JPH01287408A - Attitude sensor - Google Patents
Attitude sensorInfo
- Publication number
- JPH01287408A JPH01287408A JP63116975A JP11697588A JPH01287408A JP H01287408 A JPH01287408 A JP H01287408A JP 63116975 A JP63116975 A JP 63116975A JP 11697588 A JP11697588 A JP 11697588A JP H01287408 A JPH01287408 A JP H01287408A
- Authority
- JP
- Japan
- Prior art keywords
- light
- attitude
- gun
- spot
- incident
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000012545 processing Methods 0.000 claims description 23
- 238000001514 detection method Methods 0.000 claims description 8
- 230000003287 optical effect Effects 0.000 claims description 7
- 238000003384 imaging method Methods 0.000 claims description 5
- 238000005259 measurement Methods 0.000 abstract description 12
- 239000013307 optical fiber Substances 0.000 abstract description 6
- 230000015572 biosynthetic process Effects 0.000 abstract description 2
- 238000000034 method Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 5
- 239000000835 fiber Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Machine Tool Sensing Apparatuses (AREA)
- Welding Or Cutting Using Electron Beams (AREA)
- Laser Beam Processing (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
レーザビーム、イオンビーム等の高エネルギビームを用
い、材料の切断、溶接等の加工作業を行うには、第8図
に示すように、例えばレーザビームガン等の加工機ヘッ
ドの軸Zを被加工物表面Jに垂直に保つとともに、該加
工機ヘッドの先端と被加工物表面Jとの間隙dを一定に
保つことが必要である。本発明の姿勢センサは、該加工
機ヘッドに装備して加工機ヘッドの被加工物表面Jに対
する姿勢(傾斜および間隙)を自動検出し、正規の姿勢
に自動制御させるための制御情報を発生するものである
。Detailed Description of the Invention (Field of Industrial Application) In order to perform processing operations such as cutting and welding of materials using a high-energy beam such as a laser beam or an ion beam, for example, as shown in FIG. It is necessary to keep the axis Z of a processing machine head such as a laser beam gun perpendicular to the workpiece surface J, and to keep the gap d between the tip of the processing machine head and the workpiece surface J constant. The attitude sensor of the present invention is installed in the processing machine head to automatically detect the attitude (inclination and gap) of the processing machine head with respect to the workpiece surface J, and generates control information for automatically controlling the attitude to the normal attitude. It is something.
(従来の技術)
代表的なレーザ加工機の加工機へラド(以下レーザガン
と呼ぶ)Gの姿勢検出に用いられている従来の技術を第
8図を用いて説明する。従来のレーザガンでは、レーザ
ガンGの先端部に板状電極Cを装着し、板状電極Cと被
加工物表面Jとの間に静電容量を形成させ、板状電極C
と被加工物表面Jとの間の間隙dの変化による静電容量
の変化を、電圧または発振周波数等の電気的変化量とし
て検出する。この方法では、間隙dの平均値は求められ
るが、レーザガンGの中心軸であるZ軸と被加工物表面
Jとの傾きは不明である。(Prior Art) A conventional technique used for detecting the attitude of a processing machine Rad (hereinafter referred to as a laser gun) G of a typical laser processing machine will be described with reference to FIG. In a conventional laser gun, a plate-shaped electrode C is attached to the tip of the laser gun G, and a capacitance is formed between the plate-shaped electrode C and the workpiece surface J.
A change in capacitance due to a change in the gap d between the surface J and the surface J of the workpiece is detected as an amount of electrical change in voltage or oscillation frequency. In this method, the average value of the gap d is obtained, but the inclination between the Z axis, which is the central axis of the laser gun G, and the workpiece surface J is unknown.
