JPH08240408A - Displacement sensor - Google Patents

Displacement sensor

Info

Publication number
JPH08240408A
JPH08240408A JP7080995A JP7080995A JPH08240408A JP H08240408 A JPH08240408 A JP H08240408A JP 7080995 A JP7080995 A JP 7080995A JP 7080995 A JP7080995 A JP 7080995A JP H08240408 A JPH08240408 A JP H08240408A
Authority
JP
Japan
Prior art keywords
measuring light
displacement
tilt
light
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7080995A
Other languages
Japanese (ja)
Inventor
Ritsugan Chiyou
立岩 張
Shinya Otsuki
真也 大槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP7080995A priority Critical patent/JPH08240408A/en
Publication of JPH08240408A publication Critical patent/JPH08240408A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE: To accurately obtain the amount of displacement by correcting the amount of displacement obtained by a displacement measuring optical system by the amount of inclination of a detection object obtained by an inclination measuring optical system. CONSTITUTION: The displacement measuring light rays 15 emitted from a displacement measuring light-projecting element 18 are converged by a converging lens 20 and are thrown on the surface of an detection object 1 after passing through a dichroic mirror 17. The displacement measuring light rays 15 reflected by the detection object 1 are converged by a light-receiving lens 23, and made to selectively pass through a dichroic mirror 24, and are imaged on a displacement measuring light-receiving element 21. The inclination measuring light rays 16 whose wavelength is different from that of the displacement measuring light rays 15 emitted from an inclination measuring light-projecting element 19 are collimated by the converging lens 20 and are thrown on the surface of the detection object 1 after being reflected by the dichroic mirror 17. The inclination measuring light rays 16 reflected by the detection object 1 are converged by the light-receiving lens 23 and are selectively reflected by the dichroic mirror 24 and are converged on an inclination measuring light-receiving element 22.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は変位センサに関する。特
に、鏡面物体や光沢材質物体、金属物体等のほぼ鏡面反
射する表面を有する検出物体の変位を測定するための変
位センサに関する。
FIELD OF THE INVENTION The present invention relates to a displacement sensor. In particular, the present invention relates to a displacement sensor for measuring the displacement of a detection object having a substantially specularly reflecting surface such as a mirror surface object, a glossy material object, and a metal object.

【0002】[0002]

【従来の技術】図1は、この種の変位センサAにおける
光学系の構成を示す図であって、三角測量法を用いて検
出物体1の変位量dを測定するものである。光源3は発
光ダイオード(LED)等の発光素子4と投光レンズ5
とからなり、互いの光軸6を一致させて構成されてい
る。受光部7は受光レンズ8と位置検出素子(PSD)
等の受光素子9とからなり、互いの光軸10を一致させ
て構成されている。光源3と受光部7は、標準線SLを
挟んでその両側に対称に配置されており、光源3の光軸
6と受光部7の光軸10とはいずれも標準線SLに対し
て等しい角度αをなしている。ここで、標準線SLと
は、検出物体1の変位を測定するための基準となる位置
を示すものであって、検出物体1の変位量dとは、この
標準線SL上における変位距離であると定義される。ま
た、光源3の光軸6と受光部7の光軸10とは標準線S
L上の1点で交差しており、この光軸6,10が交差し
ている標準軸SL上の点を標準点SPと呼び、標準点S
Pを通り標準線SLと垂直な平面を標準面SFと呼ぶこ
とにする。発光素子4と投光レンズ5の間の距離は、発
光素子4から出て投光レンズ5で集光された測定用光2
が標準点SPで1点に集光するように調整してあり、ま
た、標準点SPで反射した測定用光2が受光レンズ8で
集光されて受光素子9の上で集光するように受光レンズ
8と受光素子9の間の距離を調整してある。
2. Description of the Related Art FIG. 1 is a diagram showing a configuration of an optical system in a displacement sensor A of this type, in which a displacement amount d of a detection object 1 is measured by using a triangulation method. The light source 3 includes a light emitting element 4 such as a light emitting diode (LED) and a light projecting lens 5.
And the optical axes 6 thereof are aligned with each other. The light receiving section 7 includes a light receiving lens 8 and a position detecting element (PSD).
And the like, and their optical axes 10 are made to coincide with each other. The light source 3 and the light receiving portion 7 are symmetrically arranged on both sides of the standard line SL, and both the optical axis 6 of the light source 3 and the optical axis 10 of the light receiving portion 7 are at the same angle with respect to the standard line SL. It is α. Here, the standard line SL indicates a reference position for measuring the displacement of the detection object 1, and the displacement amount d of the detection object 1 is a displacement distance on the standard line SL. Is defined as In addition, the optical axis 6 of the light source 3 and the optical axis 10 of the light receiving unit 7 are the standard line S.
A point on the standard axis SL that intersects at one point on L and the optical axes 6 and 10 intersect is called a standard point SP, and a standard point S
A plane that passes through P and is perpendicular to the standard line SL will be referred to as a standard plane SF. The distance between the light emitting element 4 and the light projecting lens 5 is equal to the measuring light 2 emitted from the light emitting element 4 and condensed by the light projecting lens 5.
Is adjusted so as to be condensed at one point at the standard point SP, and the measuring light 2 reflected at the standard point SP is condensed at the light receiving lens 8 and condensed on the light receiving element 9. The distance between the light receiving lens 8 and the light receiving element 9 is adjusted.

【0003】しかして、発光素子4から出射された測定
用光2を投光レンズ5で集光して検出物体1の表面に照
射すると、測定用光2は標準点SPで1点に集光する。
このとき標準面SFに検出物体1(A)[以下、検出物
体1の表面の位置を検出物体1の位置という。]が位置
していると、図1に実線で示すように、検出物体1の表
面で鏡面反射した測定用光2は受光レンズ8を通して受
光素子9上で結像し、光軸10上の点で受光スポットを
形成する。
When the measuring light 2 emitted from the light emitting element 4 is condensed by the light projecting lens 5 and applied to the surface of the detection object 1, the measuring light 2 is condensed at one point at the standard point SP. To do.
At this time, the detection object 1 (A) on the standard surface SF [hereinafter, the position of the surface of the detection object 1 is referred to as the position of the detection object 1]. ], The measuring light 2 specularly reflected by the surface of the detection object 1 is imaged on the light receiving element 9 through the light receiving lens 8 as shown by the solid line in FIG. To form a light receiving spot.

【0004】これに対し、標準面SFから変位した検出
物体1(B)の場合には、図1に破線で示すように、測
定用光2が受光レンズ8を通して受光素子9上に集光さ
れて生じる受光スポットが移動するので、この受光スポ
ットの移動量(光軸上の点から受光強度の重心位置まで
の距離)xを検出することにより検出物体1の変位量d
を計算することができる。すなわち、標準点SPと受光
レンズ8との距離をa、受光レンズ8と受光素子9との
距離をbとし、受光スポットの移動量をxとすると、標
準面SFを基準とする検出物体1の変位量dは、三角測
量法の原理により求めることができ、次の式で表わさ
れる。
On the other hand, in the case of the detection object 1 (B) displaced from the standard surface SF, the measuring light 2 is condensed on the light receiving element 9 through the light receiving lens 8 as shown by the broken line in FIG. Since the light receiving spot generated as a result moves, the displacement amount d of the detection object 1 is detected by detecting the moving amount (distance from the point on the optical axis to the position of the center of gravity of the light receiving intensity) x of the light receiving spot.
Can be calculated. That is, if the distance between the standard point SP and the light-receiving lens 8 is a, the distance between the light-receiving lens 8 and the light-receiving element 9 is b, and the movement amount of the light-receiving spot is x, the detection object 1 with reference to the standard surface SF The displacement amount d can be obtained by the principle of triangulation method and is represented by the following equation.

