JP2006189389A - Optical thickness measuring method and device - Google Patents

Optical thickness measuring method and device Download PDF

Info

Publication number
JP2006189389A
JP2006189389A JP2005002923A JP2005002923A JP2006189389A JP 2006189389 A JP2006189389 A JP 2006189389A JP 2005002923 A JP2005002923 A JP 2005002923A JP 2005002923 A JP2005002923 A JP 2005002923A JP 2006189389 A JP2006189389 A JP 2006189389A
Authority
JP
Japan
Prior art keywords
measured
distance
thickness
optical
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005002923A
Other languages
Japanese (ja)
Inventor
Makoto Okuno
眞 奥野
Kazuhiro Yahiro
和広 八尋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005002923A priority Critical patent/JP2006189389A/en
Publication of JP2006189389A publication Critical patent/JP2006189389A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical thickness measuring method and a device having high measurement accuracy, capable of correcting an influence of inclination with an inexpensive compact device constitution without adding separately a measuring means for correction, even when a measuring object is inclined. <P>SOLUTION: An optical range finder 10a comprising a floodlighting means 1A, a lens 3a, an image sensor 4a, an image processing means 6a and a distance operation means 7a is arranged on the upper side of the measuring object 20, and the distance to a measuring surface 20a is measured. Similarly, an optical range finder 10b is arranged on the under side of the measuring object 20, and the distance to a measuring surface 20b is measured. At least in either optical range finder, light beams are irradiated so as to cross each other from two floodlights toward the measuring surface from different directions, and the distance to the measuring surface is measured from the interval between two light receiving spots imaged on an image sensor. When the inclination of the measuring object cannot be ignored, the inclination is corrected by an inclination correction operation means 9 by utilizing information of a midpoint position between the two light receiving spots. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、鋼板などの材料の厚さを非接触で測定するための光学式厚さ測定方法および装置に関するものである。   The present invention relates to an optical thickness measuring method and apparatus for measuring the thickness of a material such as a steel plate in a non-contact manner.

鋼板などの被測定物の厚さを非接触で測定する方法として、図2に示すように、被測定物20に対して2台の光学式距離計10a,10bを被測定物3を挟むように配置し、これらの距離計の配置間隔Lと2つの距離計の各測定値Za,Zbから、(1)式によって被測定物の厚さtを測定する方法が知られている。   As a method for measuring the thickness of an object to be measured such as a steel plate in a non-contact manner, two optical distance meters 10a and 10b are sandwiched between the object 3 to be measured 20 as shown in FIG. There is known a method of measuring the thickness t of the object to be measured by the equation (1) from the distance L between the distance meters and the measured values Za and Zb of the two distance meters.

t=L−Za−Zb ・・・(1)
光学式距離計としては一般に、三角測量法の原理に基づくものが使われおり、例えば特許第2519375号公報(特許文献1)に開示された技術がある。三角測量法による光学距離計の原理を、図3に示す。投光器1から光ビーム2を被測定物20の被測定面20aに照射し、被測定面20aで反射された光ビームを、レンズ3を介してイメージセンサ4上に結像する。被測定面20aが図3の上下方向に変位するとイメージセンサ上の受光スポット5の位置が変化することを利用して、被測定面20aまでの距離を計測することができる。
t = L−Za−Zb (1)
In general, an optical distance meter is based on the principle of triangulation, and for example, there is a technique disclosed in Japanese Patent No. 2519375 (Patent Document 1). The principle of the optical distance meter by the triangulation method is shown in FIG. The light beam 2 from the projector 1 is irradiated onto the measurement surface 20 a of the object 20 to be measured, and the light beam reflected by the measurement surface 20 a is imaged on the image sensor 4 via the lens 3. The distance to the measured surface 20a can be measured by utilizing the fact that the position of the light receiving spot 5 on the image sensor changes when the measured surface 20a is displaced in the vertical direction in FIG.

このような厚さ測定法では被測定物が傾くと、この傾きが直接、測定誤差となる。すなわち図4に示すように、被測定物20が距離計の測定方向と垂直な面に対して角度θだけ傾いた場合、上記の厚さ測定法による測定結果t’は実際の被測定物の厚さtよりも大きくなり、(2)式のようになる。   In such a thickness measurement method, when the object to be measured is tilted, this tilt directly becomes a measurement error. That is, as shown in FIG. 4, when the object to be measured 20 is inclined by an angle θ with respect to a plane perpendicular to the measurement direction of the distance meter, the measurement result t ′ by the above thickness measurement method is the actual measurement object. The thickness becomes larger than the thickness t, and the equation (2) is obtained.

t’ = t / cosθ ・・・(2)
このような被測定物傾きによる誤差は、搬送中の被測定物の厚さを高精度で測定する場合などでは問題になる。この対策として、例えば特開平7−280526号公報(特許文献2)には、光学式距離計の個数を増やすことにより、被測定物の傾きを検出・補正する方法が提案されている。これは図5に示すように、厚さ測定用の光学式距離計10a,10bに加え、被測定物20の上面20aあるいは下面20bのいずれかに、光学式距離計10cおよび10dを増設し、光学式距離計10cおよび10dによって被測定物20の傾き角θを検出して、(2)式の関係を利用して傾きの影響を補正するものである
特許第2519375号公報 特開平7−280526号公報
t '= t / cosθ (2)
Such an error due to the tilt of the measured object becomes a problem when the thickness of the measured object being conveyed is measured with high accuracy. As a countermeasure, for example, Japanese Patent Laid-Open No. 7-280526 (Patent Document 2) proposes a method for detecting and correcting the inclination of the object to be measured by increasing the number of optical distance meters. As shown in FIG. 5, in addition to the optical distance meters 10a and 10b for thickness measurement, optical distance meters 10c and 10d are added to either the upper surface 20a or the lower surface 20b of the object 20 to be measured. The optical angle meters 10c and 10d detect the inclination angle θ of the object 20 to be measured, and the influence of the inclination is corrected using the relationship of the expression (2).
Japanese Patent No. 2519375 Japanese Patent Laid-Open No. 7-280526

上記の三角測量法に基づく光学式距離計の測定精度は、投光軸と受光軸の交差角φ(図8(a)参照)を大きくするほど向上する。しかしながら、φを大きくしすぎると、(1)被測定面の凸部により受信光が遮蔽される、いわゆるシャドウ効果が問題になる、(2)被測定面が比較的鏡面性の強い表面の場合、イメージセンサの受光強度が著しく低下する、(3)変位計の寸法が大きくなる、といった問題が生じてくるため、実用的にはφを数十度以上にはできない。このため、一般に、三角測量法による距離計の測定精度は、測定範囲の0.05%程度が限界である。   The measurement accuracy of the optical distance meter based on the triangulation method is improved as the intersection angle φ (see FIG. 8A) between the light projecting axis and the light receiving axis is increased. However, if φ is too large, (1) the so-called shadow effect that the received light is shielded by the convex portion of the surface to be measured becomes a problem, and (2) the surface to be measured has a relatively strong specularity. However, since the received light intensity of the image sensor is remarkably reduced and (3) the size of the displacement meter is increased, φ cannot be set to several tens of degrees or more practically. For this reason, in general, the measurement accuracy of the distance meter by the triangulation method is limited to about 0.05% of the measurement range.

