JP2010019836A - Displacement tilt sensor - Google Patents

Displacement tilt sensor Download PDF

Info

Publication number
JP2010019836A
JP2010019836A JP2009141529A JP2009141529A JP2010019836A JP 2010019836 A JP2010019836 A JP 2010019836A JP 2009141529 A JP2009141529 A JP 2009141529A JP 2009141529 A JP2009141529 A JP 2009141529A JP 2010019836 A JP2010019836 A JP 2010019836A
Authority
JP
Japan
Prior art keywords
displacement
light
angle
light receiving
tilt sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009141529A
Other languages
Japanese (ja)
Other versions
JP5330114B2 (en
Inventor
Shinichi Katsura
伸一 桂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KATSURA OPTO SYSTEMS KK
Original Assignee
KATSURA OPTO SYSTEMS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KATSURA OPTO SYSTEMS KK filed Critical KATSURA OPTO SYSTEMS KK
Priority to JP2009141529A priority Critical patent/JP5330114B2/en
Publication of JP2010019836A publication Critical patent/JP2010019836A/en
Application granted granted Critical
Publication of JP5330114B2 publication Critical patent/JP5330114B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a displacement tilt sensor which can measure a position displacement and an angle displacement of an object to be detected at the same time even when a light source is used both as a light source of an optical system for measuring a displacement and a light source of an optical system for measuring an angle, namely even when one light source is used as the light source of the displacement tilt sensor. <P>SOLUTION: The displacement tilt sensor includes an optical system including a projecting part for outputting measuring lights to an area to be detected and a light receiving part for receiving the measuring lights reflected from the area to be detected. The projecting part includes a projecting element such as a light emitting diode, a projecting lens and means for thinning the measuring lights outputted from the projecting element. The displacement tilt sensor further includes an angle detecting part and a displacement detecting part. The angle detecting part includes an angle measuring light receiving lens and an angle measuring light receiving element. The displacement detecting part includes a displacement measuring light receiving lens and the displacement measuring light receiving lens. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は変位チルトセンサに関し、特に鏡面物体や光沢材質物体、金属物体等のほぼ鏡面反射する表面を有する検出物体の変位及び角度を測定するための変位チルトセンサに関する。   The present invention relates to a displacement tilt sensor, and more particularly to a displacement tilt sensor for measuring the displacement and angle of a detection object having a substantially mirror-reflecting surface such as a specular object, a glossy material object, or a metal object.

従来より、変位測定用投光部及び変位測定用受光部から成り、検出物体の変位を検出する変位センサが知られている。   2. Description of the Related Art Conventionally, a displacement sensor that includes a displacement measurement light projecting unit and a displacement measurement light receiving unit and detects the displacement of a detection object is known.

しかしながら、検出物体は、変位のみがずれるだけでなく、検出物体の傾きもずれる場合がある。その際、受光素子の受光スポットは、検出物体が変位のみだけではなく、角度が傾いている場合にも変化する。すなわち、受光素子の受光スポットは、検出物体の変位量だけではなく、検出物体の傾き量によっても変化し、また、受光素子上の受光スポットの移動量が同じであっても、検出物体に傾きがない場合と、傾きがある場合とで、また傾き量の大きさによっても、検出物体の実際の変位量は異なっていた。このため、傾いている可能性のある検出物体の変位を検出する場合には、検出物体の傾きによって変位量に測定誤差が発生し、変位センサの測定精度を低下させる原因となっていた。   However, the detected object may not only be displaced, but also the detected object may be tilted. At that time, the light receiving spot of the light receiving element changes not only when the detected object is displaced but also when the angle is inclined. That is, the light receiving spot of the light receiving element changes not only by the amount of displacement of the detected object but also by the amount of inclination of the detected object, and even if the amount of movement of the light receiving spot on the light receiving element is the same, the light receiving spot is tilted to the detected object. The actual amount of displacement of the detected object differs depending on whether there is no tilt, when there is a tilt, and depending on the amount of tilt. For this reason, when detecting the displacement of a detection object that may be tilted, a measurement error occurs in the displacement amount due to the inclination of the detection object, which causes a decrease in measurement accuracy of the displacement sensor.

そこで、例えば特許文献1に示され、図6に示すように、検出領域に向けて変位測定用光81を出射する変位測定用光源部82、および、検出領域で反射された変位測定用光81を受光する変位測定用受光部83からなる変位測定用光学系と、検出領域に向けて傾き測定用光91を出射する傾き測定用光源部92、および、検出領域で反射された傾き測定用光91を受光する傾き測定用受光部83からなる、物体の傾きを検出するための傾き測定用光学系とを備え、検出物体の変位と傾きを同時に測定し、変位量及び傾き量を別個独立に検出する変位チルトセンサが提案されている。   Therefore, for example, as shown in Patent Document 1 and as shown in FIG. 6, as shown in FIG. 6, a displacement measurement light source unit 82 that emits displacement measurement light 81 toward the detection region, and a displacement measurement light 81 reflected by the detection region. A displacement measurement optical system including a displacement measurement light receiving unit 83, an inclination measurement light source unit 92 that emits inclination measurement light 91 toward the detection region, and an inclination measurement light reflected by the detection region. And a tilt measuring optical system for detecting the tilt of the object, which measures the displacement and the tilt of the detected object at the same time, and independently determines the displacement and the tilt amount. A displacement tilt sensor for detection has been proposed.

しかしながら、このような変位チルトセンサは、変位測定用光学系及び傾き(角度)測定用光学系の2つの光学系を有しているため、変位チルトセンサを構成する部品数も多くなり、特に、変位測定用光源部及び傾き測定用光源部の2つの光源を有していたので、装置が大型化するという問題があった。   However, since such a displacement tilt sensor has two optical systems, a displacement measurement optical system and a tilt (angle) measurement optical system, the number of components constituting the displacement tilt sensor increases. Since the light source unit for displacement measurement and the light source unit for inclination measurement were provided, there was a problem that the apparatus was increased in size.