【0005】[0005]

【数1】 [Equation 1]

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記の
ような変位センサAにあっては、標準線SLの方向に変
位し、さらに標準線SLに対して傾いている検出物体1
(C)の場合には、図1に2点鎖線で示すように、受光
素子9上の受光スポットはさらに移動し、受光素子9か
らの出力が変化する。しかも、この変位量dと傾き量β
とを分けて独立に検出することもできなかった。
However, in the displacement sensor A as described above, the detection object 1 displaced in the direction of the standard line SL and further tilted with respect to the standard line SL.
In the case of (C), as shown by the chain double-dashed line in FIG. 1, the light receiving spot on the light receiving element 9 further moves, and the output from the light receiving element 9 changes. Moreover, the displacement amount d and the inclination amount β
It was also not possible to separately detect and.

【0007】このように受光スポットの移動量xは、検
出物体1の変位量dだけでなく、検出物体1の傾き量β
によっても変化し、受光素子9上の受光スポットの移動
量xが同じであっても、検出物体1に傾きがない場合
(β=0)と傾きがある場合(β≠0)とで、また傾き
量βの大きさによっても、検出物体1の実際の変位量d
は違ってくる。このため、傾いている可能性のある検出
物体1の変位を検出する場合には、検出物体1の傾きに
よって変位量dに測定誤差が発生し、変位センサAの測
定精度を低下させる原因となっていた。
As described above, the movement amount x of the light receiving spot is not limited to the displacement amount d of the detection object 1 but also the inclination amount β of the detection object 1.
Even when the amount x of movement of the light receiving spot on the light receiving element 9 is the same, the detected object 1 has no inclination (β = 0) and has an inclination (β ≠ 0). The actual displacement amount d of the detected object 1 also depends on the magnitude of the inclination amount β.
Will be different. Therefore, when detecting the displacement of the detection object 1 that may be inclined, a measurement error occurs in the displacement amount d due to the inclination of the detection object 1, which causes a decrease in the measurement accuracy of the displacement sensor A. Was there.

【0008】本発明は叙上の従来例の欠点に鑑みてなさ
れたものであって、変位センサに傾き測定用光学系を付
与し、変位と同時に傾きを測定可能にすることを目的と
している。さらに、傾き測定用光学系により検出した検
出物体の傾きを用いて、計測した検出物体の変位量を補
正し、変位量を高精度に測定できるようにすることを目
的としている。
The present invention has been made in view of the drawbacks of the above conventional examples, and an object thereof is to provide an inclination measuring optical system to a displacement sensor so that the inclination can be measured simultaneously with the displacement. Further, it is an object of the present invention to correct the measured displacement amount of the detected object by using the inclination of the detected object detected by the inclination measuring optical system so that the displacement amount can be measured with high accuracy.

【0009】[0009]

【発明の開示】本発明の請求項1に記載の変位センサ
は、検出領域に向けて変位測定用光を出射する変位測定
用光源部、および、検出領域で反射された変位測定用光
を受光する変位測定用受光部からなる変位測定用光学系
と;検出領域にある物体の傾きを検出するための傾き測
定用光学系と;を備えたことを特徴としている。
DISCLOSURE OF THE INVENTION The displacement sensor according to claim 1 of the present invention receives a displacement measuring light source for emitting displacement measuring light toward a detection region and a displacement measuring light reflected by the detection region. And a tilt measuring optical system for detecting the tilt of the object in the detection area.

【0010】しかして、変位測定用光源部から出射され
た変位測定用光は検出物体上に照射される。検出物体で
反射した変位測定用光は変位測定用受光部に結像され
る。従って、変位測定用受光部の結像位置より検出物体
の変位量を知ることができる。また、この変位センサは
傾き測定用光学系を備えているので、検出物体の傾き量
も同時に計測することができる。しかも、変位測定用光
学系と傾き測定用光学系とを変位センサとして一体化す
ることができるので、傾き測定用光学系を有する変位セ
ンサを小型化することができる。
Therefore, the displacement measuring light emitted from the displacement measuring light source unit is applied to the detection object. The displacement measuring light reflected by the detection object is imaged on the displacement measuring light receiving section. Therefore, the displacement amount of the detected object can be known from the image forming position of the displacement measuring light receiving section. Further, since this displacement sensor is provided with the tilt measuring optical system, the tilt amount of the detected object can be simultaneously measured. Moreover, since the displacement measuring optical system and the tilt measuring optical system can be integrated as a displacement sensor, the displacement sensor having the tilt measuring optical system can be downsized.

【0011】また、請求項2に記載の実施態様にあって
は、前記傾き測定用光学系からの出力情報に基づいて、
前記変位測定用光学系の出力情報を補正する補正手段を
さらに備えたことを特徴としている。
According to the second aspect of the invention, based on the output information from the tilt measuring optical system,
It is characterized by further comprising correction means for correcting the output information of the displacement measuring optical system.

【0012】変位量測定の結果は検出物体の傾き量によ
って影響を受けるが、傾き量測定の結果は検出物体の変
位量によって影響を受けないので、傾き量は精度良く検
出することができる。従って、この実施態様により、変
位量測定と同時に測定された傾き量を用いて変位量を補
正すれば、傾きの有無やその大きさに影響されない変位
量を高精度に求めることができる。
Although the displacement amount measurement result is affected by the tilt amount of the detection object, the inclination amount measurement result is not affected by the displacement amount of the detection object, so that the tilt amount can be accurately detected. Therefore, according to this embodiment, if the displacement amount is corrected using the inclination amount measured at the same time as the displacement amount measurement, the displacement amount that is not affected by the presence or absence of the inclination and its size can be obtained with high accuracy.

【0013】しかも、変位測定用光学系と傾き測定用光
学系とが一体化されているので、変位量と傾き量とを同
時に計測することができ、測定及び補正の信頼性を高め
ることができる。
Moreover, since the displacement measuring optical system and the inclination measuring optical system are integrated, the displacement amount and the inclination amount can be measured at the same time, and the reliability of measurement and correction can be improved. .

【0014】請求項3に記載の実施態様にあっては、前
記傾き測定用光学系は、傾き測定用光を出射する傾き測
定用投光素子と、傾き測定用投光素子から出射された傾
き測定用光をコリメートして検出物体に照射させる傾き
測定用投光レンズと、検出物体で反射した傾き測定用光
を集光させる傾き測定用受光レンズと、当該受光レンズ
の焦点位置に配置された傾き測定用受光素子とから構成
されている。
According to another aspect of the present invention, the tilt measuring optical system includes a tilt measuring light projecting element for emitting tilt measuring light, and a tilt emitted from the tilt measuring light projecting element. An inclination measuring projection lens that collimates the measuring light and irradiates the detection object, a tilt measuring light receiving lens that collects the tilt measuring light reflected by the detection object, and a focus position of the light receiving lens It is composed of a tilt measuring light receiving element.