(発明が解決しようとしている問題点)本発明が解決し
ようとする問題点は
(1) レーザガンGの姿勢を自動検出できる姿勢検
出器を実現すること。例えば、第8図において、レーザ
ガンGの中心軸Zを被加工物表面Jに対しどのような角
度で取付けるか(多くの場合垂直である)、ならびに間
隙dが加工上きめられている規定値に適合しているかど
うかを検出することである。(Problems to be Solved by the Invention) The problems to be solved by the present invention are (1) realizing an attitude detector that can automatically detect the attitude of the laser gun G; For example, in Fig. 8, the angle at which the central axis Z of the laser gun G is attached to the surface J of the workpiece (in most cases it is perpendicular), and the gap d set to a specified value determined for processing. The purpose is to detect whether or not it is compatible.
(2)上記姿勢検出器はレーザガンGの総重量および外
形寸法をあまり増加することなく装備できること。(2) The above attitude detector can be installed without significantly increasing the total weight and external dimensions of the laser gun G.
(問題を解決するための手段および実施例)本発明の姿
勢センサを装備したレーザガンGの実施例を第1図に示
す。本姿勢センサはレーザガンGの中心2のまわりに複
数個の測定ユニッ)Ml。(Means and Embodiments for Solving the Problems) An embodiment of a laser gun G equipped with the attitude sensor of the present invention is shown in FIG. This attitude sensor has a plurality of measurement units (Ml) around the center 2 of the laser gun G.
M2.・・・・、Ml、が配置されている。nは通常3
〜4で充分である。M2. ..., Ml, are arranged. n is usually 3
~4 is sufficient.
第1図に示すように、レーザガンGの筐体を上下に分割
してB、、B、とじ、その間に環状の受光レンズ記、を
設ける。受光レンズE、の光軸はZ軸と一致させである
。光源は筐体B、外周に母線に沿って設けられた光フア
イバコード■、により導かれ、ファイバ端から出る光を
微小集光レンズL、により細い平行ビームに集光する。As shown in FIG. 1, the housing of the laser gun G is divided into upper and lower parts B, , B, and a ring-shaped light-receiving lens is provided between them. The optical axis of the light receiving lens E is aligned with the Z axis. The light source is guided by a housing B and an optical fiber cord (2) provided along the generatrix on the outer periphery, and the light emitted from the end of the fiber is condensed into a narrow parallel beam by a minute condensing lens L.
このように集光された光ビームは、第2図に示すように
Z軸に対し90°−αの角度方向から被加工物表面J上
に入射し、輝点alを生せしめる。受光系はa、からの
乱反射光をとらえる。受光レンズL。The light beam thus focused is incident on the workpiece surface J from an angular direction of 90°-α with respect to the Z axis, as shown in FIG. 2, and produces a bright spot al. The light receiving system captures the diffusely reflected light from a. Light receiving lens L.
で集光された光は筐体B1内に設けた受光素子S、上に
入射し、光信号から電気信号に変換され、電気的出力を
得る。受光素子Stは、レーザガンGと被加工物表面J
との距離が規定値になっているときの輝点aioの像B
、。を含む結像面SまたはS′上に配置される。像B、
とレンズ中心面との距離す、はレンズの結像式
で求められる。S′は第2図に示すように、l1aiに
対し、常に上記公式が満足される結像面である。The focused light is incident on the light receiving element S provided in the housing B1, where the optical signal is converted into an electrical signal and an electrical output is obtained. The light receiving element St is connected to the laser gun G and the workpiece surface J.
Image B of bright spot aio when the distance from
,. is placed on the imaging plane S or S' containing the image plane S or S'. Statue B,
The distance between and the center plane of the lens is determined by the lens's image formation formula. As shown in FIG. 2, S' is an image plane where the above formula is always satisfied for l1ai.
受光レンズL、と輝点a1との距離1.lが規定値から
ずれると、atの位置が変わりa、からの反射光が受光
素子S、へ入射する位置が変化する。The distance between the light receiving lens L and the bright spot a1 is 1. When l deviates from the specified value, the position of at changes, and the position at which the reflected light from a is incident on the light receiving element S changes.
このat点の位置の変化は、通常の加工機ヘッドでは入
射角αが70“〜85°であり、iatの変化量もたか
だか数m111であるので、lll1a1程度に過ぎな
い。This change in the position of the at point is only about lll1a1 since the incident angle α is 70'' to 85° in a normal processing machine head and the amount of change in iat is at most several m111.