特開平8−240408号公報JP-A-8-240408

本発明は、上述したような実情に鑑みてなされたもので、その目的とするところは、変位測定用光学系及び角度測定用光学系の光源を兼用し、すなわち変位チルトセンサの光源を1つとしても、検出物体の位置変位、角度変位を同時に測定することができる変位チルトセンサを提供することにある。   The present invention has been made in view of the above-described circumstances, and an object of the present invention is to use both the light source of the displacement measuring optical system and the angle measuring optical system, that is, one light source of the displacement tilt sensor. Even so, an object of the present invention is to provide a displacement tilt sensor capable of simultaneously measuring the positional displacement and the angular displacement of a detection object.

本発明の上記目的は、検出領域に向けて測定用光を出射する投光部、および、検出領域で反射された測定用光を受光する受光部からなる光学系を備え、前記投光部は、発光ダイオード等の投光素子と、投光レンズと、前記投光素子から出射された測定用光を細くする手段とを具備し、前記受光部は、角度検出部と変位検出部とを具備し、前記角度検出部は、角度測定用受光レンズと、角度測定用受光素子とを具備し、前記変位検出部は、変位測定用受光レンズと、変位測定用受光レンズとを具備することを特徴とする変位チルトセンサを提供することによって達成される。   The above object of the present invention includes an optical system including a light projecting unit that emits measurement light toward the detection region and a light receiving unit that receives the measurement light reflected from the detection region, A light projecting element such as a light emitting diode, a light projecting lens, and means for narrowing the measurement light emitted from the light projecting element, and the light receiving unit includes an angle detection unit and a displacement detection unit. The angle detection unit includes an angle measurement light-receiving lens and an angle measurement light-receiving element, and the displacement detection unit includes a displacement measurement light-receiving lens and a displacement measurement light-receiving lens. This is achieved by providing a displacement tilt sensor.

また、本発明の上記目的は、前記測定用光を細くする手段は、ピンホール、ビームエキスパンダー、あるいは小径レンズのいずれかであることを特徴とする変位チルトセンサを提供することによって、効果的に達成される。   Further, the object of the present invention is to effectively provide a displacement tilt sensor characterized in that the means for narrowing the measuring light is a pinhole, a beam expander, or a small diameter lens. Achieved.

さらにまた、本発明の上記目的は、前記角度測定用受光レンズ及び前記変位測定用受光レンズを、1枚の受光レンズで兼用したことを特徴とする変位チルトセンサを提供することにより、より効果的に達成される。   Furthermore, the above object of the present invention is more effective by providing a displacement tilt sensor characterized in that the light receiving lens for angle measurement and the light receiving lens for displacement measurement are combined with a single light receiving lens. To be achieved.

本発明に係る変位チルトセンサによれば、検出領域に向けて測定用光を出射する投光部、および、検出領域で反射された測定用光を受光する受光部からなる光学系を備え、投光部は発光ダイオード等の投光素子と、投光レンズと、投光素子から出射された測定用光を細くする手段とを具備させ、また、受光部は角度検出部と変位検出部とを具備し、角度検出部は、角度測定用受光レンズと、角度測定用受光素子とを具備し、変位検出部は、変位測定用受光レンズと、変位測定用受光レンズとを具備させた。このように、投光部に測定用光を細くする手段を設けたので、測定用光の径を細くすることができる。従って、変位測定用投光部及び角度測定用投光部とを兼用し、一つの光源及び一つの投光レンズを設ければ良いので、変位チルトセンサをより小型化することができ、またコストを抑えることもできる。さらに、測定用光の径を細くし、点光源化することができるので、測定用光11のどの場所でも測定することができるようになり、小さな検出物体であっても、変位量及び傾き量を精度良く検出することができる。   The displacement tilt sensor according to the present invention includes an optical system including a light projecting unit that emits measurement light toward the detection region and a light receiving unit that receives the measurement light reflected from the detection region. The light unit includes a light projecting element such as a light emitting diode, a light projecting lens, and means for thinning the measurement light emitted from the light projecting element, and the light receiving unit includes an angle detection unit and a displacement detection unit. The angle detection unit includes an angle measurement light-receiving lens and an angle measurement light-receiving element, and the displacement detection unit includes a displacement measurement light-receiving lens and a displacement measurement light-receiving lens. As described above, since the means for narrowing the measurement light is provided in the light projecting unit, the diameter of the measurement light can be narrowed. Therefore, the displacement tilt sensor can be further miniaturized and the cost can be reduced because it is sufficient to use both the light source for the displacement measurement and the light projection unit for the angle measurement and to provide one light source and one light projection lens. Can also be suppressed. Further, since the diameter of the measurement light can be reduced to be a point light source, the measurement light 11 can be measured at any location, and even a small detection object can be displaced and tilted. Can be detected with high accuracy.

また、変位測定用光学系と角度測定用光学系とを変位チルトセンサとして一体化することができるので、変位チルトセンサを小型軽量化することができる。   Further, since the displacement measuring optical system and the angle measuring optical system can be integrated as a displacement tilt sensor, the displacement tilt sensor can be reduced in size and weight.

また、角度測定用受光レンズ及び変位測定用受光レンズを、1枚の受光レンズで兼用することにより、変位チルトセンサを構成する部品数を減らすことができるので、変位チルトセンサを軽量化することができると共に、変位チルトセンサの製造コストを低減することができる。加えて、変位測定用受光素子と角度測定用受光素子とを接近させて構成することができるので、変位チルトセンサを軽量化することができる。   Further, since the number of components constituting the displacement tilt sensor can be reduced by combining the angle measuring light receiving lens and the displacement measuring light receiving lens with a single light receiving lens, the weight of the displacement tilt sensor can be reduced. In addition, the manufacturing cost of the displacement tilt sensor can be reduced. In addition, since the displacement measuring light receiving element and the angle measuring light receiving element can be configured to be close to each other, the weight of the displacement tilt sensor can be reduced.