【0015】しかして、傾き測定用投光素子から出射さ
れた傾き測定用光は傾き測定用投光レンズでコリメート
光に変換されて検出物体に照射され、検出物体で反射さ
れた傾き測定用光は傾き測定用受光レンズを通して傾き
測定用受光素子上に集光させられる。従って、傾き測定
用受光素子の受光位置より検出物体の傾き量を知ること
ができる。しかも、コリメート光を検出物体に照射し、
傾き測定用受光素子を傾き測定用受光レンズの焦点位置
に配置しているので、検出物体の変位に影響されること
なく、傾き量を単独で高精度に計測することができる。
Thus, the tilt measuring light emitted from the tilt measuring light projecting element is converted into collimated light by the tilt measuring light projecting lens, irradiated on the detection object, and reflected by the detection object. Is condensed on the light receiving element for tilt measurement through the light receiving lens for tilt measurement. Therefore, the amount of tilt of the detected object can be known from the light receiving position of the light receiving element for tilt measurement. Moreover, the collimated light is applied to the detection object,
Since the light receiving element for tilt measurement is arranged at the focal position of the light receiving lens for tilt measurement, the tilt amount can be independently measured with high accuracy without being affected by the displacement of the detection object.

【0016】請求項4に記載の実施態様にあっては、前
記傾き測定用光学系は、傾き測定用光であるレーザ光を
検出物体に向けて出射する傾き測定用投光素子と、検出
物体で反射した傾き測定用光を屈折させる傾き測定用受
光レンズと、当該受光レンズの焦点位置に配置された傾
き測定用受光素子とから構成されている。
According to another aspect of the present invention, the tilt measuring optical system includes a tilt measuring light projecting element for emitting a laser beam, which is tilt measuring light, toward a detection object, and the detection object. It is composed of a tilt measuring light receiving lens for refracting the tilt measuring light reflected by and a tilt measuring light receiving element arranged at the focal position of the light receiving lens.

【0017】しかして、傾き測定用投光素子から出射さ
れたレーザ光(傾き測定用光)は検出物体に照射され、
検出物体で反射されたレーザ光は傾き測定用受光レンズ
を通して傾き測定用受光素子上に集光させられる。従っ
て、傾き測定用受光素子の受光位置より検出物体の傾き
量を知ることができる。しかも、傾き測定用光としてレ
ーザ光を用い、傾き測定用受光素子を傾き測定用受光レ
ンズの焦点位置に配置しているので、検出物体の変位に
影響されることなく、傾き量を単独で高精度に計測する
ことができる。また、傾き測定用光としてレーザ光を用
いることにより傾き測定用投光レンズを不要にでき、傾
き測定用光学系の構成を簡略化し、変位センサの小型軽
量化と低コスト化を図ることができる。
Therefore, the laser light emitted from the light-projecting element for tilt measurement (light for tilt measurement) is applied to the detection object,
The laser beam reflected by the detection object is focused on the light receiving element for tilt measurement through the light receiving lens for tilt measurement. Therefore, the amount of tilt of the detected object can be known from the light receiving position of the light receiving element for tilt measurement. Moreover, since the laser beam is used as the tilt measuring light and the tilt measuring light receiving element is arranged at the focal position of the tilt measuring light receiving lens, the tilt amount is independently increased without being affected by the displacement of the detected object. It can be measured with accuracy. Further, by using the laser light as the tilt measuring light, the tilt measuring light projecting lens can be eliminated, the structure of the tilt measuring optical system can be simplified, and the displacement sensor can be reduced in size and weight and cost. .

【0018】また、請求項5に記載の実施態様にあって
は、前記傾き測定用受光レンズが、前記変位測定用受光
部の受光レンズを兼用していることを特徴としている。
According to the fifth aspect of the invention, the inclination measuring light receiving lens also serves as the light receiving lens of the displacement measuring light receiving section.

【0019】従って、この実施態様によれば、変位測定
用光学系と傾き測定用光学系の受光レンズを兼用するこ
とによって部品点数を減らすことができ、変位センサの
コストを低減することができる。さらに、受光レンズを
兼用することにより、受光レンズの部品点数を減らすと
共に変位測定用受光素子と傾き測定用受光素子を接近さ
せて構成することができ、変位センサを非常に小型軽量
化することができる。
Therefore, according to this embodiment, the number of parts can be reduced and the cost of the displacement sensor can be reduced by using the displacement measuring optical system and the tilt measuring optical system as a light receiving lens. Further, by also using the light receiving lens, the number of parts of the light receiving lens can be reduced and the displacement measuring light receiving element and the tilt measuring light receiving element can be arranged close to each other, and the displacement sensor can be made extremely small and lightweight. it can.

【0020】また、請求項6に記載の実施態様にあって
は、前記傾き測定用投光レンズが、前記変位測定用光源
部の投光レンズを兼用していることを特徴としている。
According to the sixth aspect of the invention, the tilt measuring light projecting lens also serves as the light projecting lens of the displacement measuring light source section.

【0021】従って、この実施態様によれば、投光レン
ズを兼用することによって部品点数を減らすことがで
き、変位センサのコストを低減することができる。さら
に、投光レンズを兼用することにより、投光レンズの部
品点数を減らすと共に変位測定用光源と傾き測定用光源
を接近させて構成することができ、変位センサを非常に
小型軽量化することができる。
Therefore, according to this embodiment, the number of parts can be reduced by also using the light projecting lens, and the cost of the displacement sensor can be reduced. Further, by also using the light projecting lens, the number of parts of the light projecting lens can be reduced and the displacement measuring light source and the tilt measuring light source can be arranged close to each other, and the displacement sensor can be made extremely small and lightweight. it can.

【0022】また、請求項7に記載の実施態様にあって
は、前記変位測定用光源部が投光レンズを有し、前記変
位測定用受光部が受光レンズを有し、当該変位測定用受
光レンズの開口径が当該変位測定用投光レンズの開口径
以上の寸法を有していることを特徴としている。
According to the seventh aspect of the present invention, the displacement measuring light source section has a light projecting lens, the displacement measuring light receiving section has a light receiving lens, and the displacement measuring light receiving section has a light receiving lens. The aperture diameter of the lens is larger than the aperture diameter of the projection lens for displacement measurement.

【0023】投光レンズ径が小さいほど検出物体に照射
される変位測定用光の焦点深度が深くなり、検出物体が
移動しても検出物体上のスポット径の変化が小さくな
り、変位測定用受光素子上での像(受光強度パターン)
にボケが生じにくくなる。一方、受光レンズは検出物体
に傾きがある場合などにも変位測定用光を受光できるよ
う大きい方が好ましい。従って、受光レンズ径は少なく
とも投光レンズ径と等しいか、投光レンズ径よりも大き
いことが望ましい。
The smaller the diameter of the light projecting lens, the deeper the depth of focus of the displacement measuring light with which the detection object is irradiated, the smaller the change in the spot diameter on the detection object even when the detection object moves, and the light receiving for displacement measurement. Image on the device (received light intensity pattern)
Blurring is less likely to occur. On the other hand, it is preferable that the light receiving lens is large so that the displacement measuring light can be received even when the detected object is inclined. Therefore, it is desirable that the diameter of the light receiving lens is at least equal to or larger than the diameter of the light projecting lens.

【0024】請求項8に記載の実施態様にあっては、変
位測定用光により検出物体の表面に生じる光スポット
が、傾き測定用光により検出物体の表面に生じる光スポ
ットの内部にあることを特徴としている。
According to the embodiment of the present invention, the light spot generated on the surface of the detection object by the displacement measuring light is inside the light spot generated on the surface of the detection object by the inclination measuring light. It has a feature.

【0025】しかして、変位測定用光と傾き測定用光が
検出物体の同一箇所に照射されるので、同一箇所で変位
測定と傾き測定を行え、変位の補正精度が向上する。ま
た、小さな検出物体の場合にも変位測定と傾き測定を行
うことができる。
Since the displacement measuring light and the inclination measuring light are applied to the same portion of the detected object, the displacement measurement and the inclination measurement can be performed at the same portion, and the displacement correction accuracy is improved. Further, displacement measurement and tilt measurement can be performed even for a small detection object.