各光学式距離計の測定精度が距離計測定範囲の0.05%のとき、(1)式によって算出される厚さtの測定精度は、距離計測定範囲の0.07%程度になり、これ以上の高精度が要求される厚さ測定用途には適用できないという問題があった。   When the measurement accuracy of each optical distance meter is 0.05% of the distance meter measurement range, the measurement accuracy of thickness t calculated by equation (1) is about 0.07% of the distance meter measurement range, which is higher than this. There is a problem that it cannot be applied to thickness measurement applications that require accuracy.

また、たとえば搬送中の鋼板などの厚さを測定する場合は、鋼板の傾きの影響が問題になるが、上述の特許文献2に提案されている方法では、4台の光学的距離計を設置する必要があるため、厚さ測定装置全体が複雑になり、かつ寸法も大きくなり、経済的にも高価になるという問題があった。   Further, for example, when measuring the thickness of a steel plate being conveyed, the influence of the inclination of the steel plate becomes a problem. However, in the method proposed in Patent Document 2 described above, four optical distance meters are installed. Therefore, there is a problem that the entire thickness measuring apparatus becomes complicated, the size is increased, and the cost is increased.

本発明は、上記事情に鑑みてなされたもので、測定精度が高く、また被測定物が傾いた場合にも別途傾き補正用の計測手段を追加することなく、安価かつコンパクトな装置構成で傾きの影響を補正可能な光学式厚さ測定方法および装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, has high measurement accuracy, and can be tilted with an inexpensive and compact apparatus configuration without adding a separate measuring means for tilt correction even when the object to be measured is tilted. An object of the present invention is to provide an optical thickness measuring method and apparatus capable of correcting the influence of the above.

本発明の請求項1に係る発明は、2台の光学式距離計を被測定物を挟んで対向させて配置し、前記光学式距離計で被測定面までの距離をそれぞれ測定し、該測定値と前記光学式距離計の配置間隔から被測定物の厚さを測定する光学式厚さ測定方法において、少なくとも一方の光学式距離計において、被測定面に相異なる方向から2つの光ビームを交差させるように照射し、被測定面上の2つの光スポットを1つのイメージセンサで撮像し、イメージセンサ上における2つの光スポットの間隔ΔXと2つの光スポットの中点位置Xcを計測し、あらかじめ求めておいたΔXと被測定面までの距離との関係に基づいて、ΔXの値から被測定面までの距離を算出するとともに、あらかじめ求めておいたΔXおよびXcと被測定面の傾きとの関係に基づいて、ΔXおよびXcの値から被測定面の傾きを算出し、該傾きに起因する厚さ測定誤差を補正して被測定物の厚さを算出することを特徴とする光学式厚さ測定方法である。   In the invention according to claim 1 of the present invention, two optical distance meters are arranged to face each other with an object to be measured interposed therebetween, and the distance to the surface to be measured is measured with the optical distance meter, respectively. In the optical thickness measurement method for measuring the thickness of the object to be measured from the value and the arrangement distance of the optical distance meter, in at least one of the optical distance meters, two light beams are applied to the surface to be measured from different directions. Irradiate to intersect, image two light spots on the measured surface with one image sensor, measure the distance ΔX between the two light spots on the image sensor and the midpoint position Xc of the two light spots, Based on the relationship between ΔX obtained in advance and the distance to the measured surface, the distance to the measured surface is calculated from the value of ΔX, and ΔX and Xc obtained in advance and the inclination of the measured surface Based on the relationship An optical thickness measuring method characterized in that the inclination of the surface to be measured is calculated from the values of ΔX and Xc, and the thickness measurement error due to the inclination is corrected to calculate the thickness of the object to be measured. .

また本発明の請求項2に係る発明は、被測定物を挟んで対向させて配置した2台の光学式距離計と、該光学式距離計で測定した被測定面までの距離から被測定物の厚さを算出する厚さ演算手段によって構成される光学式厚さ測定装置において、少なくとも一方の光学式距離計が、被測定面に相異なる方向から2つの光ビームを交差させるように照射する投光手段と、被測定面上の2つの光スポットを撮像するイメージセンサと、イメージセンサ上における2つの光スポットの間隔ΔXを計測する画像処理手段と、あらかじめ求めておいたΔXと被測定面までの距離との関係に基づいて、ΔXの値から被測定面までの距離を算出する距離演算手段とによって構成されることを特徴とする光学式厚さ測定装置である。   According to the second aspect of the present invention, there are provided two optical distance meters arranged opposite to each other with the object to be measured, and the distance from the surface to be measured measured by the optical distance meter to the object to be measured. In the optical thickness measuring device configured by the thickness calculating means for calculating the thickness of the light, at least one optical distance meter irradiates the surface to be measured with two light beams intersecting from different directions. Projection means, image sensor for imaging two light spots on the surface to be measured, image processing means for measuring the distance ΔX between the two light spots on the image sensor, ΔX and the surface to be measured previously obtained An optical thickness measuring device comprising: a distance calculating means for calculating a distance from the value of ΔX to the surface to be measured based on the relationship with the distance to