本発明の一実施例に係る変位チルトセンサの光学系の構成を示す図である。It is a figure which shows the structure of the optical system of the displacement tilt sensor based on one Example of this invention. 図1に示す変位チルトセンサの角度検出原理を説明するための構成図である。It is a block diagram for demonstrating the angle detection principle of the displacement tilt sensor shown in FIG. 図1に示す変位チルトセンサの変位検出原理を説明するための構成図である。It is a block diagram for demonstrating the displacement detection principle of the displacement tilt sensor shown in FIG. 本発明の他の実施例に係る変位チルトセンサの光学系の構成を示す図である。It is a figure which shows the structure of the optical system of the displacement tilt sensor which concerns on the other Example of this invention. 本発明の他の実施例に係る変位チルトセンサの光学系の概略を示す図である。It is a figure which shows the outline of the optical system of the displacement tilt sensor which concerns on the other Example of this invention. 従来の変位チルトセンサの光学系の構成を示す図である。It is a figure which shows the structure of the optical system of the conventional displacement tilt sensor.

図1は本発明の一実施例に係る変位チルトセンサA(以下、「本変位チルトセンサA」と言う。)の光学系の構成を示す図であって、検出物体1の傾き量β及び変位量γを測定するものである。すなわち、本発明に係る変位チルトセンサAは、検出領域に向けて測定用光を出射する投光部2、および、検出領域で反射された測定用光を受光する受光部3からなる光学系を備えている。   FIG. 1 is a diagram showing a configuration of an optical system of a displacement tilt sensor A (hereinafter, referred to as “main displacement tilt sensor A”) according to an embodiment of the present invention, in which an inclination amount β and a displacement of a detection object 1 are illustrated. The amount γ is measured. That is, the displacement tilt sensor A according to the present invention includes an optical system including a light projecting unit 2 that emits measurement light toward the detection region and a light receiving unit 3 that receives the measurement light reflected from the detection region. I have.

また、投光部2は、発光ダイオード(LED)等の投光素子21と、投光レンズ22と、投光素子21から出射された測定用光11を細くする手段23とを具備し、投光素子21及び投光レンズ22の互いの光軸を一致させて構成されている。そして、投光素子21から出射された測定用光11は、投光レンズ22でコリメートされた後、細くする手段23で細くされ、平行光である測定用光として検出物体1に照射されるようになっている。   The light projecting unit 2 includes a light projecting element 21 such as a light emitting diode (LED), a light projecting lens 22, and means 23 for narrowing the measurement light 11 emitted from the light projecting element 21. The optical element 21 and the light projection lens 22 are configured so that their optical axes coincide with each other. Then, the measurement light 11 emitted from the light projecting element 21 is collimated by the light projection lens 22, then is thinned by the thinning means 23, and is irradiated to the detection object 1 as measurement light that is parallel light. It has become.

なお、投光素子21として、上記発光ダイオードの他、レーザ光を用いることもできる。また、このようなレーザ光の投光素子21としては、ヘリウム−ネオン(He−Ne)レーザ、半導体レーザ素子(LD)等のレーザ発振器や、レーザ発振器から出力されたレーザ光を導く光ファイバ等の光導管などを用いることができる。   As the light projecting element 21, laser light can be used in addition to the light emitting diode. Examples of the laser light projecting element 21 include a laser oscillator such as a helium-neon (He-Ne) laser and a semiconductor laser element (LD), an optical fiber for guiding laser light output from the laser oscillator, and the like. For example, an optical conduit can be used.

このように投光部2に測定用光11を細くする手段23を設けることにより、測定用光11を点光源化することができ、コリメート性を向上させて、後述する角度測定用受光スポット及び変位測定用受光スポットのボケを小さくすることができるので、本変位チルトセンサAは、光源である投光素子21を1つとすることができ、本変位チルトセンサAを小型軽量化することができる。また、このように細くする手段23を設けることにより、測定用光11は点光源化された平行光となるので、測定用光11は遠くまで届く。従って、拡散光よりも、測定可能な場所を多くすることができる。なお、このように測定用光11を細くする手段23としては、ピンホール、ビームエキスパンダー、あるいは小径レンズを用いることができる。   Thus, by providing the light projecting unit 2 with the means 23 for narrowing the measurement light 11, the measurement light 11 can be turned into a point light source, improving collimation, Since the blur of the light receiving spot for displacement measurement can be reduced, the displacement tilt sensor A can have one light projecting element 21 as a light source, and the displacement tilt sensor A can be reduced in size and weight. . Further, by providing the means 23 for thinning in this way, the measurement light 11 becomes a parallel light that is converted into a point light source, so that the measurement light 11 reaches far. Therefore, more measurable locations can be obtained than diffused light. As the means 23 for narrowing the measurement light 11 in this way, a pinhole, a beam expander, or a small diameter lens can be used.

また、受光部3は、測定用光11を受光し、検出物体1の傾き角度である傾き量βを検出する角度検出部4と、測定用光11を受光し、検出物体1の変位量γを検出する変位検出部5とを備え、また検出物体1の表面で反射した測定用光11を、角度測定用光と変位測定用光とに分離するための半透明鏡6を具備して構成されている。また、角度測定用光を受光する角度検出部4は、位置検出素子(PSD)や電荷結合素子(CCD)等の角度測定用受光素子41と、角度測定用受光レンズ42とを具備して構成され、また変位検出部5は、位置検出素子(PSD)や電荷結合素子(CCD)等の変位測定用受光素子51と、変位測定用受光レンズ52とを具備して構成されている。   The light receiving unit 3 receives the measurement light 11 and detects an inclination amount β that is the inclination angle of the detection object 1. The light reception unit 3 receives the measurement light 11 and detects the displacement γ of the detection object 1. And a translucent mirror 6 for separating the measurement light 11 reflected from the surface of the detection object 1 into angle measurement light and displacement measurement light. Has been. The angle detection unit 4 that receives angle measurement light includes an angle measurement light receiving element 41 such as a position detection element (PSD) or a charge coupled device (CCD), and an angle measurement light receiving lens 42. The displacement detector 5 includes a displacement measurement light receiving element 51 such as a position detection element (PSD) or a charge coupled device (CCD), and a displacement measurement light receiving lens 52.