【0026】また、請求項9に記載の実施態様にあって
は、前記変位測定用光と前記傾き測定用光とが互いに波
長を異にしていることを特徴としている。
Further, in the embodiment described in claim 9, the displacement measuring light and the inclination measuring light have different wavelengths from each other.

【0027】波長の異なる変位測定用光と傾き測定用光
を用いることにより、変位測定と傾き測定とを干渉させ
ることなく、精度よく行わせることができる。
By using the displacement measuring light and the inclination measuring light having different wavelengths, it is possible to accurately perform the displacement measurement and the inclination measurement without interfering with each other.

【0028】例えば、請求項10に記載の実施態様のよ
うに、変位測定用光源部及び傾き測定用光学系の光源側
から出射された互いに波長の異なる変位測定用光及び傾
き測定用光を光合成器で重ね合わせて検出物体に照射す
れば、両測定箇所を一致させることができるので、変位
の補正精度が向上する。また、投光レンズを用いる場合
には、投光レンズの共用化を図ることができる。しか
も、両測定用光を重ね合せても波長が異なっているの
で、測定結果を別々に分離して取り出すことができる。
For example, as in the embodiment described in claim 10, the displacement measuring light and the inclination measuring light having different wavelengths emitted from the light source side of the displacement measuring light source section and the inclination measuring optical system are photosynthesized. By irradiating the detection object with a device overlapping each other, both measurement points can be made to coincide with each other, so that the displacement correction accuracy is improved. Further, when the light projecting lens is used, the light projecting lens can be shared. Moreover, since the wavelengths are different even when the two measuring lights are superposed, the measurement results can be separately separated and taken out.

【0029】すなわち、請求項11の実施態様のよう
に、互いに重なり合った波長の異なる変位測定用光及び
傾き測定用光を波長分離器で分離し、変位測定用光を変
位測定用受光部へ導き、傾き測定用光を傾き測定用光学
系の受光側へ導くようにすれば、変位測定用光学系と傾
き測定用光学系とを干渉させることなく、変位量と傾き
量とを精度よく測定することができる。
That is, as in the eleventh aspect of the present invention, the displacement measuring light and the tilt measuring light having different wavelengths which are overlapped with each other are separated by the wavelength separator, and the displacement measuring light is guided to the displacement measuring light receiving section. If the tilt measuring light is guided to the light receiving side of the tilt measuring optical system, the displacement amount and the tilt amount can be accurately measured without causing interference between the displacement measuring optical system and the tilt measuring optical system. be able to.

【0030】また、請求項12に記載の実施態様にあっ
ては、前記変位測定用光と前記傾き測定用光がいずれも
偏光であって、その偏光方向が互いに異なっていること
を特徴としている。
Further, in the twelfth aspect of the present invention, both the displacement measuring light and the inclination measuring light are polarized lights, and their polarization directions are different from each other. .

【0031】この実施態様によれば、偏光方向の異なる
変位測定用光と傾き測定用光を用いることにより、変位
測定と傾き測定とを干渉させることなく、精度よく行わ
せることができる。
According to this embodiment, by using the displacement measuring light and the tilt measuring light having different polarization directions, the displacement measuring and the tilt measuring can be performed accurately without interfering with each other.

【0032】例えば、請求項13に記載の実施態様のよ
うに、変位測定用光源部及び傾き測定用光学系の光源側
から出射された互いに偏光方向の異なる変位測定用光及
び傾き測定用光を光合成器で重ね合わせて検出物体に照
射すれば、両測定箇所を一致させることができるので、
変位の補正精度が向上する。また、投光レンズを用いる
場合には、投光レンズの共用化を図ることができる。し
かも、両測定用光を重ね合せても偏光方向が異なってい
るので、測定結果を別々に分離して取り出すことができ
る。
For example, as in the embodiment described in claim 13, the displacement measuring light and the inclination measuring light emitted from the light source side of the displacement measuring light source and the inclination measuring optical system and having different polarization directions are different from each other. By irradiating the detection object with overlapping with a photosynthesiser, both measurement points can be matched,
The displacement correction accuracy is improved. Further, when the light projecting lens is used, the light projecting lens can be shared. Moreover, since the polarization directions are different even when the two measurement lights are superposed, the measurement results can be separated and taken out separately.

【0033】すなわち、請求項14の実施態様のよう
に、互いに重なり合った偏光方向の異なる変位測定用光
及び傾き測定用光を偏光分離器を用いて分離し、変位測
定用光を変位測定用受光部へ導き、傾き測定用光を傾き
測定用光学系の受光側へ導くようにすれば、変位測定用
光学系と傾き測定用光学系とを干渉させることなく、変
位量と傾き量とを精度よく測定することができる。
That is, as in the embodiment of claim 14, the displacement measuring light and the inclination measuring light, which have different polarization directions and are overlapped with each other, are separated by using a polarization separator, and the displacement measuring light is received by the displacement measuring light. If the light for tilt measurement is guided to the light receiving side of the tilt measurement optical system, the displacement amount and tilt amount can be accurately measured without causing interference between the displacement measurement optical system and the tilt measurement optical system. It can be measured well.

【0034】請求項15に記載の実施態様にあっては、
傾き測定用投光レンズの入射側焦点位置に微小開口の開
口絞りを設けたことを特徴としている。
According to the embodiment of claim 15,
It is characterized in that an aperture stop having a small aperture is provided at the incident side focal position of the tilt measuring projection lens.

【0035】しかして、この実施態様によれば、投光レ
ンズに入射させる傾き測定用光を点光源化することがで
きるので、投光レンズを通過した傾き測定用光のコリメ
ート精度を向上させることができ、傾き測定用受光素子
上の光軸上に正確に集光させることができ、傾き測定精
度を向上させることができる。
According to this embodiment, however, since the tilt measuring light incident on the light projecting lens can be made into a point light source, the collimating accuracy of the tilt measuring light passing through the light projecting lens can be improved. Therefore, the light can be accurately focused on the optical axis on the light receiving element for tilt measurement, and the tilt measurement accuracy can be improved.

【0036】請求項16に記載の実施態様にあっては、
傾き測定用投光レンズの入射側に、傾き測定用光のビー
ムサイズを制限するための開口絞りを設けたことを特徴
としている。
According to the embodiment of claim 16,
It is characterized in that an aperture stop for limiting the beam size of the tilt measuring light is provided on the incident side of the tilt measuring light projecting lens.

【0037】しかして、この実施態様によれば、開口絞
りにより傾き測定用光のビームサイズを小さくすること
ができるので、小さな検出物体を測定するのに適する。
However, according to this embodiment, since the beam size of the tilt measuring light can be reduced by the aperture stop, it is suitable for measuring a small detection object.

【0038】[0038]

【実施例】図2は本発明の一実施例による変位センサB
の光学系を示す図である。ここで、SL,SF,SP
は、図1と同じくそれぞれ標準線、標準面、標準点を表
わし、投光部11の光軸12と受光部13の光軸14と
は標準点SPで交わり、いずれも標準線SLと等しい角
度αをなしている。投光部11は、変位測定用光源部
と、傾き測定用光源部と、両光源部から出射された変位
測定用光15と傾き測定用光16を光軸合わせして重ね
合せるための光合成器(17)とから構成されている。
FIG. 2 shows a displacement sensor B according to an embodiment of the present invention.
It is a figure which shows the optical system of. Where SL, SF, SP
1 represent a standard line, a standard surface, and a standard point, respectively, as in FIG. It is α. The light projecting unit 11 is an optical combiner for aligning the displacement measuring light source unit, the tilt measuring light source unit, and the displacement measuring light 15 and the tilt measuring light 16 emitted from both light source units with their optical axes aligned. (17) and.