また本発明の請求項3に係る発明は、被測定物を挟んで対向させて配置した2台の光学式距離計と、該光学式距離計で測定した被測定面までの距離から被測定物の厚さを算出する厚さ演算手段によって構成される光学式厚さ測定装置において、少なくとも一方の光学式距離計が、被測定面に相異なる方向から2つの光ビームを交差させるように照射する投光手段と、被測定面上の2つの光スポットを撮像するイメージセンサと、イメージセンサ上における2つの光スポットの間隔ΔXおよび2つの光スポットの中点位置Xcを計測する画像処理手段と、あらかじめ求めておいたΔXと被測定面までの距離との関係に基づいて、ΔXの値から被測定面までの距離を算出する距離演算手段と、あらかじめ求めておいたΔXおよびXcと被測定面の傾きとの関係に基づいて、ΔXおよびXcの値から被測定面の傾きを算出し、該傾きに起因する厚さ測定誤差を求め、前記厚さ演算手段で算出した被測定物の厚さを補正する傾き補正演算手段とによって構成されることを特徴とする光学式厚さ測定装置である。   According to a third aspect of the present invention, there is provided an optical distance meter disposed opposite to each other with the object to be measured, and the object to be measured from the distance to the surface to be measured measured by the optical distance meter. In the optical thickness measuring device configured by the thickness calculating means for calculating the thickness of the light, at least one optical distance meter irradiates the surface to be measured with two light beams intersecting from different directions. A light projecting means, an image sensor for imaging two light spots on the surface to be measured, an image processing means for measuring an interval ΔX between the two light spots on the image sensor and a midpoint position Xc of the two light spots; Based on the relationship between ΔX obtained in advance and the distance to the surface to be measured, distance calculation means for calculating the distance to the surface to be measured from the value of ΔX, ΔX and Xc obtained in advance and the surface to be measured Slope of Based on the relationship, the inclination of the surface to be measured is calculated from the values of ΔX and Xc, the thickness measurement error resulting from the inclination is obtained, and the inclination for correcting the thickness of the object to be measured calculated by the thickness calculating means It is an optical thickness measuring device characterized by comprising a correction calculating means.

さらに本発明の請求項4に係る発明は、請求項2または請求項3に記載の光学式変位測定装置において、前記投光手段が、単一の光源と、該光源から照射された光ビームを2つに分岐する光分岐手段と、分岐された2つの光ビームを被測定面に相異なる方向から交差するように照射する投光光学系とによって構成されることを特徴とする光学式厚さ測定装置である。   Further, the invention according to claim 4 of the present invention is the optical displacement measuring device according to claim 2 or claim 3, wherein the light projecting means includes a single light source and a light beam emitted from the light source. An optical thickness comprising: an optical branching unit that splits into two; and a light projecting optical system that irradiates the two split light beams so as to intersect the surface to be measured from different directions It is a measuring device.

本発明は、光学式距離計として、2つの光ビームを交差して照射し、その受光スポット間隔に基づいて被測定物の距離を検出するようにしたので、従来の三角測量法を用いた光学式距離計よりも測定感度を高くすることができ、この結果、厚さ測定精度を向上させることが可能になった。   In the present invention, as an optical distance meter, two light beams are irradiated in an intersecting manner, and the distance of the object to be measured is detected based on the interval between the light receiving spots, so that an optical device using a conventional triangulation method is used. The measurement sensitivity can be made higher than that of the distance meter, and as a result, the thickness measurement accuracy can be improved.

また、イメージセンサ上の2つの受光スポットの相対的間隔と受光スポット中点位置を計測することにより、被測定面までの距離と被測定面の傾きを同時に計測できるため、別途、傾き測定手段を追加して設置することなく、安価かつコンパクトな装置構成で、被測定物の傾きに起因する厚さ測定誤差を補正できるので厚さ測定精度を向上させることが可能になった。   Also, by measuring the relative distance between the two light receiving spots on the image sensor and the midpoint position of the light receiving spot, the distance to the surface to be measured and the inclination of the surface to be measured can be measured simultaneously. Thickness measurement accuracy can be improved because the thickness measurement error due to the inclination of the object to be measured can be corrected with an inexpensive and compact device configuration without additional installation.

さらに、本発明で用いる光学式距離計は、イメージセンサ上の受光スポットの絶対位置ではなく、2つの受光スポットの相対的間隔に基づいて距離を計測するため、単一の光源から出射された光ビームを2つに分岐し、これらを互いに交差するように被測定面に照射する装置構成にすることにより、光源からの光ビームの出射角度の変動などによるイメージセンサ上での受光スポット位置の変動を相殺でき、この結果、測定精度を向上させることができるという効果もある。   Furthermore, the optical distance meter used in the present invention measures the distance based on the relative distance between the two light receiving spots, not the absolute position of the light receiving spot on the image sensor. By changing the light beam spot position on the image sensor by splitting the beam into two and irradiating the surface to be measured so that they cross each other, the angle of emission of the light beam from the light source changes. Can be offset, and as a result, the measurement accuracy can be improved.

本発明の厚さ測定装置の構成例を図1に、本発明を実施する上でのフローチャート例を図6にそれぞれ示す。以下、図1および図6に基づいて本発明の厚さ測定方法および装置について説明する。   FIG. 1 shows a configuration example of the thickness measuring apparatus of the present invention, and FIG. 6 shows a flowchart example for carrying out the present invention. Hereinafter, the thickness measuring method and apparatus according to the present invention will be described with reference to FIGS.

被測定物20の上側に投光手段1A,レンズ3a,イメージセンサ4a,画像処理手段6a,距離演算手段7aから成る光学式距離計10aを配置して、被測定面20aまでの距離を測定する。また、被測定物20下側に投光手段1B,レンズ3b,イメージセンサ4b,画像処理手段6b,距離演算手段7bから成る光学式距離計10bを配置して、被測定面20bまでの距離を測定する。各距離計において、投光手段は2つの投光器を備え、2つの投光器から被測定面に相異なる方向から光ビームを交差するように照射し(Step100,101)、イメージセンサ上に結像された2つの受光スポット間隔から被測定面までの距離を測定する(Step200,201,300,301,400,401)。これらの距離計の測定値を用いて、厚さ演算手段8で、(1)式によって被測定物の厚さtを演算する(Step600)。また、被測定物の傾きが無視できない場合は、画像処理手段6a(または画像処理手段6b)で計測された2つの受光スポットの中点位置の情報を利用して、傾き補正演算手段9によって被測定物の傾きを(2)式に基づいて補正して、正確な厚さを求めるようにする(Step500,600)。   An optical distance meter 10a comprising a light projecting means 1A, a lens 3a, an image sensor 4a, an image processing means 6a, and a distance calculating means 7a is arranged above the object to be measured 20, and the distance to the surface to be measured 20a is measured. . Further, an optical distance meter 10b including a light projecting means 1B, a lens 3b, an image sensor 4b, an image processing means 6b, and a distance calculation means 7b is arranged below the object to be measured 20, and the distance to the measurement surface 20b is set. taking measurement. In each distance meter, the light projecting means includes two light projectors, and irradiates light beams from different directions to the surface to be measured from different directions (Steps 100 and 101), and is imaged on the image sensor. The distance from the interval between the two light receiving spots to the surface to be measured is measured (Steps 200, 201, 300, 301, 400, 401). Using the measured values of these distance meters, the thickness calculating means 8 calculates the thickness t of the object to be measured by the equation (1) (Step 600). Further, when the inclination of the object to be measured cannot be ignored, the inclination correction calculating means 9 uses the information on the midpoint position of the two light receiving spots measured by the image processing means 6a (or the image processing means 6b). The correct thickness is obtained by correcting the inclination of the measured object based on the equation (2) (Steps 500 and 600).