投光部2と受光部3とは、標準線SLを挟んでその両側に対称に配置されており、投光部2の光軸24と受光部3の光軸31とはいずれも標準線SLに対して等しい角度αをなしている。ここで、標準線SLとは、検出物体1の変位量γを測定するための基準となる位置を示すものであって、検出物体1の変位量γとは、この標準線SL上における変位距離であると定義される。また、投光部2の光軸24と受光部3の光軸31とは標準線SL上の1点で交差しており、この光軸24,31が交差している標準軸SL上の点を標準点SPと呼び、標準点SPを通り標準線SLと垂直な平面を標準面SFと呼ぶことにする。   The light projecting unit 2 and the light receiving unit 3 are arranged symmetrically on both sides of the standard line SL, and the optical axis 24 of the light projecting unit 2 and the optical axis 31 of the light receiving unit 3 are both standard lines SL. Are equal to α. Here, the standard line SL indicates a reference position for measuring the displacement amount γ of the detection object 1, and the displacement amount γ of the detection object 1 is the displacement distance on the standard line SL. Is defined as Further, the optical axis 24 of the light projecting unit 2 and the optical axis 31 of the light receiving unit 3 intersect at one point on the standard line SL, and the point on the standard axis SL at which the optical axes 24 and 31 intersect. Is referred to as a standard point SP, and a plane passing through the standard point SP and perpendicular to the standard line SL is referred to as a standard plane SF.

また、標準面SFにおいて、投光素子21及び投光レンズ22の光軸24が標準点SPに集光するように、投光素子21及び投光レンズ22との間の距離を調整して投光部2を構成する。また、標準点SPで反射したコリメート光である測定用光11が角度測定用受光レンズ42で集光されて角度測定用受光素子41の上で集光するように角度測定用受光レンズ42と角度測定用受光素子41との間の距離を調整して角度検出部4を構成し、さらに、標準点SPで反射し、半透明鏡を通過した測定用光11が変位測定用受光レンズ52で集光されて変位測定用受光素子51の上で結像するように変位測定用受光レンズ52と変位測定用受光素子51との間の距離を調整して変位検出部5を構成する。   In addition, on the standard surface SF, the distance between the light projecting element 21 and the light projecting lens 22 is adjusted so that the optical axis 24 of the light projecting element 21 and the light projecting lens 22 is condensed at the standard point SP. The optical unit 2 is configured. Further, the angle measuring light receiving lens 42 and the angle measuring light 11 that are collimated light reflected at the standard point SP are condensed by the angle measuring light receiving lens 42 and are condensed on the angle measuring light receiving element 41. The angle detector 4 is configured by adjusting the distance to the measurement light receiving element 41, and the measurement light 11 reflected by the standard point SP and passing through the semitransparent mirror is collected by the displacement measurement light receiving lens 52. The displacement detector 5 is configured by adjusting the distance between the displacement measuring light receiving lens 52 and the displacement measuring light receiving element 51 so that the light is irradiated and imaged on the displacement measuring light receiving element 51.

これにより、図1に実線で示すように、検出物体1が標準面SFに位置している場合には、投光素子21から出射された測定用光11が検出物体1の表面に照射されると、測定用光11は標準点SPで1点に集光し、検出物体1の表面で鏡面反射した測定用光11は、角度測定用受光レンズ42及び変位測定用受光レンズ52を通して、角度測定用受光素子41及び変位測定用受光素子51上で結像し、それぞれ光軸上の点で角度測定用受光スポット43及び変位測定用受光スポット53を形成する。以下、この傾き量β=0の場合に生じる角度測定用受光スポット43の位置を角度測定用の原点位置44と言い、変位量γ=0の場合に生じる変位測定用受光スポット53の位置を変位測定用の原点位置54という。   Thereby, as shown by a solid line in FIG. 1, when the detection object 1 is located on the standard surface SF, the measurement light 11 emitted from the light projecting element 21 is irradiated on the surface of the detection object 1. Then, the measurement light 11 is condensed at one point at the standard point SP, and the measurement light 11 specularly reflected by the surface of the detection object 1 is measured through the angle measurement light receiving lens 42 and the displacement measurement light reception lens 52. An image is formed on the light receiving element 41 for displacement and the light receiving element 51 for displacement measurement, and an angle measuring light receiving spot 43 and a displacement measuring light receiving spot 53 are formed at points on the optical axis, respectively. Hereinafter, the position of the light receiving spot 43 for angle measurement that occurs when the tilt amount β = 0 is referred to as an origin position 44 for angle measurement, and the position of the light receiving spot 53 for displacement measurement that occurs when the displacement amount γ = 0 is displaced. It is called the origin position 54 for measurement.

次に、図1に検出物体1(B)で示すように、検出物体1が標準線SLに対してβだけ傾いている場合に、本変位チルトセンサAにより検出物体1の傾き量βを測定する原理を説明する。この変位チルトセンサAのうち、傾き量βを測定して検出する角度測定用光学系のみを取り出して図2に示す(ただし、半透明鏡は省略する。)。   Next, as shown by a detection object 1 (B) in FIG. 1, when the detection object 1 is inclined by β with respect to the standard line SL, the tilt amount β of the detection object 1 is measured by the displacement tilt sensor A. The principle to do is explained. Of the displacement tilt sensor A, only the angle measuring optical system for measuring and detecting the tilt amount β is taken out and shown in FIG. 2 (however, a translucent mirror is omitted).