受光レンズL、は測定ユニッ)Mt (t・1,2.
・・)に共用されており、構造の単純化、価格の低下に
役立っている。The light receiving lens L is a measurement unit) Mt (t・1, 2.
), which is useful for simplifying the structure and lowering the price.
受光素子S1は直線状の細長い形をなし、光が入射する
と電気出力を生じ、その出力から光の入射位置を知るこ
とができるような素子である。例えば、市販されている
PSD (ホトセンシングデバイス)、シリコンホトダ
イオードアレー等あるいは複数条の光ファイバの一端を
直線上に密に並べて配置して受光部とし、受光した信号
光を光ファイバで中継してレーザガンの外部へ導出し、
他端に受光用ホトダイオード列を設けたものを用いても
よい。The light-receiving element S1 has a linear and elongated shape, and when light is incident thereon, it produces an electrical output, and from the output it is possible to know the incident position of the light. For example, a commercially available PSD (photosensing device), a silicon photodiode array, etc. or one end of multiple optical fibers may be arranged closely in a straight line as a light receiving section, and the received signal light may be relayed through the optical fiber. Lead out to the outside of the laser gun,
A light-receiving photodiode array may be provided at the other end.
次に1つの測定ユニッ)Mlにつき光学的測定原理を第
2図〜第4図を用いて説明する。Next, the optical measurement principle for one measurement unit (Ml) will be explained using FIGS. 2 to 4.
第1図の構造では、下の筐体B2は輝点aiの乱反射光
が受光レンズ記、の反対側の部分に入射するのを遮り、
また、受光素子Slとして一次元PSDのような細い線
状のものを用いるので、測定ユニットMlにあける輝点
aiからの乱反射光が受光素子Stに入射する様子は、
近似的には、受光素子Stと受光レンズLllの光軸Z
を含む面内の現象として取扱ってもよい。さらに、受光
素子SLの取付は方向は、測定すべき物体に面して取付
けられればよいが、精度を上げるには、第2図に示した
ように、Z軸に対する入射角が90” −α度のとき、
tanβ=M−tar+α
ただし、Mはレンズの倍率(M=f/(1,。−f))
を満足するよう受光素子SiをZ軸に対し90°−βを
傾けて組み込む。In the structure shown in FIG. 1, the lower casing B2 blocks the diffusely reflected light from the bright spot ai from entering the part on the opposite side of the light receiving lens.
Furthermore, since a thin linear element such as a one-dimensional PSD is used as the light-receiving element Sl, the way in which the diffusely reflected light from the bright spot ai formed in the measurement unit Ml enters the light-receiving element St is as follows.
Approximately, the optical axis Z of the light receiving element St and the light receiving lens Lll
It may be treated as an in-plane phenomenon that includes Furthermore, the light-receiving element SL may be mounted facing the object to be measured, but in order to increase accuracy, the angle of incidence with respect to the Z-axis should be 90'' -α as shown in Fig. 2. degree, tanβ=M-tar+α, where M is the magnification of the lens (M=f/(1,.-f))
The light-receiving element Si is installed at an angle of 90°-β with respect to the Z-axis so as to satisfy the following.
環状受光レンズfzJaの内縁の半径をr’l+外縁の
半径をr 21 Z軸と輝点atとの距離をrL+受
光レンしW、の中心面と輝点a、との距離をlalとす
ると、rL+ β、iの変化にともなう受光素子S、
上の輝点反射光の変化の様子は次のようである。If the radius of the inner edge of the annular light-receiving lens fzJa is r'l + the radius of the outer edge is r 21 The distance between the Z axis and the bright spot at is rL + the distance between the central plane of the light-receiving lens W and the bright spot a is lal, then The light receiving element S as rL+β,i changes,
The changes in the reflected light from the bright spot above are as follows.