ここで、光学式距離計10aの測定原理について、図7に基づいて詳細に説明する。投光器1および投光器1’から被測定面20aに向けて、それぞれ光ビーム2,2’を照射する(Step100)。投光する光の種類としては、直進性および強度に優れたレーザを用いるのが好ましいが、LED、あるいはハロゲンランプのような白色光であっても構わない。また、距離測定精度を上げるためには被測定面上のビーム径を小さくするのが好ましいので、各投光器には照射するビーム径を絞るためのレンズ系を備えるのが望ましい。さらに、2つの光ビームの強度、波長、ビーム径、および被測定面に対する入射角は、後の画像処理の煩雑さをなくすためには、ほぼ同等とするのが好ましい。   Here, the measurement principle of the optical distance meter 10a will be described in detail with reference to FIG. The light beams 2 and 2 'are irradiated from the light projector 1 and the light projector 1' toward the surface to be measured 20a, respectively (Step 100). As the type of light to be projected, it is preferable to use a laser excellent in straightness and intensity, but white light such as an LED or a halogen lamp may be used. Further, since it is preferable to reduce the beam diameter on the surface to be measured in order to increase the distance measurement accuracy, each projector is preferably provided with a lens system for narrowing the beam diameter to be irradiated. Furthermore, it is preferable that the intensity, wavelength, beam diameter, and incident angle with respect to the surface to be measured of the two light beams are substantially equal in order to eliminate the complexity of the subsequent image processing.

被測定面20a上での2つの光ビーム照射点を集光レンズ3を介して1つのイメージセンサ4に結像させる(Step200)。イメージセンサとしては、CCDラインセンサカメラやCMOSラインセンサカメラなどが好適である。被測定面20aが図7において上下方向に変位すると、幾何学的に容易にわかるように、イメージセンサ4上に結像された2つの受光スポット5および5’の間隔ΔXが変化する。すなわち、被測定面までの距離が大きくなるほど、ΔXは小さくなる。したがって、あらかじめ被測定面までの距離とΔXの関係を校正試験片などによって求めておけば、ΔXを計測することにより被測定面までの距離を求めることができる。   Two light beam irradiation points on the measurement target surface 20a are imaged on one image sensor 4 through the condenser lens 3 (Step 200). As the image sensor, a CCD line sensor camera, a CMOS line sensor camera, or the like is suitable. When the measured surface 20a is displaced in the vertical direction in FIG. 7, the interval ΔX between the two light receiving spots 5 and 5 'formed on the image sensor 4 changes as can be easily understood geometrically. That is, ΔX decreases as the distance to the surface to be measured increases. Therefore, if the relationship between the distance to the surface to be measured and ΔX is obtained in advance using a calibration test piece or the like, the distance to the surface to be measured can be obtained by measuring ΔX.

図8には、距離計寸法とイメージセンサ画角を同条件にした場合の両距離計の測定感度を計算した結果例を示す。本例では、図8(a)に示す変位計寸法Lおよびイメージセンサの画角βを同条件(L=300mm、β=7.8°)にして,測定距離350〜450mmの範囲の被測定面20aの距離を測定した場合の、それぞれの距離計の測定感度、すなわち、イメージセンサ上における受光スポット位置あるいは間隔の変化量を図8(b)に示す。本例からわかるように、図7に示す距離計の方が従来の距離計に比べて測定感度が高いことが確認できる。したがって本発明で用いる距離計は微小な距離変化の検出能に優れ、これを用いることにより、従来の三角測量式距離計を用いた場合に比べ、より高精度の厚さ測定が可能になる。     FIG. 8 shows an example of the result of calculating the measurement sensitivity of both distance meters when the distance meter dimensions and the image sensor angle of view are the same. In this example, the surface to be measured 20a having a measurement distance of 350 to 450 mm under the same conditions (L = 300 mm, β = 7.8 °) with the displacement meter dimension L and the image sensor angle of view β shown in FIG. FIG. 8B shows the measurement sensitivity of each distance meter when the distance is measured, that is, the amount of change in the light receiving spot position or interval on the image sensor. As can be seen from this example, it can be confirmed that the distance meter shown in FIG. 7 has higher measurement sensitivity than the conventional distance meter. Therefore, the distance meter used in the present invention is excellent in the ability to detect a minute distance change, and by using this, it is possible to measure the thickness with higher accuracy than when a conventional triangulation type distance meter is used.

次に、本発明において、被測定物の傾きを検出し補正する方法について、図9および図10に基づいて詳細に説明する。イメージセンサ4a上の受光波形には図10(i)のように、2つの受光スポットが現れる。簡単のため、2つの投光器から出射される2つの光ビームの入射角が等しい場合、すなわちイメージセンサに対して2つの光ビームが幾何学的に対称な場合を考える。   Next, in the present invention, a method for detecting and correcting the inclination of the object to be measured will be described in detail with reference to FIGS. As shown in FIG. 10 (i), two light receiving spots appear in the light receiving waveform on the image sensor 4a. For simplicity, consider the case where the incident angles of the two light beams emitted from the two projectors are equal, that is, the case where the two light beams are geometrically symmetric with respect to the image sensor.

被測定面までの距離が変化すると、この2つの受光スポットの間隔ΔXが変化するが、この2つの受光スポットの中点の位置Xcに着目すると、被測定面の傾きθ=0のときは、被測定面までの距離の大小に関わらず、左右の対称性から、Xcの位置は不変になる。ところが被測定面が角度θ(>0)だけ傾くと、イメージセンサ4a上の受光波形は図10(ii)のようになり、イメージセンサ上のXcの位置は変化する。また被測定面が逆向きに傾いた場合(θ<0)は、イメージセンサ上のXcの位置は図10(iii)のように逆向きに変化する。Xcの値はθが大きくなるにつれて単調に変化するため、Xcの変化量を計測することによって被測定面の傾きを検出することができる。   When the distance to the surface to be measured changes, the distance ΔX between the two light receiving spots changes. When attention is paid to the position Xc of the midpoint between the two light receiving spots, when the inclination θ of the surface to be measured is 0, Regardless of the distance to the surface to be measured, the position of Xc does not change due to the left / right symmetry. However, when the surface to be measured is inclined by the angle θ (> 0), the light reception waveform on the image sensor 4a becomes as shown in FIG. 10 (ii), and the position of Xc on the image sensor changes. When the surface to be measured is inclined in the reverse direction (θ <0), the position of Xc on the image sensor changes in the reverse direction as shown in FIG. 10 (iii). Since the value of Xc changes monotonously as θ increases, the inclination of the surface to be measured can be detected by measuring the amount of change in Xc.