【0039】変位測定用光源部は、発光ダイオード(L
ED)等の変位測定用投光素子18と投光レンズ(2
0)とからなり、傾き測定用光源部は、発光ダイオード
(LED)等の傾き測定用投光素子19と投光レンズ
(20)とからなり、変位測定用光源部の投光レンズと
傾き測定用光源部の投光レンズは1枚の投光レンズ20
により兼用されている。ここで、変位測定用投光素子1
8から出射される変位測定用光15の波長と傾き測定用
投光素子19から出射される傾き測定用光16の波長と
は互いに異なっている。このためには、例えば変位測定
用投光素子18と傾き測定用投光素子19として、互い
に発光波長の異なる発光ダイオードを用いればよい。あ
るいは、変位測定用投光素子18と光合成器(17)の
中間と傾き測定用投光素子19と光合成器(17)との
中間にそれぞれ透過波長の異なるフィルタを設けても良
い。
The displacement measuring light source unit includes a light emitting diode (L
Displacement measuring light emitting element 18 such as ED) and light emitting lens (2
0) and the light source unit for tilt measurement includes a light projecting element 19 for tilt measurement such as a light emitting diode (LED) and a light projecting lens (20). The light projecting lens of the light source is a single projecting lens 20.
It is also used by. Here, the light emitting element 1 for displacement measurement
The wavelength of the displacement measuring light 15 emitted from 8 and the wavelength of the inclination measuring light 16 emitted from the inclination measuring light projecting element 19 are different from each other. For this purpose, for example, as the displacement measuring light projecting element 18 and the inclination measuring light projecting element 19, light emitting diodes having different emission wavelengths may be used. Alternatively, filters having different transmission wavelengths may be provided between the displacement measuring light projecting element 18 and the light combiner (17) and between the inclination measuring light projecting element 19 and the light combiner (17).

【0040】また、この実施例で用いている光合成器と
は、(波長の異なる)複数の光を重ね合わせて出力する
光学素子であって、この実施例ではダイクロイックミラ
ー17を用いている。このダイクロイックミラー17
は、変位測定用光15の波長域の光に対して高い透過率
を示し、傾き測定用光16の波長域の光に対して高い反
射率を示すものであって、ダイクロイックミラー17の
一方に変位測定用投光素子18を配置し、他方に傾き測
定用投光素子19を配置し、変位測定用投光素子18か
ら出射されてダイクロイックミラー17を透過した変位
測定用光15と傾き測定用投光素子19から出射されて
ダイクロイックミラー17で反射された傾き測定用光1
6とが共軸状に重ね合わされた後、投光レンズ20を通
って検出物体1に照射されるように配置している。
The optical combiner used in this embodiment is an optical element for superimposing a plurality of lights (having different wavelengths) and outputting them. In this embodiment, a dichroic mirror 17 is used. This dichroic mirror 17
Indicates a high transmittance for the light in the wavelength range of the displacement measuring light 15 and a high reflectance for the light in the wavelength range of the tilt measuring light 16, and is provided on one side of the dichroic mirror 17. Displacement measuring light projecting element 18 is arranged, and tilt measuring light projecting element 19 is arranged on the other side. Displacement measuring light 15 emitted from displacement measuring light projecting element 18 and transmitted through dichroic mirror 17 and tilt measuring light Inclination measuring light 1 emitted from the light projecting element 19 and reflected by the dichroic mirror 17
6 and 6 are coaxially overlapped with each other, and then the detection object 1 is irradiated through the light projecting lens 20.

【0041】なお、ダイクロイックミラー17として
は、変位測定用光15の波長域の光に対して高い反射率
を示し、傾き測定用光16の波長域の光に対して高い透
過率を示すものであってもよく、その場合には変位測定
用投光素子18と傾き測定用投光素子19の配置は図2
とは逆になる。また、ここでいう光合成器としてはダイ
クロイックミラーに限るものでなく、例えば、効率は低
下するが、ハーフミラー等を用いることもできる。ま
た、光通信用の各種光合波器を用いることもできる。
The dichroic mirror 17 has a high reflectance for the light in the wavelength range of the displacement measuring light 15 and a high transmittance for the light in the wavelength range of the tilt measuring light 16. It may be provided, and in that case, the displacement measuring light projecting element 18 and the tilt measuring light projecting element 19 are arranged as shown in FIG.
The opposite is true. Further, the optical combiner here is not limited to the dichroic mirror, and for example, a half mirror or the like may be used although the efficiency is lowered. Also, various optical multiplexers for optical communication can be used.

【0042】この投光部11においては、変位測定用光
源部は集光系となっており、変位測定用投光素子18か
ら出射した変位測定用光15はダイクロイックミラー1
7を透過した後、投光レンズ20で集光され、標準点S
Pに収束するようになっている。従って、変位測定用投
光素子18と投光レンズ20は光軸12を一致させて配
置されており、その間の距離(光学的路長)は投光レン
ズ20の焦点距離よりも長くなっている。また、傾き測
定用光源部はコリメート系となっており、傾き測定用投
光素子19から出射した傾き測定用光16はダイクロイ
ックミラー17で反射された後、投光レンズ20でコリ
メートされ、コリメート光として検出物体1に照射され
るようになっている。従って、傾き測定用投光素子19
と投光レンズ20は光軸12を一致させて配置されてお
り、その間の距離(光学的路長)は投光レンズ20の焦
点距離に等しくなっている。
In this light projecting section 11, the light source section for displacement measurement is a condensing system, and the light 15 for displacement measurement emitted from the light projecting element 18 for displacement measurement is dichroic mirror 1.
After passing through 7, the light is condensed by the projection lens 20, and the standard point S
It converges on P. Therefore, the displacement measuring light projecting element 18 and the light projecting lens 20 are arranged with their optical axes 12 aligned with each other, and the distance (optical path length) between them is longer than the focal length of the light projecting lens 20. . Further, the tilt measuring light source unit is a collimating system, and the tilt measuring light 16 emitted from the tilt measuring light projecting element 19 is reflected by the dichroic mirror 17 and then collimated by the light projecting lens 20 to collimate the collimated light. The detection object 1 is illuminated as Therefore, the inclination measuring light projecting element 19
And the projection lens 20 are arranged with their optical axes 12 aligned with each other, and the distance (optical path length) between them is equal to the focal length of the projection lens 20.