第3図および第4図において、aleは受光レンズAi
からの規定位置にある輝点、allは規定位置より遠方
にある輝点、al2は規定位置よりも近くにある輝点を
示し、それらの像をB lop B I InB、□
で示す。141J(j=o、t、2)はそれぞれ受光
レンズ2つの中心面と輝点a IJ (j =0.1.
2)との距離である。In FIGS. 3 and 4, ale is the light receiving lens Ai
, all indicates a bright spot located at a specified position from the specified position, al2 indicates a bright spot located nearer to the specified position, and their images are B lop B I InB, □
Indicated by 141J (j = o, t, 2) are the central plane of the two light receiving lenses and the bright spot a IJ (j = 0.1.
2).
rLは加工点近傍にあることが望ましいが、ここでは実
用範囲と考えられるrl<rt<r2において、センサ
から物体までの距離が変化したときの結像点の動きを説
明する。It is desirable that rL be near the processing point, but here we will explain the movement of the imaging point when the distance from the sensor to the object changes in rl<rt<r2, which is considered to be a practical range.
第3図はrl<rL<r2の場合である。基準のワーク
面A上の輝点a、。は像面S上の81゜に結像している
。ワーク面がAからA′の位置に遠のくと、第3図(a
)に示すように輝点はattに移り、受光した像はB1
1に結像するから、S上では多少ボケで広がりをもつ像
B′、1が形成される。この場合、像位置はBtaから
B′、1にS面上で右へ移動する。8面は受光素子列が
並んだものと考えてよいから受光した素子位置を、その
出力信号(B′、の平均値)から知れば、ワーク面まで
の距離の変化量が求まる。次に、ワーク面がAからA′
の位置へ近づいた場合、第3図υに示すように、結像位
置はS面上を左へ動き、その移動量が距離変化量と対応
する。FIG. 3 shows the case where rl<rL<r2. Bright spot a on the reference work surface A. is focused on the image plane S at an angle of 81°. When the work surface moves away from A to A', it becomes as shown in Fig. 3 (a
), the bright spot moves to att, and the received image is B1.
Since the image is focused on 1, an image B', 1 is formed on S, which is somewhat blurred and spread out. In this case, the image position moves to the right on the S plane from Bta to B',1. The eight surfaces can be considered to be arrays of light-receiving elements, so if the position of the element that receives light is known from its output signal (average value of B'), the amount of change in distance to the work surface can be determined. Next, the work surface is changed from A to A'
When approaching the position, the imaging position moves to the left on the S plane as shown in FIG. 3 υ, and the amount of movement corresponds to the amount of change in distance.
第4図はal。がrL =r、に生ずる場合の例である
。ワーク面が基準面AからA′へ遠のいたとき(第4図
(a))、像B1゜はS面上を右へ動いてB’llへ移
り、反対にAからA′へ近づいたとき(第4図(b))
、像BtoはS面上を左へ動いてBi2となり、それぞ
れがワーク面との距離の変化を表すことは第3図と同じ
である。Figure 4 is al. This is an example where rL = r. When the work surface moves away from the reference plane A to A' (Fig. 4 (a)), the image B1° moves to the right on the S plane and moves to B'll, and conversely, when it approaches from A to A' (Figure 4(b))
, image Bto moves to the left on the S plane and becomes Bi2, and each represents a change in distance from the work surface, as in FIG. 3.
第3図、第4図において、結像面SをB′のように、第
2図で説明したa10* a 11+およびa、。In FIGS. 3 and 4, the imaging plane S is denoted by B', a10* a 11+ and a described in FIG. 2.
の結像点B、。* Bt++ Bi2を結ぶ線上に、受
光素子S、を設けるとすれば、B i In 811
はレンズ寸法r1およびr2の影響を受けないから、S
面上で見る場合の像のボケがなく、距離の検出精度を著
しく向上させることができる。Image point B, . *If the light receiving element S is provided on the line connecting Bt++ Bi2, then B i In 811
is not affected by lens dimensions r1 and r2, so S
There is no blurring of the image when viewed on a surface, and distance detection accuracy can be significantly improved.