実際には、Xcの変化量と傾きθの関係は、被測定面までの距離にも依存するので、あらかじめ被測定面の傾きとΔXおよびXcの関係を校正試験片などによって求めておく必要がある。図11に、4096素子のイメージセンサを用いた場合の、被測定面の傾きθとΔXおよびXcの関係を例示する。たとえば今、ΔX=2926画素で、Xc=2057.5画素であったとすると、図中に記した矢印から、被測定面の傾きθが1.95°であることがわかる。傾き補正演算手段にあらかじめ、図11に示すような関係をテーブルあるいは近似多項式などの形で記憶させておく。傾き補正演算手段は、画像処理手段によって計測されたΔXとXcの値を用いて、傾きθを一意に求めて、(2)式を利用して被測定面の傾きによる厚さ測定誤差を補正することができる。   Actually, since the relationship between the amount of change in Xc and the inclination θ also depends on the distance to the surface to be measured, it is necessary to obtain the relationship between the inclination of the surface to be measured and ΔX and Xc in advance using a calibration specimen or the like. is there. FIG. 11 illustrates the relationship between the inclination θ of the surface to be measured and ΔX and Xc when a 4096-element image sensor is used. For example, assuming that ΔX = 2926 pixels and Xc = 2057.5 pixels, the arrow θ in the figure indicates that the inclination θ of the measurement surface is 1.95 °. A relationship as shown in FIG. 11 is stored in advance in the form of a table or approximate polynomial in the inclination correction calculation means. The inclination correction calculation means uniquely determines the inclination θ using the values of ΔX and Xc measured by the image processing means, and corrects the thickness measurement error due to the inclination of the surface to be measured using equation (2). can do.

2つの投光器から出射される2つの光ビームの入射角が等しくない場合は、被測定面の傾きがない(θ=0)ときでも、受光スポットの中点位置Xcは被測定面までの距離によって変化するが、この場合でも、あらかじめΔXとXcとθの関係を求めておけば、上記と同様にしてθを算出することができる。   If the incident angles of the two light beams emitted from the two projectors are not equal, the midpoint position Xc of the light receiving spot depends on the distance to the surface to be measured even when the surface to be measured is not inclined (θ = 0). However, even in this case, if the relationship between ΔX, Xc, and θ is obtained in advance, θ can be calculated in the same manner as described above.

なお、上記の説明では、傾きθを上面距離計の測定値から算出する場合を記したが、下面距離計の測定値から算出しても構わない。また、上面および下面距離計でそれぞれθを算出し、その平均値をとるようにしてもよい。また、被測定物の傾きが無視できる場合には、受光スポットの中点位置Xcを計測して、傾き角度θの影響を補正する手順を省略することも可能である。   In the above description, the case where the inclination θ is calculated from the measured value of the upper surface distance meter is described, but it may be calculated from the measured value of the lower surface distance meter. Alternatively, θ may be calculated by an upper surface distance meter and a lower surface distance meter, and the average value thereof may be taken. If the inclination of the object to be measured can be ignored, the procedure for measuring the midpoint position Xc of the light receiving spot and correcting the influence of the inclination angle θ can be omitted.

上記では、被測定物を挟んでその両側に2つの光ビームの受光スポット間隔に基づいた光学式距離計を使用する場合について述べたが、片側の光学式距離計は従来の三角測量式距離計を用いるようにしてもよい。たとえば、厚さ測定精度は従来の三角測量方式の距離計を用いても十分であるが、被測定物の傾きによる測定誤差を補正したいケースなどでは、片側の距離計だけを本発明で提示する方式のものとすればよい。   In the above, the case where the optical distance meter based on the light receiving spot interval between the two light beams is used on both sides of the object to be measured has been described. However, the optical distance meter on one side is a conventional triangulation distance meter. May be used. For example, although it is sufficient to use a conventional triangulation type distance meter for thickness measurement accuracy, in the case where it is desired to correct a measurement error due to the tilt of the object to be measured, only one side distance meter is presented in the present invention. It may be of the method.

本発明で用いる光学式距離計には、2つの投光器を備えた投光手段を用いるが、この2つの投光器にはそれぞれ相異なる光源を有するものであってもよいが、同一の光源から出射された光ビームを2分して投光するようにしてもよい。すなわち図12に示すように、単一の光源1から出射された光ビームを光分岐手段31で2つに分岐し、その各々のビームを2つの投光光学系32,32’により適当なビーム径および入射角に調整して被測定面20a上に交差させるように照射するものであってもよい。   The optical distance meter used in the present invention uses a light projecting means including two light projectors. The two light projectors may have different light sources, but are emitted from the same light source. Alternatively, the light beam may be projected in half. That is, as shown in FIG. 12, the light beam emitted from the single light source 1 is split into two by the light branching means 31, and each beam is split into an appropriate beam by the two light projecting optical systems 32 and 32 '. Irradiation may be performed by adjusting the diameter and the incident angle so as to intersect with the measurement target surface 20a.

この場合、光分岐手段としてはビームスプリッタを、投光光学系としてはレンズ光学系を用いる。また、光源から出射される光ビームを光ファイバーで伝送し、光分岐手段としてファイバーカプラーを用いる構成としてもよい。このように同一の光源から出射された光ビームを2分して被測定面に照射すると、光源からの光ビーム出射角度の変動などに起因してイメージセンサ上で受光スポット位置のずれが生じた場合でも、2つの受光スポット間隔に基づいて距離を計測することによりこのずれを相殺でき、この結果、測定精度を向上させることができる利点がある。これに対し、従来の三角測量式の距離計では、イメージセンサ上の受光スポットの絶対位置に基づいて距離を計測するため、このようなスポットの位置ずれが直接測定誤差になる。   In this case, a beam splitter is used as the light branching unit, and a lens optical system is used as the light projecting optical system. Further, the light beam emitted from the light source may be transmitted by an optical fiber, and a fiber coupler may be used as the light branching unit. As described above, when the light beam emitted from the same light source is divided into two and irradiated onto the surface to be measured, the light receiving spot position is shifted on the image sensor due to fluctuations in the light beam emission angle from the light source, etc. Even in this case, this deviation can be offset by measuring the distance based on the interval between the two light receiving spots, and as a result, there is an advantage that the measurement accuracy can be improved. On the other hand, in the conventional triangulation type distance meter, since the distance is measured based on the absolute position of the light receiving spot on the image sensor, such a positional deviation of the spot becomes a direct measurement error.