図2に示すように、投光素子21から出射された測定用光11は投光レンズ22を通過してコリメート光となり、ピンホール等の光を細くする手段23を通過して細くされ、検出物体1の表面に照射される。このとき、検出物体1が標準線SLに対してβだけ傾くと、検出物体1(B)の表面で反射した測定用光11も光軸24に対して傾くので、図1及び図2に破線で示すように、検出領域で反射した測定用光11が角度測定用受光レンズ42を通して角度測定用受光素子41上に集光されて生じる角度測定用受光スポット43は、角度測定用の原点位置44から移動する。この角度測定用受光スポット43の原点位置44からの移動量(原点位置44から受光強度の重心位置までの距離)を角度移動量Dとする。   As shown in FIG. 2, the measurement light 11 emitted from the light projecting element 21 passes through a light projecting lens 22 to become collimated light, and is narrowed through a means 23 for narrowing light such as a pinhole, and is detected. The surface of the object 1 is irradiated. At this time, if the detection object 1 is inclined by β with respect to the standard line SL, the measurement light 11 reflected by the surface of the detection object 1 (B) is also inclined with respect to the optical axis 24. As shown in FIG. 4, the angle measurement light receiving spot 43 generated by the measurement light 11 reflected by the detection region being condensed on the angle measurement light receiving element 41 through the angle measurement light receiving lens 42 is an angle measurement origin position 44. Move from. The amount of movement of the angle measurement light receiving spot 43 from the origin position 44 (the distance from the origin position 44 to the gravity center position of the received light intensity) is defined as an angle movement amount D.

従って、この角度測定用受光スポット43の角度移動量Dを検出することにより、検出物体1の傾きzを計算することができる。すなわち、標準点SPと角度測定用受光レンズ42との間の距離をf、角度測定用受光スポット44の角度移動量(位置変位)をDとすると、標準線SLを基準とする検出物体の傾きzは、下記の(数1)で表される。
(数1)
2fz=D
この傾きzを求めることにより、検出物体1の傾き量βが分かる。
Therefore, the inclination z of the detected object 1 can be calculated by detecting the angular movement amount D of the light receiving spot 43 for angle measurement. That is, if the distance between the standard point SP and the angle measurement light receiving lens 42 is f 1 and the angle movement amount (position displacement) of the angle measurement light reception spot 44 is D, the detected object with reference to the standard line SL is used. The inclination z is expressed by the following (Equation 1).
(Equation 1)
2f 1 z = D
By obtaining this inclination z, the inclination amount β of the detected object 1 can be determined.

次に、図1に検出物体1(C)で示すように、検出物体1が、標準面SFからγだけ変位した場合において、本変位チルトセンサAにより検出物体1の変位量γを測定する原理を説明する。この本変位チルトセンサAのうち、変位量γを測定して検出する変位測定用光学系のみを取り出して図3に示す(ただし、半透明鏡は省略する。)。   Next, as shown by a detection object 1 (C) in FIG. 1, when the detection object 1 is displaced by γ from the standard surface SF, the displacement amount γ of the detection object 1 is measured by the displacement tilt sensor A. Will be explained. Of this displacement tilt sensor A, only the displacement measuring optical system for measuring and detecting the displacement amount γ is taken out and shown in FIG. 3 (however, the translucent mirror is omitted).

図3に示すように、検出物体1が標準面SFに対してγだけ変位すると、標準点SPが標準点SP´の位置となる。従って、図1及び図3に二点鎖線で示すように、測定用光11は、検出領域の標準点SP´で反射した測定用光11が変位測定用受光レンズ52を通って変位測定用受光素子51上に集光されて生じる変位測定用受光スポット53は、変位測定用の原点位置54から移動する。この変位測定用受光スポット53の原点位置54からの移動量(原点位置54から受光強度の重心位置までの距離)を変位移動量dとする。   As shown in FIG. 3, when the detection object 1 is displaced by γ with respect to the standard surface SF, the standard point SP becomes the position of the standard point SP ′. Accordingly, as indicated by a two-dot chain line in FIGS. 1 and 3, the measurement light 11 is reflected by the measurement measurement light 11 reflected by the standard point SP ′ of the detection region through the displacement measurement light receiving lens 52. The displacement measurement light receiving spot 53 generated by being condensed on the element 51 moves from the origin position 54 for displacement measurement. The amount of movement of the displacement measurement light receiving spot 53 from the origin position 54 (the distance from the origin position 54 to the center of gravity of the received light intensity) is defined as a displacement movement amount d.

従って、この変位測定用受光スポット53の変位移動量dを検出することで、結像の関係から検出物体1の変位量γを計算することができる。すなわち、検出物体1の変位量をγ、変位測定用受光スポット53の変位移動量をd、標準点SPと標準点SP´との間の距離をxとすると、xは下記の(数2)で表される。
(数2)
x=γ/cosα
また、変位移動量dはxを用いると下記の(数3)で表される。
(数3)
d=x・sin2α
従って、上記(数2)及び(数3)から、変位移動量dは下記の(数4)で表される。
(数4)
d=γ・2sinα
従って、本変位チルトセンサAにおいて、標準点SP´と角度測定用受光レンズ42との間の距離をf、変位測定用受光レンズ52と変位測定用受光素子51との間の距離をfとし、変位測定用受光スポット53の変位移動量をdとすると、検出物体1の変位量γは次の(数5)で表わされる。
(数5)
d=2γ(f/f)sinα
このように、本変位チルトセンサAによれば、傾き量β及び変位量γを同時に検出し、かつ独立に検出することができる。
Accordingly, by detecting the displacement d of the displacement measuring light receiving spot 53, the displacement γ of the detection object 1 can be calculated from the relationship of image formation. That is, when the displacement amount of the detection object 1 is γ, the displacement movement amount of the light receiving spot 53 for displacement measurement is d, and the distance between the standard point SP and the standard point SP ′ is x, x is the following (Equation 2). It is represented by
(Equation 2)
x = γ / cos α
The displacement movement amount d is expressed by the following (Equation 3) when x is used.
(Equation 3)
d = x · sin2α
Therefore, from the above (Equation 2) and (Equation 3), the displacement movement amount d is expressed by the following (Equation 4).
(Equation 4)
d = γ · 2 sin α
Therefore, in this displacement tilt sensor A, the distance between the standard point SP ′ and the angle measuring light receiving lens 42 is f 2 , and the distance between the displacement measuring light receiving lens 52 and the displacement measuring light receiving element 51 is f 3. If the displacement movement amount of the light receiving spot 53 for displacement measurement is d, the displacement amount γ of the detection object 1 is expressed by the following (Equation 5).
(Equation 5)
d = 2γ (f 3 / f 2) sinα
Thus, according to the present displacement tilt sensor A, the tilt amount β and the displacement amount γ can be detected simultaneously and independently.