測定ユニットの受光特性例として、光源に光出力1mw
程度のレーザを使用し、光ビームを斜めに物体に入射し
た場合の実験結果を示す。α=80°。As an example of the light receiving characteristics of the measurement unit, the light source has a light output of 1 mw.
The results of an experiment using a laser beam of about 100 mm are shown in which the light beam is incident on an object obliquely. α=80°.
It 、。= 80 mad、レンズ倍率M=1/6で
、受光素子にPSDを用い、金属面を測定した。受光特
性は第6図に示すように、ワーク面までの距離の変化量
Zに対し、直線性の良い出力電圧かえられた。It,. = 80 mad, lens magnification M = 1/6, a PSD was used as a light receiving element, and the metal surface was measured. As for the light receiving characteristics, as shown in FIG. 6, the output voltage was changed with good linearity with respect to the amount of change Z in the distance to the work surface.
上記測定ユニッ)MlをレーザガンGの中心軸Zのまわ
りに一定角づつずらして、例えば90゜づつずらして4
個(M、、M2.M、、M、)配置すれば、4個の輝点
ai (i・1〜4)と受光レンズL、との距離が、
測定値1.。からどのようにずれているかを知ることが
できるので、レーザガンGの姿勢を矯正できる。この場
合、レーザガンGの姿勢は、4個のユニットの距離デー
タを一致させるよう姿勢制御を行えば、レーザガンGの
Z軸が被加工物表面Jに垂直を保ち、また、4個のユニ
ットの距離i。の基準値を適宜設定し、測定値との演算
により、レーザガンGのZ軸を被加工物表面Jに対して
一定の傾斜を保たせることができる。The measuring unit) Ml is shifted by a fixed angle around the central axis Z of the laser gun G, for example, by 90°,
If (M,,M2.M,,M,) are arranged, the distance between the four bright spots ai (i・1 to 4) and the light receiving lens L is
Measured value 1. . Since it is possible to know how the position is deviated from the position, the posture of the laser gun G can be corrected. In this case, if the attitude of the laser gun G is controlled so that the distance data of the four units match, the Z axis of the laser gun G will be kept perpendicular to the workpiece surface J, and the distance of the four units will be i. By appropriately setting a reference value and calculating it with the measured value, it is possible to maintain the Z axis of the laser gun G at a constant inclination with respect to the surface J of the workpiece.
次に雑音の検出について説明する。レーザ加工機では、
002等加工レーザビームの加工点における反射、散乱
、工場内の各種光源等の雑音光による測定妨害、超音波
加工機や洗浄機などからの誘導、輻射等の妨害が無数に
存在する。しかし、これらの周波数域はたかだか10〜
30 KHzであるので、測定に使用する信号光ビーム
を30に上辺上の高周波で変調しておけば、受光素子の
電気出力側で帯域フィルタまたは高域フィルタを用いて
、雑音成分を除去し、その測定妨害を除くことができる
。Next, noise detection will be explained. In laser processing machines,
There are countless interferences such as reflection and scattering of the processing laser beam such as 002 at the processing point, measurement interference due to noise light from various light sources in the factory, guidance from ultrasonic processing machines, cleaning machines, etc., and radiation. However, these frequency ranges are at most 10~
Since the frequency is 30 KHz, if the signal light beam used for measurement is modulated with a high frequency on the upper side of 30 KHz, the noise component can be removed using a bandpass filter or high-pass filter on the electrical output side of the photodetector. This measurement interference can be removed.
本発明による姿勢検出システムを第7図により説明する
。The posture detection system according to the present invention will be explained with reference to FIG.