図13は、本発明の一実施例を示す装置構成図である。本実施例は、厚さ7mm〜21mmの4枚の鋼板の板厚を、交差する2つのビームを利用した2組の光学距離計を用いて測定したものである。各光学距離計において、投光手段として2つの半導体レーザ(波長640nm,出力10mW)、イメージセンサとして4096画素のCCDラインセンサカメラを用いた。各半導体レーザから出射された光ビームはレンズで集光させることにより、鋼板上でビーム径0.3mm程度になるようにした。またCCDカメラには、4群5枚のレンズ系(焦点距離105mm)を装着した。CCDラインセンサカメラの撮像タイミングの制御および撮像データの採取は、パソコン内に組み込んだ画像処理ボードで行った。CCDラインセンサカメラからの撮像データから各受光スポット位置の計測、受光スポット間隔ΔXおよび受光スポット中点位置Xcの計測(Xcは、上面の距離計データから算出)、ΔXから距離への換算、ΔXとXcから傾き角θの算出、2つの距離算出値とθからの板厚tの計算は、すべてパソコン内のソフトウェア処理によって行った。   FIG. 13 is an apparatus configuration diagram showing an embodiment of the present invention. In this example, the thickness of four steel plates having a thickness of 7 mm to 21 mm was measured using two sets of optical distance meters using two intersecting beams. In each optical distance meter, two semiconductor lasers (wavelength 640 nm, output 10 mW) were used as light projecting means, and a CCD line sensor camera with 4096 pixels was used as an image sensor. The light beam emitted from each semiconductor laser was condensed by a lens so that the beam diameter was about 0.3 mm on the steel plate. The CCD camera was equipped with 4 groups of 5 lens systems (focal length 105mm). Control of the imaging timing of the CCD line sensor camera and collection of imaging data were performed with an image processing board built in the personal computer. Measurement of each light receiving spot position from imaging data from the CCD line sensor camera, light receiving spot interval ΔX and light receiving spot midpoint position Xc (Xc is calculated from distance meter data on the upper surface), conversion from ΔX to distance, ΔX The calculation of the inclination angle θ from Xc and the calculation of the plate thickness t from the two distance calculation values and θ were all performed by software processing in a personal computer.

本発明による厚さ測定と対比するため、接触式のマイクロメータによる板厚測定、および従来法である三角測量式距離計を2組使用した場合の板厚測定も実施した。各測定装置による4枚の鋼板の厚さ測定結果を表1に示す。表1より、本発明の厚さ計の測定値と接触式のマイクロメータによる測定値は、接触式マイクロメータの測定バラツキ範囲内(3μm以内)でほとんど一致しており、良好な結果が得られた。また従来の厚さ計の測定値は、本発明に比べ測定精度が劣ることが確認された。   In order to contrast with the thickness measurement according to the present invention, a plate thickness measurement using a contact micrometer and a plate thickness measurement using two conventional triangulation distance meters were also performed. Table 1 shows the results of measuring the thickness of the four steel plates by each measuring device. From Table 1, the measured value of the thickness gauge of the present invention and the measured value by the contact type micrometer are almost the same within the measurement variation range (within 3 μm) of the contact type micrometer, and good results are obtained. It was. Moreover, it was confirmed that the measurement value of the conventional thickness meter is inferior in measurement accuracy as compared with the present invention.

次に同一の鋼板を用いて、鋼板を故意に所定角度θだけ傾けて、傾きに起因する測定誤差を評価した。この結果を表2に示す。マイクロメータによる測定は傾きのない状態で1回だけ行ったものである。マイクロメータの厚さ測定値を真とした場合、従来の厚さ計では傾きθ=4°のとき17μmの測定誤差を生じたが、本発明の厚さ計では2μmの測定誤差しか生じておらず、本発明による傾き補正の効果が確認された。   Next, using the same steel plate, the steel plate was intentionally tilted by a predetermined angle θ, and the measurement error due to the tilt was evaluated. The results are shown in Table 2. The measurement with the micrometer was performed only once with no inclination. When the thickness measurement value of the micrometer is true, the conventional thickness gauge has a measurement error of 17 μm when the inclination θ = 4 °, but the thickness gauge of the present invention has only a measurement error of 2 μm. First, the effect of tilt correction according to the present invention was confirmed.

なお本実施例では各距離計の光源として2つの半導体レーザを用いた場合について説明したが、前述のように、1つのレーザビームを2分岐して照射するようにしてもよい。   In the present embodiment, the case where two semiconductor lasers are used as the light source of each distance meter has been described. However, as described above, one laser beam may be split into two and irradiated.

本発明の厚さ測定装置の構成例を示す模式図である。It is a schematic diagram which shows the structural example of the thickness measuring apparatus of this invention. 光学式距離計を用いた厚さ測定の原理を示す模式図である。It is a schematic diagram which shows the principle of thickness measurement using an optical distance meter. 従来の光学式距離計の原理を示す模式図である。It is a schematic diagram which shows the principle of the conventional optical distance meter. 従来の厚さ測定における問題点を説明する模式図である。It is a schematic diagram explaining the problem in the conventional thickness measurement. 従来の厚さ測定装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the conventional thickness measuring apparatus. 本発明の厚さ測定を実施する上でのフローチャートである。It is a flowchart in implementing thickness measurement of the present invention. 本発明の厚さ測定に用いる光学式距離計の原理を示す模式図である。It is a schematic diagram which shows the principle of the optical distance meter used for the thickness measurement of this invention. 本発明および従来の光学式距離計の測定感度を示す特性図である。It is a characteristic view which shows the measurement sensitivity of this invention and the conventional optical distance meter. 本発明における傾き補正の原理を示す模式図である。It is a schematic diagram which shows the principle of the inclination correction in this invention. 本発明において傾きθによる受光波形変化を示す模式図である。It is a schematic diagram which shows the light reception waveform change by inclination (theta) in this invention. 測定パラメータと被測定面の傾きの関係を示す特性図である。It is a characteristic view which shows the relationship between a measurement parameter and the inclination of to-be-measured surface. 本発明の一実施形態を示す模式図である。It is a schematic diagram which shows one Embodiment of this invention. 本発明の一実施例を示す模式図である。It is a schematic diagram which shows one Example of this invention.