図4は、本発明の変更例に係る変位チルトセンサBを示す概略図である。この変位チルトセンサBでは、受光部3の角度検出部4における角度測定用受光レンズ42、及び変位検出部5における変位測定用受光レンズ52の代わりに、角度測定用受光レンズ42と変位測定用受光レンズ52とを兼用した受光レンズ7を設けている。このように、角度測定用受光レンズ42と、変位測定用受光レンズ52とを兼用し、1つの受光レンズ7とすることで、角度測定用光学系と変位測定用光学系とは、光学的には分離されて互いに独立しているが、構造的には一体化され、少ない部品数となるため、本発明に係る変位チルトセンサをより小型軽量化することができる。   FIG. 4 is a schematic diagram showing a displacement tilt sensor B according to a modification of the present invention. In this displacement tilt sensor B, instead of the angle measurement light receiving lens 42 in the angle detection unit 4 and the displacement measurement light reception lens 52 in the displacement detection unit 5, the angle measurement light reception lens 42 and the displacement measurement light reception light are used. A light receiving lens 7 that also serves as the lens 52 is provided. As described above, the angle measuring optical system and the displacement measuring optical system are optically configured by using the angle measuring light receiving lens 42 and the displacement measuring light receiving lens 52 as one light receiving lens 7. Are separated and independent from each other, but are structurally integrated and have a small number of parts, so that the displacement tilt sensor according to the present invention can be made smaller and lighter.

なお、この変位チルトセンサBの場合の検出物体1の傾き量βの検出方法は、上述した変位チルトセンサAと同様であるので省略するが、変位量γの検出方法は以下の通りである。   Note that the method of detecting the tilt amount β of the detection object 1 in the case of the displacement tilt sensor B is the same as that of the displacement tilt sensor A described above and is omitted, but the method of detecting the displacement amount γ is as follows.

すなわち、受光レンズ7と標準点SPとの距離をa、受光レンズ7と変位測定用受光素子51との距離(光学的路長)をb、受光レンズ7の焦点距離をfとすると、これらの間にはレンズ公式による(1/a)+(1/b)=(1/f)の関係がある。   That is, assuming that the distance between the light receiving lens 7 and the standard point SP is a, the distance (optical path length) between the light receiving lens 7 and the displacement measuring light receiving element 51 is b, and the focal length of the light receiving lens 7 is f. There is a relationship of (1 / a) + (1 / b) = (1 / f) according to the lens formula.

従って、本変位チルトセンサBにおいて、変位量γは、γ=(b/a)・dcosαsin2αで表わされる。   Therefore, in the displacement tilt sensor B, the displacement amount γ is represented by γ = (b / a) · d cos α sin 2α.

以上に詳述したように、本発明に係る変位チルトセンサによれば、構成部品数を減らすことができるので、変位チルトセンサをより小型軽量化することができる。   As described in detail above, according to the displacement tilt sensor of the present invention, the number of components can be reduced, so that the displacement tilt sensor can be further reduced in size and weight.

次に、基準面SFから変位して、さらに標準線SLとは別の線に対して傾いている検出物体1の傾き量βの補正方法について説明する。図5は、本発明の他の変更例に係る変位チルトセンサCを示す概略図である。図5に示すように、検出物体1が標準面SFからγだけ変位して、かつ標準線SLとは別の線である基準線SL´に対してβだけ傾いている場合の、本変位チルトセンサCにより検出物体1の傾き量β及び変位量γ´を測定し、変位量γ´を補正する原理を説明する。ここで、基準線SL´とは、傾き量がβである検出物体1と投光素子21から出射された測定用光11との交点をOとしたとき、標準面SFに垂直で、交点Oと交わる線である。   Next, a method of correcting the tilt amount β of the detected object 1 that is displaced from the reference surface SF and is tilted with respect to a line different from the standard line SL will be described. FIG. 5 is a schematic diagram showing a displacement tilt sensor C according to another modification of the present invention. As shown in FIG. 5, this displacement tilt when the detection object 1 is displaced from the standard plane SF by γ and is inclined by β with respect to a reference line SL ′ that is a line different from the standard line SL. The principle of correcting the displacement amount γ ′ by measuring the tilt amount β and the displacement amount γ ′ of the detection object 1 by the sensor C will be described. Here, the reference line SL ′ is perpendicular to the standard surface SF, where O is the intersection of the detection object 1 whose inclination amount is β and the measurement light 11 emitted from the light projecting element 21, and the intersection O It is a line that intersects.

なお、この変位チルトセンサCの構成は、上述した変位チルトセンサA,Bと同様であるので、同様の構成要素には同一の符号を付し、その説明を省略し、また分かり易さのため、図5には光路等の概略のみを示し、殆どの構成要素は省略する。また、本変位チルトセンサCの検出物体1の傾き量βの検出方法は、上述した変位チルトセンサAと同様であるので、その説明もまた省略し、以下では、検出物体1が基準線SL´に対してβ傾いている場合の実際の変位量を測定し、補正する方法について説明する。   Since the configuration of the displacement tilt sensor C is the same as that of the displacement tilt sensors A and B described above, the same components are denoted by the same reference numerals, the description thereof is omitted, and for ease of understanding. FIG. 5 shows only an outline of the optical path and the like, and most of the components are omitted. The method of detecting the tilt amount β of the detection object 1 of the displacement tilt sensor C is the same as that of the displacement tilt sensor A described above, and therefore the description thereof is also omitted. In the following, the detection object 1 is the reference line SL ′. A method for measuring and correcting the actual displacement amount when β is inclined with respect to FIG.