OPSは高周波変調された信号光発生器で、光ファイバ
It (i=1.2.・・)を導路としてレーザガン
Gへ送る。レーザガンGのセンサ組込みは前に説明した
通りであるが、光ビームの発光端部は中心から径の半径
方向に余弦的な屈折率分布をもつ円筒レンズ等を使用す
れば、光フアイバコード径と合わせて1〜2mmの径で
構成できるから、レーデガンG外周上母線方向に溝を掘
り、ファイバとも一体に埋込むことができる。その構造
は第8図に示した通りである。OPS is a high-frequency modulated signal light generator and sends it to the laser gun G using an optical fiber It (i=1.2...) as a guide path. The sensor installation of the laser gun G is as explained above, but if a cylindrical lens or the like having a cosine-like refractive index distribution in the radial direction from the center is used for the light emitting end of the light beam, the diameter of the optical fiber cord can be adjusted. Since it can be constructed with a total diameter of 1 to 2 mm, a groove can be dug in the direction of the generatrix on the outer periphery of Radegan G, and it can be embedded together with the fiber. Its structure is as shown in FIG.
DET+ (+4.2.・・)は受光系の信号検出回
路である。DET+ (+4.2...) is a signal detection circuit of the light receiving system.
受光素子S1で光から電気出力V、に変換された信号は
増幅後、フィルタで雑音成分を除去し、デジタル信号と
して出力される。出力データ、すなわち輝点aiが受光
素子S1上で正規の位置に対して遠近何れの側にあるか
を示す符号と距離の変化量等の情報は、R3−232C
等のインタフェースを介して、センサ・コンピュータS
PCへ送られる。A signal converted from light to an electrical output V by the light receiving element S1 is amplified, noise components are removed by a filter, and the signal is output as a digital signal. The output data, that is, information such as the sign indicating whether the bright spot ai is on the far side or the near side with respect to the normal position on the light receiving element S1 and the amount of change in distance, is provided by R3-232C.
The sensor computer S
Sent to PC.
センサ・コンピュータSPCでは、4つの測定データの
計算処理をリアルタイムで行い、姿勢制御データを加工
機のコントローラMCPへ渡す。この情報により、加工
機のコントローラMCPは前記姿勢制御のための駆動動
力を発生し、レーザガンGの姿勢を正しく矯正する。The sensor computer SPC performs calculation processing of the four measurement data in real time, and passes the posture control data to the processing machine controller MCP. Based on this information, the controller MCP of the processing machine generates driving power for the attitude control, and corrects the attitude of the laser gun G correctly.
(発明の効果)
以上説明したように本発明の姿勢センサを内蔵した加工
機ヘッドは小形・軽量・低価格であり、加工機ヘッドの
従来の作業空間を変更することなく、複雑に入りこんだ
凹所等の各種作業にも適用できる。また、本姿勢センサ
を使用することによって作業中の姿勢自動制御が可能に
なったことは、今後自動ならい等作業の自動化の推進に
大きく貢献する。特に、レーザ加工機におけるガンの姿
勢制御に有効である。(Effects of the Invention) As explained above, the processing machine head incorporating the posture sensor of the present invention is small, lightweight, and low-priced, and can be used without changing the conventional working space of the processing machine head. It can also be applied to various types of work such as places. In addition, the use of this posture sensor makes it possible to automatically control posture during work, which will greatly contribute to the promotion of work automation such as automatic tracing in the future. It is particularly effective for controlling the attitude of a gun in a laser processing machine.
第1図は本発明の姿勢センサを装備したレーザ加工機ヘ
ッドを示す図。
第2図〜第4図は本発明の姿勢センサの光学系を示す図
。
第5図は本発明の検出特定を測定する測定回路。
第6図は本発明の受光系の検出特性を示す図。
第7図は本発明の姿勢検出システムを示す図。
第8図は本発明のレーザ加工機ヘッドの構造を示す図。FIG. 1 is a diagram showing a laser processing machine head equipped with the attitude sensor of the present invention. FIGS. 2 to 4 are diagrams showing the optical system of the attitude sensor of the present invention. FIG. 5 is a measurement circuit for measuring the detection characteristics of the present invention. FIG. 6 is a diagram showing the detection characteristics of the light receiving system of the present invention. FIG. 7 is a diagram showing the attitude detection system of the present invention. FIG. 8 is a diagram showing the structure of the laser processing machine head of the present invention.