符号の説明Explanation of symbols

1A、1B 投光手段
1a、1a’、1b、1b’ 投光器
2、2a、2b 光ビーム
3、3a、3b レンズ
4、4a、4b イメージセンサ
5、5’ 受光スポット
6a、6b 画像処理手段
7a、7b 距離演算手段
8 厚さ演算手段
9 傾き補正演算手段
10、10a、10b 光学式距離計
20 被測定物
20a、20b 被測定面
31 光分岐手段
32、32’ 投光光学系
1A, 1B Light projecting means 1a, 1a ', 1b, 1b' Projector 2, 2a, 2b Light beam 3, 3a, 3b Lens 4, 4a, 4b Image sensor 5, 5 'Light receiving spot 6a, 6b Image processing means 7a, 7b Distance calculation means 8 Thickness calculation means 9 Inclination correction calculation means 10, 10a, 10b Optical distance meter 20 Object to be measured 20a, 20b Surface to be measured 31 Light branching means 32, 32 ′ Projection optical system

Claims (4)

2台の光学式距離計を被測定物を挟んで対向させて配置し、前記光学式距離計で被測定面までの距離をそれぞれ測定し、該測定値と前記光学式距離計の配置間隔から被測定物の厚さを測定する光学式厚さ測定方法において、
少なくとも一方の光学式距離計において、被測定面に相異なる方向から2つの光ビームを交差させるように照射し、被測定面上の2つの光スポットを1つのイメージセンサで撮像し、イメージセンサ上における2つの光スポットの間隔ΔXと2つの光スポットの中点位置Xcを計測し、あらかじめ求めておいたΔXと被測定面までの距離との関係に基づいて、ΔXの値から被測定面までの距離を算出するとともに、あらかじめ求めておいたΔXおよびXcと被測定面の傾きとの関係に基づいて、ΔXおよびXcの値から被測定面の傾きを算出し、該傾きに起因する厚さ測定誤差を補正して被測定物の厚さを算出することを特徴とする光学式厚さ測定方法
Two optical distance meters are placed opposite to each other with the object to be measured, the distance to the surface to be measured is measured with the optical distance meter, and the measured value and the distance between the optical distance meters are measured. In an optical thickness measurement method for measuring the thickness of an object to be measured,
In at least one of the optical distance meters, the surface to be measured is irradiated with two light beams crossing from different directions, and two light spots on the surface to be measured are picked up by one image sensor. The distance ΔX between the two light spots and the midpoint position Xc of the two light spots are measured, and from the value of ΔX to the surface to be measured based on the relationship between ΔX and the distance to the surface to be measured. The thickness of the surface to be measured is calculated from the values of ΔX and Xc based on the relationship between ΔX and Xc obtained in advance and the inclination of the surface to be measured. An optical thickness measuring method, wherein the thickness of the object to be measured is calculated by correcting the measurement error
被測定物を挟んで対向させて配置した2台の光学式距離計と、該光学式距離計で測定した被測定面までの距離から被測定物の厚さを算出する厚さ演算手段によって構成される光学式厚さ測定装置において、
少なくとも一方の光学式距離計が、被測定面に相異なる方向から2つの光ビームを交差させるように照射する投光手段と、
被測定面上の2つの光スポットを撮像するイメージセンサと、イメージセンサ上における2つの光スポットの間隔ΔXを計測する画像処理手段と、
あらかじめ求めておいたΔXと被測定面までの距離との関係に基づいて、ΔXの値から被測定面までの距離を算出する距離演算手段とによって構成されることを特徴とする光学式厚さ測定装置。
Consists of two optical distance meters arranged facing each other across the object to be measured, and a thickness calculation means for calculating the thickness of the object to be measured from the distance to the surface to be measured measured by the optical distance meter In the optical thickness measuring device to be
Projection means for irradiating at least one optical distance meter so as to intersect two light beams from different directions to the surface to be measured;
An image sensor for imaging two light spots on the surface to be measured, an image processing means for measuring an interval ΔX between the two light spots on the image sensor,
An optical thickness characterized by comprising a distance calculation means for calculating the distance to the surface to be measured from the value of ΔX based on the relationship between ΔX obtained in advance and the distance to the surface to be measured. measuring device.
被測定物を挟んで対向させて配置した2台の光学式距離計と、該光学式距離計で測定した被測定面までの距離から被測定物の厚さを算出する厚さ演算手段によって構成される光学式厚さ測定装置において、
少なくとも一方の光学式距離計が、被測定面に相異なる方向から2つの光ビームを交差させるように照射する投光手段と、
被測定面上の2つの光スポットを撮像するイメージセンサと、イメージセンサ上における2つの光スポットの間隔ΔXおよび2つの光スポットの中点位置Xcを計測する画像処理手段と、
あらかじめ求めておいたΔXと被測定面までの距離との関係に基づいて、ΔXの値から被測定面までの距離を算出する距離演算手段と、
あらかじめ求めておいたΔXおよびXcと被測定面の傾きとの関係に基づいて、ΔXおよびXcの値から被測定面の傾きを算出し、該傾きに起因する厚さ測定誤差を求め、前記厚さ演算手段で算出した被測定物の厚さを補正する傾き補正演算手段とによって構成されることを特徴とする光学式厚さ測定装置。
Consists of two optical distance meters arranged facing each other across the object to be measured, and a thickness calculation means for calculating the thickness of the object to be measured from the distance to the surface to be measured measured by the optical distance meter In the optical thickness measuring device to be
Projection means for irradiating at least one optical distance meter so as to intersect two light beams from different directions to the surface to be measured;
An image sensor for imaging two light spots on the surface to be measured; an image processing means for measuring a distance ΔX between the two light spots on the image sensor and a midpoint position Xc of the two light spots;
Distance calculating means for calculating a distance to the surface to be measured from a value of ΔX based on a relationship between ΔX obtained in advance and the distance to the surface to be measured;
Based on the relationship between ΔX and Xc obtained in advance and the inclination of the surface to be measured, the inclination of the surface to be measured is calculated from the values of ΔX and Xc, and a thickness measurement error due to the inclination is obtained. An optical thickness measuring apparatus comprising: an inclination correction calculating means for correcting the thickness of the object to be measured calculated by the thickness calculating means.
請求項2または請求項3に記載の光学式変位測定装置において、
前記投光手段が、単一の光源と、該光源から照射された光ビームを2つに分岐する光分岐手段と、分岐された2つの光ビームを被測定面に相異なる方向から交差するように照射する投光光学系とによって構成されることを特徴とする光学式厚さ測定装置。
In the optical displacement measuring device according to claim 2 or 3,
The light projecting means intersects the surface to be measured from different directions from a single light source, a light branching means for splitting the light beam emitted from the light source into two, and the two split light beams. An optical thickness measuring device comprising a light projecting optical system for irradiating the light.
JP2005002923A 2005-01-07 2005-01-07 Optical thickness measuring method and device Pending JP2006189389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005002923A JP2006189389A (en) 2005-01-07 2005-01-07 Optical thickness measuring method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005002923A JP2006189389A (en) 2005-01-07 2005-01-07 Optical thickness measuring method and device