【0043】変位センサBの受光部13は、位置検出素
子(PSD)や電荷結合素子(CCD)等の変位測定用
受光素子21及び傾き測定用受光素子22と、変位測定
用及び傾き測定用を兼ねた受光レンズ23と、重なり合
った変位測定用光15と傾き測定用光16を分離するた
めの波長分離器(24)とから構成されている。この実
施例の波長分離器とは、重なり合った波長の異なる複数
の光を分離して出力する光学素子であって、この実施例
では光合成器と同様にダイクロイックミラー24を用い
ている。図2に示されているダイクロイックミラー24
も、変位測定用光15の波長域の光に対して高い透過率
を示し、傾き測定用光16の波長域の光に対して高い反
射率を示すものであって、透過側の光軸14上に変位測
定用投光素子18が配置され、反射側の光軸14上に傾
き測定用受光素子22が配置されている。しかして、検
出物体1で反射された変位測定用光15と傾き測定用光
16が受光レンズ23を通過し、互いに重なりあった状
態でダイクロイック24に入射すると、変位測定用光1
5はダイクロイックミラー24を透過して変位測定用受
光素子21に入射し、傾き測定用光16はダイクロイッ
クミラー24で反射して傾き測定用受光素子22に入射
する。
The light receiving portion 13 of the displacement sensor B includes a light receiving element 21 for displacement measurement such as a position detection element (PSD) and a charge coupled device (CCD), a light receiving element 22 for tilt measurement, and a light receiving element for displacement measurement and tilt measurement. The light receiving lens 23 also serves as a light receiving lens 23, and a wavelength separator (24) for separating the displacement measuring light 15 and the tilt measuring light 16 which are overlapped with each other. The wavelength separator of this embodiment is an optical element that separates and outputs a plurality of overlapping lights of different wavelengths. In this embodiment, a dichroic mirror 24 is used as in the case of the optical combiner. The dichroic mirror 24 shown in FIG.
Also has a high transmittance for the light in the wavelength range of the displacement measuring light 15 and a high reflectance for the light in the wavelength range of the tilt measuring light 16, and the optical axis 14 on the transmission side The displacement measuring light projecting element 18 is arranged on the upper side, and the tilt measuring light receiving element 22 is arranged on the reflection-side optical axis 14. Then, when the displacement measuring light 15 and the tilt measuring light 16 reflected by the detection object 1 pass through the light receiving lens 23 and enter the dichroic 24 while overlapping each other, the displacement measuring light 1
Reference numeral 5 passes through the dichroic mirror 24 and enters the displacement measuring light receiving element 21, and the tilt measuring light 16 is reflected by the dichroic mirror 24 and enters the tilt measuring light receiving element 22.

【0044】なお、波長分離器のダイクロイックミラー
24としても、変位測定用光15の波長域の光に対して
高い反射率を示し、傾き測定用光16の波長域の光に対
して高い透過率を示すものであってもよく、その場合に
は変位測定用受光素子21と傾き測定用受光素子22の
配置は図2とは逆になる。また、この波長分離器として
はダイクロイックミラーに限るものではないが、波長弁
別性のないハーフミラーを単独で用いることはできな
い。しかし、ハーフミラーと波長選択フィルタとを組合
せて用いることはできる。また、光通信用の各種光分波
器を用いることもできる。
The dichroic mirror 24 of the wavelength separator also shows a high reflectance for the light in the wavelength range of the displacement measuring light 15 and a high transmittance for the light in the wavelength range of the tilt measuring light 16. The arrangement of the displacement measuring light receiving element 21 and the inclination measuring light receiving element 22 is opposite to that shown in FIG. The wavelength separator is not limited to the dichroic mirror, but a half mirror having no wavelength discriminating property cannot be used alone. However, a half mirror and a wavelength selection filter can be used in combination. Also, various optical demultiplexers for optical communication can be used.

【0045】この受光部13においては、変位測定用受
光素子21と受光レンズ23からなる変位測定用受光部
は結像系となっており、検出物体1の表面で鏡面反射さ
れた変位測定用光15は受光レンズ23で集光された
後、ダイクロイックミラー24を透過して変位測定用受
光素子21上に集光される。従って、受光レンズ23と
変位測定用受光素子21は光軸14を一致させて配置さ
れており、受光レンズ23と変位測定用受光素子21と
の距離(光学的路長)は受光レンズ23の焦点距離fよ
りも長くなっている。特に、標準点SPで反射された光
は変位測定用受光素子21の光軸14上の点(変位測定
用受光素子21上の座標原点)で収束するようになって
いるので、受光レンズ23と標準点SPとの距離をa、
受光レンズ23と変位測定用受光素子21との距離(光
学的路長)をb、受光レンズ23の焦点距離をfとする
と、これらの間にはレンズ公式による(1/a)+(1
/b)=(1/f)の関係がある。また、傾き測定用受
光部は傾き測定用受光素子22と受光レンズ23とから
なり、検出物体1の表面で反射された傾き測定用光(コ
リメート光)16は受光レンズ23で集光された後、ダ
イクロイックミラー24で反射して傾き測定用受光素子
22上に集光される。従って、受光レンズ23と傾き測
定用受光素子22は光軸14を一致させて配置されてお
り、その間の距離(光学的路長)は受光レンズ23の焦
点距離fに等しくなっており、光軸14と平行な傾き測
定用光16は傾き測定用受光素子22上の受光レンズ2
3の焦点位置(傾き測定用受光素子22の座標原点)に
集光する。
In this light receiving section 13, the displacement measuring light receiving section consisting of the displacement measuring light receiving element 21 and the light receiving lens 23 is an image forming system, and the displacement measuring light reflected specularly on the surface of the detection object 1 is used. After being condensed by the light receiving lens 23, the light 15 is transmitted through the dichroic mirror 24 and condensed on the displacement measuring light receiving element 21. Therefore, the light receiving lens 23 and the displacement measuring light receiving element 21 are arranged with their optical axes 14 aligned with each other, and the distance (optical path length) between the light receiving lens 23 and the displacement measuring light receiving element 21 is the focal point of the light receiving lens 23. It is longer than the distance f. In particular, the light reflected at the standard point SP is designed to converge at a point on the optical axis 14 of the displacement measuring light receiving element 21 (coordinate origin on the displacement measuring light receiving element 21). The distance from the standard point SP is a,
Assuming that the distance (optical path length) between the light receiving lens 23 and the displacement measuring light receiving element 21 is b and the focal length of the light receiving lens 23 is f, the distance between them is (1 / a) + (1
There is a relationship of / b) = (1 / f). The tilt measuring light receiving section includes a tilt measuring light receiving element 22 and a light receiving lens 23, and tilt measuring light (collimated light) 16 reflected by the surface of the detection object 1 is collected by the light receiving lens 23. , Is reflected by the dichroic mirror 24 and is condensed on the inclination measuring light receiving element 22. Therefore, the light receiving lens 23 and the inclination measuring light receiving element 22 are arranged with their optical axes 14 aligned, and the distance (optical path length) between them is equal to the focal length f of the light receiving lens 23. The tilt measuring light 16 parallel to the light receiving lens 2 is provided on the light receiving element 22 for tilt measuring.
The light is focused on the focal point position 3 (the coordinate origin of the light receiving element 22 for tilt measurement).

【0046】従って、この変位センサBにあっては、変
位測定用投光素子18、投光レンズ20(兼用)、受光
レンズ23(兼用)及び変位測定用受光素子21によっ
て変位測定用光学系が構成され、傾き測定用投光素子1
9、投光レンズ20(兼用)、受光レンズ23(兼用)
及び傾き測定用受光素子22によって傾き測定用光学系
が構成されており、変位測定用光学系と傾き測定用光学
系とは、光学的には分離されて互いに独立しているが、
構造的には一体化され、少ない部品点数でコンパクトに
構成されている。
Therefore, in this displacement sensor B, the displacement measuring optical system is composed of the displacement measuring light-projecting element 18, the light-projecting lens 20 (also used), the light-receiving lens 23 (also used) and the displacement-measurement light-receiving element 21. Constituting light source 1 for tilt measurement
9. Light projecting lens 20 (also used), light receiving lens 23 (also used)
The tilt measuring optical system is constituted by the tilt measuring light receiving element 22, and the displacement measuring optical system and the tilt measuring optical system are optically separated and independent from each other.
Structurally integrated, it is compactly constructed with a small number of parts.