Claims (1)
まわりに配置され、かつ、該光軸に収束する方向に放射
される細い複数條の信号光ビームを発生する手段を有し
、該信号光ビームが被加工物表面につくるスポットと受
光レンズとが所定の距離になった時、該受光レンズによ
り結ばれるスポットの像の結像点に、受光位置を検知す
る手段をもった細長い線状受光素子列をそなえ、姿勢検
出の場合、受光素子に入射するスポットからの反射光の
入射区間が、前記の所定距離の場合のスポット結像点の
何れの側にあるかを判別する電気回路をそなえ、該電気
回路の複数個の出力から被加工物表面に対する加工機ヘ
ッドの姿勢を検出することを特徴とする姿勢センサ。(1) It has one annular light-receiving lens and a means for generating a thin multi-section signal light beam arranged around the optical axis of the light-receiving lens and emitted in a direction that converges on the optical axis. , when the spot formed by the signal light beam on the surface of the workpiece and the light-receiving lens reach a predetermined distance, a means for detecting the light-receiving position is provided at the focal point of the image of the spot focused by the light-receiving lens. Equipped with an elongated linear light receiving element array, in the case of attitude detection, it is determined on which side of the spot imaging point the incident section of the reflected light from the spot that is incident on the light receiving element is located at the above-mentioned predetermined distance. A posture sensor comprising an electric circuit and detecting the posture of a processing machine head with respect to the surface of a workpiece from a plurality of outputs of the electric circuit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63116975A JPH0625659B2 (en) | 1988-05-16 | 1988-05-16 | Attitude sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63116975A JPH0625659B2 (en) | 1988-05-16 | 1988-05-16 | Attitude sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01287408A true JPH01287408A (en) | 1989-11-20 |
JPH0625659B2 JPH0625659B2 (en) | 1994-04-06 |
Family
ID=14700391
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63116975A Expired - Lifetime JPH0625659B2 (en) | 1988-05-16 | 1988-05-16 | Attitude sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0625659B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010019836A (en) * | 2008-06-13 | 2010-01-28 | Katsura Opto Systems:Kk | Displacement tilt sensor |
-
1988
- 1988-05-16 JP JP63116975A patent/JPH0625659B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010019836A (en) * | 2008-06-13 | 2010-01-28 | Katsura Opto Systems:Kk | Displacement tilt sensor |
Also Published As
Publication number | Publication date |
---|---|
JPH0625659B2 (en) | 1994-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5410410A (en) | Non-contact type measuring device for measuring three-dimensional shape using optical probe | |
US5289265A (en) | Method and apparatus for measuring a coating state | |
US4639140A (en) | Optical surface proximity measuring device and its application to the plotting of the profile of a surface | |
JP2004521355A (en) | Optical distance measuring device | |
EP0512019A1 (en) | Imaging device. | |
US4850712A (en) | Method and system for determining surface profile information | |
JP4303120B2 (en) | Mapping sensor for semiconductor wafer carrier | |
JP3947159B2 (en) | Sensor device for quick optical distance measurement according to the confocal optical imaging principle | |
US4844618A (en) | Alignment apparatus with single mode fiber optic stabilizer | |
JPH01287408A (en) | Attitude sensor | |
JPS597926B2 (en) | position detection device | |
JP3162364B2 (en) | Optical sensor device | |
CN1031959C (en) | Method and apparatus for measuring coating state | |
JPS60117102A (en) | Welding-seam profile-detecting apparatus | |
JPH022902A (en) | Posture control sensor | |
US20090101801A1 (en) | Optical scanner device | |
JPH0943456A (en) | Device and method for adjusting optical axis of optical module | |
JP3200927B2 (en) | Method and apparatus for measuring coating state | |
JPS63225108A (en) | Distance and inclination measuring instrument | |
JPS63108981A (en) | Distance measuring instrument | |
JPH0226164B2 (en) | ||
JP2004037461A (en) | Device for optically measuring distance | |
JP2019032186A (en) | Distance measuring apparatus | |
JPS5856094B2 (en) | Microvibration measuring device | |
JP2003097924A (en) | Shape measuring system and method using the same |