the surface shape of the object to be measured is obtained using d+liL +ψ(t), θ. (6) Claims 1, λ, and 3. In Sections 1 and 5, the optical beam of the projector is modulated by a sine wave, repetitive pulse, etc. to reduce noise interference with signal detection at the output side of the receiver. Measuring head for robots.
JP20028882A 1982-11-17 1982-11-17 Measuring head for robot Granted JPS5993292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20028882A JPS5993292A (en) 1982-11-17 1982-11-17 Measuring head for robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20028882A JPS5993292A (en) 1982-11-17 1982-11-17 Measuring head for robot

Publications (2)

Publication Number Publication Date
JPS5993292A true JPS5993292A (en) 1984-05-29
JPH0146279B2 JPH0146279B2 (en) 1989-10-06

Family

ID=16421816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20028882A Granted JPS5993292A (en) 1982-11-17 1982-11-17 Measuring head for robot

Country Status (1)

Country Link
JP (1) JPS5993292A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004294439A (en) * 2003-03-27 2004-10-21 General Electric Co <Ge> Noncontact measuring system and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004294439A (en) * 2003-03-27 2004-10-21 General Electric Co <Ge> Noncontact measuring system and method
JP4619677B2 (en) * 2003-03-27 2011-01-26 ゼネラル・エレクトリック・カンパニイ Non-contact measurement system and method

Also Published As

Publication number Publication date
JPH0146279B2 (en) 1989-10-06

Similar Documents

Publication Publication Date Title
CA1084741A (en) Automatic optical focussing system
US3689159A (en) Laser processing apparatus
EP0448362A2 (en) Mirror rotation angle detection mechanism
WO1997023787A1 (en) Optical coordinate measuring machine
US4198657A (en) Optical disk reader with means for correcting errors due to eccentricity and time axis variations
US4900910A (en) System for detecting the position of an objective lens
US5633851A (en) A scanning device producing a first and a second scanning spot which move in different directions and an apparatus containing that device which uses the first spot for reading and/or recording and the second spot to monitor such reading and/or recording
JPH02281431A (en) Objective lens driver
JPS5993292A (en) Measuring head for robot
US20040130983A1 (en) Displacement detection method, displacement detection device and recording apparatus for performing recording on master of information recording medium
US4933794A (en) Head for reading a magneto-optical data carrier
JP3517262B2 (en) Optical axis adjusting device and optical axis adjusting method
JPS635208A (en) Apparatus for measuring surface shape
JPH0384737A (en) Focus control method
JPH01287408A (en) Attitude sensor
KR100327218B1 (en) Servo controll unit of the disc recording/playback system
JPS62112235A (en) Position detecting device for objective lens
SU1296836A1 (en) Method of measuring displacements of light spot
JPS54106206A (en) Optical recorder
JPS62212508A (en) Method for measuring surface deflection
EP0459517A1 (en) Focussing-error detecting apparatus for optical disk drive
JPS5987304A (en) Measuring head for robot adopting optical cutting method
JPS624777B2 (en)
JPS586211B2 (en) Yomitori Sochi
JPS5965815A (en) Focus detector