【0047】まず、この変位センサBにより検出物体1
の傾きを測定する原理を説明する。この変位センサBの
うち、傾き測定用光学系のみを取り出して図3に示す
(ダイクロイックミラー17,24による効果は省略す
る)。傾き測定用投光素子19は投光レンズ20の焦点
に配置されているので、傾き測定用投光素子19から出
射された傾き測定用光16は投光レンズ20を通過して
コリメート光となり、検出物体1の表面に投射される。
検出物体1が傾いていない(β=0)場合には、検出物
体1(A)の表面で反射された傾き測定用光16は光軸
14と平行なコリメート光として受光レンズ23に入射
する。傾き測定用光16は受光レンズ23の焦点に集光
するので、傾き測定用受光素子22の原点位置(y=
0)に集光し、受光スポットを生じる。
First, the displacement sensor B detects the object 1 to be detected.
The principle of measuring the inclination of is explained. Of the displacement sensor B, only the tilt measuring optical system is taken out and shown in FIG. 3 (the effect of the dichroic mirrors 17 and 24 is omitted). Since the tilt measuring light projecting element 19 is arranged at the focal point of the light projecting lens 20, the tilt measuring light 16 emitted from the tilt measuring light projecting element 19 passes through the light projecting lens 20 to become collimated light. It is projected on the surface of the detection object 1.
When the detection object 1 is not tilted (β = 0), the tilt measurement light 16 reflected by the surface of the detection object 1 (A) enters the light receiving lens 23 as collimated light parallel to the optical axis 14. Since the tilt measuring light 16 is condensed at the focal point of the light receiving lens 23, the origin position of the tilt measuring light receiving element 22 (y =
0) to collect a light receiving spot.

【0048】これに対し、検出物体1がβだけ傾くと、
検出物体1(B)の表面で反射した傾き測定用光16は
光軸14に対して2β傾くので、図3から分かるよう
に、焦点距離fの位置で集光する受光スポットは原点位
置から y=f・tan(2β) … だけ移動することになる。従って、傾き測定用受光素子
22上における受光スポットの移動量yを検出すること
により、検出物体1(B)の傾き量βを求めることがで
きる。
On the other hand, when the detected object 1 is inclined by β,
Since the tilt measuring light 16 reflected by the surface of the detection object 1 (B) is tilted by 2β with respect to the optical axis 14, as can be seen from FIG. 3, the light receiving spot focused at the position of the focal length f is y from the origin position. = F · tan (2β) ... Therefore, the tilt amount β of the detection object 1 (B) can be obtained by detecting the movement amount y of the light receiving spot on the tilt measuring light receiving element 22.

【0049】一方、検出物体1が一定の傾き量βを保っ
たままで平行移動した場合には、検出物体1で反射され
た傾き測定用光16の光軸14に対する角度2βは変化
しないので、傾き測定用受光素子22上の受光スポット
の位置[y=f・tan(2β)]は変化しない。すなわ
ち、傾き測定用光学系は検出物体1の変位量dに影響さ
れることなく、傾き量βだけを精度良く検出することが
できる。
On the other hand, when the detection object 1 moves in parallel while maintaining a constant inclination amount β, the angle 2β of the inclination measuring light 16 reflected by the detection object 1 with respect to the optical axis 14 does not change, so the inclination The position [y = f · tan (2β)] of the light receiving spot on the measuring light receiving element 22 does not change. That is, the tilt measuring optical system can accurately detect only the tilt amount β without being affected by the displacement amount d of the detection object 1.

【0050】次に、この変位センサBにより検出物体1
の変位を測定する原理を説明する。この変位センサBの
うち、変位測定用光学系のみを取り出して図4に示す
(ダイクロイックミラー17,24による効果は省略す
る)。変位測定用投光素子18から出射された変位測定
用光15は投光レンズ20により集光されて標準点SP
に収束するので、検出物体1が標準面SFにあれば、検
出物体1の表面で反射された変位測定用光15は受光レ
ンズ23で集光され、変位測定用受光素子21上の原点
(x=0)に受光スポットを生じる。また、検出物体1
がdだけ変位すると、標準点SPから2dの位置に標準
点SPの鏡像を生じるので、図4に示すように変位測定
用受光素子21上の受光スポットはxだけ移動する。こ
の変位測定用受光素子21上での受光スポットの移動量
xを検出すれば、結像の関係から検出物体1の変位量d
を求めることができる。しかし、変位測定用光学系の場
合には、従来例でも説明したように、検出物体1の傾き
量βによっても受光スポットの移動量xが影響を受け
る。
Next, the displacement sensor B detects the object 1 to be detected.
The principle of measuring the displacement of is explained. Of the displacement sensor B, only the displacement measuring optical system is taken out and shown in FIG. 4 (the effect of the dichroic mirrors 17 and 24 is omitted). The displacement measuring light 15 emitted from the displacement measuring light projecting element 18 is condensed by the light projecting lens 20 to form a standard point SP.
Therefore, if the detection object 1 is on the standard surface SF, the displacement measuring light 15 reflected by the surface of the detection object 1 is condensed by the light receiving lens 23, and the origin (x A light receiving spot occurs at = 0). In addition, the detection object 1
Is displaced by d, a mirror image of the standard point SP is generated at a position 2d from the standard point SP, so that the light receiving spot on the displacement measuring light receiving element 21 moves by x as shown in FIG. If the movement amount x of the light receiving spot on the displacement measuring light receiving element 21 is detected, the displacement amount d of the detection object 1 is determined from the image formation relationship.
Can be requested. However, in the case of the displacement measuring optical system, as described in the conventional example, the movement amount x of the light receiving spot is also influenced by the inclination amount β of the detection object 1.

【0051】上記のように、変位測定用光学系による変
位量の測定結果、つまり移動量xの値は検出物体1の変
位量d及び傾き量βの関数となっているが、傾き量βは
傾き測定用光学系によって正確、かつ独立に求めること
ができる。従って、傾き測定用受光素子22上での受光
スポットの移動量yから傾き量βを求めれば、変位測定
用受光素子21上での受光スポットの移動量xと傾き量
βとから正確に変位量dを求めることができる。
As described above, the measurement result of the displacement amount by the displacement measuring optical system, that is, the value of the movement amount x is a function of the displacement amount d and the inclination amount β of the detection object 1, but the inclination amount β is It can be accurately and independently obtained by the tilt measuring optical system. Therefore, if the inclination amount β is obtained from the movement amount y of the light receiving spot on the inclination measuring light receiving element 22, the displacement amount is accurately calculated from the movement amount x and the inclination amount β of the light receiving spot on the displacement measuring light receiving element 21. d can be obtained.

【0052】図5は検出物体1が標準軸SL上でdだけ
変位し、しかもβだけ傾いたときの様子を示している。
このときβだけ傾いた検出物体1による標準点SPの鏡
像が変位測定用受光素子21上の原点からxの位置に結
像する。この鏡像と受光レンズ23との距離はa+2d
cosβcos(α+β)、鏡像と光軸14との距離は2dco
sβsin(α+β)であるから、結像の関係より、移動量
xは次の式で表わされる。
FIG. 5 shows a state in which the detection object 1 is displaced by d on the standard axis SL and is tilted by β.
At this time, a mirror image of the standard point SP of the detection object 1 tilted by β forms an image at the position x from the origin on the displacement measuring light receiving element 21. The distance between this mirror image and the light-receiving lens 23 is a + 2d
cos β cos (α + β), the distance between the mirror image and the optical axis 14 is 2 dco
Since it is sβsin (α + β), the movement amount x is represented by the following formula from the relationship of image formation.

【0053】[0053]

【数2】 [Equation 2]

【0054】ここで、移動量dは標準点SPと受光レン
ズ23との距離aに較べて十分に小さく、2d<<aであ
るとすると、上記式は次の式のように簡単になる。
Here, assuming that the movement amount d is sufficiently smaller than the distance a between the standard point SP and the light receiving lens 23, and 2d << a, the above equation becomes simple as the following equation.