図5に示すように、検出物体1が標準面SFに対してγだけ変位すると、標準点SPがSP´の位置になる。変位量γである検出物体1が、さらに基準線SL´に対してβだけ傾くと、図5に示すように、検出物体1と標準線SLとの交点がSP´からSP´´に移動するため、検出物体1の実際の変位量はγ´であることが分かる。以下では実際の変位量γ´を計算する方法について説明する。なお、図中の符号8は像面を示す。   As shown in FIG. 5, when the detection object 1 is displaced by γ with respect to the standard surface SF, the standard point SP is positioned at SP ′. When the detected object 1 having the displacement amount γ is further inclined by β with respect to the reference line SL ′, as shown in FIG. 5, the intersection of the detected object 1 and the standard line SL moves from SP ′ to SP ″. Therefore, it can be seen that the actual displacement amount of the detection object 1 is γ ′. A method for calculating the actual displacement amount γ ′ will be described below. Reference numeral 8 in the figure denotes an image plane.

図5に示すように、変位量がγで傾き量がβである検出物体1と投光素子21から出射された測定用光11との交点をOとし、交点OからSP´までの長さをXとすると、Xは次の(数6)で表される。
(数6)
X=γ・tanθ
なお、θは投光素子21から出射された測定用光11の入射角である。
As shown in FIG. 5, the intersection between the detection object 1 whose displacement amount is γ and the inclination amount is β and the measurement light 11 emitted from the light projecting element 21 is O, and the length from the intersection point O to SP ′. X is represented by the following (Equation 6).
(Equation 6)
X = γ · tan θ
Is the incident angle of the measurement light 11 emitted from the light projecting element 21.

次に、SP´からSP´´までの長さをYとすると、Yは次の(数7)で表される。
(数7)
Y=X・tanβ
=γ・tanθ・tanβ
なお、βは上述したように角度測定用受光素子41で測定された傾き量である。
Next, if the length from SP ′ to SP ″ is Y, Y is expressed by the following (Equation 7).
(Equation 7)
Y = X · tanβ
= Γ ・ tanθ ・ tanβ
Here, β is the amount of inclination measured by the angle measuring light receiving element 41 as described above.

従って、実際の変位移動量γ´は、次の(数8)で表される。
(数8)
γ´=γ−Y
=γ−γ・tanθ・tanβ
=γ(1−tanθ・tanβ)
次にγを求める。図5に示すWは位置信号として測定されるため、Wは次の(数9)で表される。
Therefore, the actual displacement movement amount γ ′ is expressed by the following (Equation 8).
(Equation 8)
γ ′ = γ−Y
= Γ-γ ・ tanθ ・ tanβ
= Γ (1-tanθ · tanβ)
Next, γ is obtained. Since W shown in FIG. 5 is measured as a position signal, W is expressed by the following (Equation 9).

(数9)
W=Z+U
=2γ・sinθ+(γ・cos2θ・tan2β)/cosθ
なお、Zは、投光素子21から出射された測定用光11と基準線SL´がなす角度と等しい角度をなす線と像面8との交点をPとした場合の、基準点SPから交点Pまでの距離である。また、Uは、投光素子21から出射された測定用光11が、変位量がγで傾き量がβである検出物体1の表面で反射した反射光と像面8との交点をQとしたとき、交点Pから交点Qまでの距離である。
(Equation 9)
W = Z + U
= 2γ · sin θ + (γ · cos 2θ · tan 2β) / cos θ
Z is an intersection point from the reference point SP, where P is the intersection point of the image plane 8 and the line that forms an angle equal to the angle between the measurement light 11 emitted from the light projecting element 21 and the reference line SL ′. The distance to P. U is the intersection of the reflected light reflected from the surface of the detection object 1 with the displacement amount γ and the inclination amount β and the image plane 8 when the measurement light 11 emitted from the light projecting element 21 is Q. Is the distance from the intersection point P to the intersection point Q.

ここで、sinθ=C,cos2θ/cosθ=C,tan2β=Cとすると、上記(数9)は、次の(数10)で表される。
(数10)
W=2γC+γC・C
γ=W/(2C+C・C
Here, when sin θ = C 1 , cos 2θ / cos θ = C 2 , and tan 2β = C 3 , the above (Equation 9) is expressed by the following (Equation 10).
(Equation 10)
W = 2γC 1 + γC 2 · C 3
γ = W / (2C 1 + C 2 · C 3 )

(数10)を(数8)に代入することにより、実際の変位量γ´を検出することができ、補正することができる。   By substituting (Equation 10) into (Equation 8), the actual displacement amount γ ′ can be detected and corrected.

このように、本発明に係る変位チルトセンサによれば、変位チルトセンサの構成部品を減らしても、基準線SL´に対してβだけ傾いた検出物体1の傾き量β及び実際の変位量γ´も正確に検出することができる。


As described above, according to the displacement tilt sensor according to the present invention, even if the components of the displacement tilt sensor are reduced, the tilt amount β of the detected object 1 tilted by β with respect to the reference line SL ′ and the actual displacement amount γ. ′ Can also be detected accurately.