Publications (1)

Publication Number Publication Date
JP2006189389A true JP2006189389A (en) 2006-07-20

Family

ID=36796738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005002923A Pending JP2006189389A (en) 2005-01-07 2005-01-07 Optical thickness measuring method and device

Country Status (1)

Country Link
JP (1) JP2006189389A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010512524A (en) * 2006-12-15 2010-04-22 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ Method and apparatus for thickness measurement
JP2011196883A (en) * 2010-03-19 2011-10-06 Toshiba Corp Distance measuring apparatus
DE102009011122B4 (en) * 2008-05-16 2013-04-11 Micro-Epsilon Messtechnik Gmbh & Co. Kg Method for calibrating a thickness measuring device
KR101349501B1 (en) * 2012-08-13 2014-01-09 한국해양과학기술원 Measurement system of sea ice thickness by using video camera
DE102014200157A1 (en) * 2013-10-28 2015-05-21 Micro-Epsilon Messtechnik Gmbh & Co. Kg Method for measuring the thickness of objects to be measured and device for using the method
WO2015088081A1 (en) * 2013-12-13 2015-06-18 한국해양과학기술원 Device and method for measuring ice thickness using load cell
DE202015004613U1 (en) * 2015-06-30 2016-08-04 Helmut Knorr Device for optical thickness or inclination measurement on a material web
JP2016142672A (en) * 2015-02-04 2016-08-08 株式会社東芝 Thickness measuring apparatus using optical distance detectors
KR20190107793A (en) * 2018-03-13 2019-09-23 주식회사 해동엔지니어링 Apparatus for measuring width of rolled steel plate
KR102037111B1 (en) * 2018-08-30 2019-11-26 주식회사 디월드 Apparatus for measuring dimension of high-temperature forging and method of measuring dimensio of high-temperautre forging
CN113976467A (en) * 2021-10-22 2022-01-28 西安奕斯伟材料科技有限公司 System for be used for selecting separately silicon chip
CN114608460A (en) * 2022-03-21 2022-06-10 广州矩阵黑格软件科技合伙企业(有限合伙) Method and system for measuring thickness of bottle preform wall

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010512524A (en) * 2006-12-15 2010-04-22 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ Method and apparatus for thickness measurement
DE102009011122B4 (en) * 2008-05-16 2013-04-11 Micro-Epsilon Messtechnik Gmbh & Co. Kg Method for calibrating a thickness measuring device
EP2227672B1 (en) * 2008-05-16 2013-06-19 Micro-Epsilon Messtechnik GmbH & Co. KG Method for calibrating a thickness gauge
US8554503B2 (en) 2008-05-16 2013-10-08 Micro-Epsilon Messetechnik GmbH Method for calibrating a thickness gauge
JP2011196883A (en) * 2010-03-19 2011-10-06 Toshiba Corp Distance measuring apparatus
KR101349501B1 (en) * 2012-08-13 2014-01-09 한국해양과학기술원 Measurement system of sea ice thickness by using video camera
US10234274B2 (en) 2013-10-28 2019-03-19 Micro-Epsilon Messtechnik Gmbh & Co. Kg Method for thickness measurement on measurement objects and device for applying the method
DE102014200157A1 (en) * 2013-10-28 2015-05-21 Micro-Epsilon Messtechnik Gmbh & Co. Kg Method for measuring the thickness of objects to be measured and device for using the method
WO2015088081A1 (en) * 2013-12-13 2015-06-18 한국해양과학기술원 Device and method for measuring ice thickness using load cell
JP2016142672A (en) * 2015-02-04 2016-08-08 株式会社東芝 Thickness measuring apparatus using optical distance detectors
DE202015004613U1 (en) * 2015-06-30 2016-08-04 Helmut Knorr Device for optical thickness or inclination measurement on a material web
KR20190107793A (en) * 2018-03-13 2019-09-23 주식회사 해동엔지니어링 Apparatus for measuring width of rolled steel plate
KR102062641B1 (en) * 2018-03-13 2020-01-07 주식회사 해동엔지니어링 Apparatus for measuring width of rolled steel plate
KR102037111B1 (en) * 2018-08-30 2019-11-26 주식회사 디월드 Apparatus for measuring dimension of high-temperature forging and method of measuring dimensio of high-temperautre forging
CN113976467A (en) * 2021-10-22 2022-01-28 西安奕斯伟材料科技有限公司 System for be used for selecting separately silicon chip
CN114608460A (en) * 2022-03-21 2022-06-10 广州矩阵黑格软件科技合伙企业(有限合伙) Method and system for measuring thickness of bottle preform wall

Similar Documents

Publication Publication Date Title
JP2006189389A (en) Optical thickness measuring method and device
US7800643B2 (en) Image obtaining apparatus
CN102818528B (en) Apparatus and method for inspecting an object with increased depth of field
US20040004727A1 (en) Three-dimensional shape measuring method, and three-dimensional shape measuring apparatus
JPH0650720A (en) Height measuring method and device
CN102538679B (en) Image correlation displacement sensor
CN102087483B (en) Optical system for focal plane detection in projection lithography
US20130235387A1 (en) Three-dimensional measuring device and method
JP2862311B2 (en) Surface position detection device
US20100265517A1 (en) Three-dimensional shape measuring apparatus
JP2017502295A (en) Non-imaging coherent line scanner system and optical inspection method
JP2015108582A (en) Three-dimensional measurement method and device
JP2010085395A (en) Optical position angle detector
JP2010197143A (en) Measuring apparatus and measuring method for measuring axis tilt of shaft of motor for polygon mirror
JP2006189390A (en) Optical displacement measuring method and device
JP2008292404A (en) Device for measuring laser beam characteristic
JP4853968B2 (en) Wafer positioning method and positioning apparatus
JP2008032669A (en) Optical scanning type planal visual inspecting apparatus
JP2007271549A (en) Optical distance measuring apparatus and method
JPS63225108A (en) Distance and inclination measuring instrument
JP2910151B2 (en) Position detection device
JP2009042128A (en) Height measuring device
JPH0311401B2 (en)
JPS62138715A (en) Method and instrument for measuring displacement
JP2943498B2 (en) Scanning laser displacement meter

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060906