1 検出物体
11 測定用光
2 投光部
21 投光素子
22 投光レンズ
23 測定用光を細くする手段
3 受光部
4 角度検出部
41 角度測定用受光素子
42 角度測定用受光レンズ
5 変位検出部
51 変位測定用受光素子
52 変位測定用受光レンズ
6 半透明鏡
7 受光レンズ
A,B,C 変位チルトセンサ
β 傾き量
γ 変位量
DESCRIPTION OF SYMBOLS 1 Detecting object 11 Measuring light 2 Light projecting part 21 Light projecting element 22 Light projecting lens 23 Means 3 for narrowing measuring light 3 Light receiving part 4 Angle detecting part 41 Angle measuring light receiving element 42 Angle measuring light receiving lens 5 Displacement detecting part 51 Displacement measuring light receiving element 52 Displacement measuring light receiving lens 6 Translucent mirror 7 Light receiving lenses A, B, C Displacement tilt sensor β Inclination amount γ Displacement amount

Claims (3)

検出領域に向けて測定用光を出射する投光部、および、検出領域で反射された測定用光を受光する受光部からなる光学系を備え、
前記投光部は、発光ダイオード等の投光素子と、投光レンズと、前記投光素子から出射された測定用光を細くする手段とを具備し、
前記受光部は、角度検出部と変位検出部とを具備し、
前記角度検出部は、角度測定用受光レンズと、角度測定用受光素子とを具備し、
前記変位検出部は、変位測定用受光レンズと、変位測定用受光レンズとを具備することを特徴とする変位チルトセンサ。
An optical system including a light projecting unit that emits measurement light toward the detection region, and a light receiving unit that receives the measurement light reflected by the detection region,
The light projecting unit includes a light projecting element such as a light emitting diode, a light projecting lens, and a means for narrowing the measurement light emitted from the light projecting element,
The light receiving unit includes an angle detection unit and a displacement detection unit,
The angle detection unit includes an angle measurement light-receiving lens and an angle measurement light-receiving element,
The displacement detector includes a displacement measuring light-receiving lens and a displacement measuring light-receiving lens.
前記測定用光を細くする手段は、ピンホール、ビームエキスパンダー、あるいは小径レンズのいずれかであることを特徴とする請求項1に記載の変位チルトセンサ。   2. The displacement tilt sensor according to claim 1, wherein the means for narrowing the measurement light is a pinhole, a beam expander, or a small-diameter lens. 前記角度測定用受光レンズ及び前記変位測定用受光レンズを、1枚の受光レンズで兼用したことを特徴とする請求項1又は請求項2に記載の変位チルトセンサ。   The displacement tilt sensor according to claim 1 or 2, wherein the angle measuring light-receiving lens and the displacement measuring light-receiving lens are combined with one light-receiving lens.
JP2009141529A 2008-06-13 2009-06-12 Displacement tilt sensor Active JP5330114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009141529A JP5330114B2 (en) 2008-06-13 2009-06-12 Displacement tilt sensor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008154890 2008-06-13
JP2008154890 2008-06-13
JP2009141529A JP5330114B2 (en) 2008-06-13 2009-06-12 Displacement tilt sensor

Publications (2)

Publication Number Publication Date
JP2010019836A true JP2010019836A (en) 2010-01-28
JP5330114B2 JP5330114B2 (en) 2013-10-30

Family

ID=41704868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009141529A Active JP5330114B2 (en) 2008-06-13 2009-06-12 Displacement tilt sensor

Country Status (1)

Country Link
JP (1) JP5330114B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011242292A (en) * 2010-05-19 2011-12-01 Katsura Opto Systems Co Ltd Thickness tilt sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01287408A (en) * 1988-05-16 1989-11-20 Ntt Technol Transfer Corp Attitude sensor
JPH06213623A (en) * 1993-01-20 1994-08-05 Hitachi Maxell Ltd Optical displacement sensor
JPH07294250A (en) * 1994-04-28 1995-11-10 Keyence Corp Displacement gauge
JPH08240408A (en) * 1995-03-02 1996-09-17 Omron Corp Displacement sensor
JP2005291938A (en) * 2004-03-31 2005-10-20 Sunx Ltd Light receiving center detection method, distance measuring apparatus, angle-measuring apparatus and optical measuring apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01287408A (en) * 1988-05-16 1989-11-20 Ntt Technol Transfer Corp Attitude sensor
JPH06213623A (en) * 1993-01-20 1994-08-05 Hitachi Maxell Ltd Optical displacement sensor
JPH07294250A (en) * 1994-04-28 1995-11-10 Keyence Corp Displacement gauge
JPH08240408A (en) * 1995-03-02 1996-09-17 Omron Corp Displacement sensor
JP2005291938A (en) * 2004-03-31 2005-10-20 Sunx Ltd Light receiving center detection method, distance measuring apparatus, angle-measuring apparatus and optical measuring apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011242292A (en) * 2010-05-19 2011-12-01 Katsura Opto Systems Co Ltd Thickness tilt sensor

Also Published As

Publication number Publication date
JP5330114B2 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
JP5372599B2 (en) Focus sensor
US20120180564A1 (en) Liquid container and inclination detector including the same
JP2007147299A (en) Apparatus and method for measuring displacement
JP2006189389A (en) Optical thickness measuring method and device
JPH11257917A (en) Reflection type optical sensor
JP3548275B2 (en) Displacement information measuring device
JP3921004B2 (en) Displacement tilt measuring device
JP5295900B2 (en) Tilt sensor
JP2008128744A (en) Distance measurement apparatus and method
JPH08240408A (en) Displacement sensor
JP5474495B2 (en) Coriolis type flow sensor system
JP5330114B2 (en) Displacement tilt sensor
JP2011013095A (en) Displacement measuring device and displacement measuring method
JP2010197143A (en) Measuring apparatus and measuring method for measuring axis tilt of shaft of motor for polygon mirror
JP3688560B2 (en) Optical measuring device
JP5487920B2 (en) Optical three-dimensional shape measuring apparatus and optical three-dimensional shape measuring method
JP5141103B2 (en) Non-contact 3D shape measuring machine
CN105807571A (en) Focusing and leveling system used for photo-etching machine and focusing and leveling method thereof
JP2020071414A (en) Measuring device for collimation adjustment and method for adjusting collimation optical system
JP4407433B2 (en) Tilt angle measuring device
JP2003161610A (en) Optical measurement device
JPH08247713A (en) Displacement sensor
JP3876097B2 (en) 3D position and orientation detection sensor
JP2006189390A (en) Optical displacement measuring method and device
JP2010164354A (en) Autocollimator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130725

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5330114

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250