【0055】[0055]

【数3】 (Equation 3)

【0056】従って、検出物体1の変位量dは移動量x
に比例し、次の式より求めることができる。
Therefore, the displacement amount d of the detected object 1 is the movement amount x
And can be obtained from the following equation.

【0057】[0057]

【数4】 [Equation 4]

【0058】図6は変位センサBの信号処理回路の一例
を示すブロック図であって、移動量演算回路27は傾き
測定用受光素子22の出力から、受光スポットの移動量
yを求める。ついで、傾き量演算回路28は、例えば上
記式に基づき、移動量演算回路27で求めた移動量y
から検出物体1の傾き量βを求める。求めた傾き量βは
変位量演算部26及び外部へ出力される。また、移動量
演算回路25は変位測定用受光素子21の出力から、受
光スポットの移動量xを求める。ついで、変位量演算回
路26は、例えば上記式に基づき、移動量演算回路2
5で求めた移動量xと傾き量演算回路28で求めた傾き
量βから検出物体1の変位量dを求める。求めた変位量
dは出力される。この結果、変位センサBからは、高精
度に求めた変位量dと傾き量βとを出力することができ
る。
FIG. 6 is a block diagram showing an example of the signal processing circuit of the displacement sensor B. The movement amount calculation circuit 27 obtains the movement amount y of the light receiving spot from the output of the inclination measuring light receiving element 22. Then, the inclination amount calculation circuit 28 uses the movement amount y calculated by the movement amount calculation circuit 27 based on the above equation, for example.
The inclination amount β of the detection object 1 is obtained from The calculated inclination amount β is output to the displacement amount calculation unit 26 and the outside. Further, the movement amount calculation circuit 25 obtains the movement amount x of the light receiving spot from the output of the displacement measuring light receiving element 21. Next, the displacement amount calculation circuit 26 uses the movement amount calculation circuit 2 based on the above equation, for example.
The displacement amount d of the detection object 1 is obtained from the movement amount x obtained in 5 and the inclination amount β obtained by the inclination amount calculation circuit 28. The calculated displacement amount d is output. As a result, the displacement sensor B can output the displacement amount d and the inclination amount β obtained with high accuracy.

【0059】図7は変位測定用光学系における検出物体
1上のスポット径の変化と変位測定用受光素子21上で
の受光強度分布を示す図である。すなわち、29a,2
9b,29cは、検出物体1がd=−D,0,+Dの位
置にあるときの検出物体1上でのスポット径を示し、3
0a,30b,30cは、検出物体1がd=−D,0,
+Dの位置にあるときの変位測定用受光素子21上での
受光強度分布を示している。投光レンズ20の開口数N
Aが小さければ、投光スポット径29a,29b,29
cが大きくなるが、焦点深度は小さくなり、変位測定範
囲以内でスポット径29a,29b,29cの変化が大
きくなる。このため図7の29a,29b,29cのよ
うに検出物体1が変位したときのスポット径の変化が大
きくなり、図7の30a,30b,30cのように変位
測定用受光素子21上の像にボケが生じ、変位測定の誤
差の一つの原因となる。従って、できる限り変位測定範
囲内で投光スポット径の変化がないように、あるいは、
投光スポット径の変化を小さくなるようにする必要があ
る。そのため、投光レンズ20はその開口径を小さく
(開口数NAを大きく)すれば、変位測定用受光素子2
1上での像のボケを防ぐ効果が得られる。一方、変位測
定用受光部では、検出物体1の傾きがあっても、その変
位を検出できるようにするため、受光レンズ23の開口
径は大きくする必要がある。従って、受光レンズ23の
開口径は少なくとも投光レンズ20の開口径と等しい
か、あるいは投光レンズ20の開口径よりも大きくする
ことが望ましい。
FIG. 7 is a diagram showing changes in the spot diameter on the detection object 1 in the displacement measuring optical system and the received light intensity distribution on the displacement measuring light receiving element 21. That is, 29a, 2
Reference numerals 9b and 29c denote spot diameters on the detection object 1 when the detection object 1 is at the positions of d = -D, 0, + D.
0a, 30b, 30c are detected objects 1 d = -D, 0,
The light reception intensity distribution on the displacement measuring light receiving element 21 at the + D position is shown. Numerical aperture N of the projection lens 20
If A is small, the projected spot diameters 29a, 29b, 29
Although c becomes large, the depth of focus becomes small and the changes in the spot diameters 29a, 29b, 29c become large within the displacement measurement range. Therefore, the change in the spot diameter when the detected object 1 is displaced becomes large like 29a, 29b, and 29c in FIG. 7, and the images on the displacement measuring light-receiving element 21 become as in 30a, 30b, and 30c in FIG. Blurring occurs, which is one of the causes of displacement measurement error. Therefore, make sure that the projected spot diameter does not change within the displacement measurement range, or
It is necessary to reduce the change in the projected spot diameter. Therefore, if the aperture diameter of the light projecting lens 20 is reduced (the numerical aperture NA is increased), the light receiving element 2 for displacement measurement is measured.
The effect of preventing blurring of the image on 1 can be obtained. On the other hand, in the displacement measuring light receiving portion, the aperture diameter of the light receiving lens 23 needs to be large so that the displacement can be detected even if the detected object 1 is tilted. Therefore, it is desirable that the aperture diameter of the light receiving lens 23 is at least equal to or larger than the aperture diameter of the light projecting lens 20.

【0060】図8は本発明の別な実施例による変位セン
サCを示す概略図である。この変位センサCでは、ダイ
クロイックミラー17を用いて変位測定用光15と傾き
測定用光16を重ね合せ、測定範囲を変位測定用光15
が広がって傾き測定用光16よりも外へ広がらない範囲
に制限し、常に変位測定用光15が傾き測定用光16の
内部にあるようにしている。従って、検出物体1の変位
測定箇所と傾き測定箇所とを一致させることができ、変
位量dを傾き量βで正確に補正することができる。特
に、小さな検出物体1の場合にも確実に傾き量βを測定
して変位量dを補正することができ、測定結果の信頼性
が向上する。さらに、この変位センサCでは、傾き測定
用投光素子19及び傾き測定用受光素子22が変位測定
用投光素子18及び変位測定用受光素子21よりも中心
寄り(標準軸SL側)に配置し、変位センサBの外形寸
法を小さくしている。
FIG. 8 is a schematic diagram showing a displacement sensor C according to another embodiment of the present invention. In this displacement sensor C, the dichroic mirror 17 is used to superimpose the displacement measuring light 15 and the tilt measuring light 16, and the measurement range is set to the displacement measuring light 15
Is limited to the range in which the light spreads and does not spread outside the tilt measurement light 16 so that the displacement measurement light 15 is always inside the tilt measurement light 16. Therefore, the displacement measurement position and the inclination measurement position of the detection object 1 can be matched, and the displacement amount d can be accurately corrected by the inclination amount β. In particular, even in the case of a small detection object 1, it is possible to reliably measure the inclination amount β and correct the displacement amount d, and the reliability of the measurement result is improved. Further, in the displacement sensor C, the tilt measuring light projecting element 19 and the tilt measuring light receiving element 22 are arranged closer to the center (on the standard axis SL side) than the displacement measuring light projecting element 18 and the displacement measuring light receiving element 21. The outer dimensions of the displacement sensor B are reduced.

【0061】図9は本発明のさらに別な実施例による変
位センサDを示す図である。この変位センサDにあって
は、傾き測定用投光素子19の光出射口に、つまり投光
レンズ20の焦点位置に開口絞り31を設けている。し
かして、傾き測定用光16を開口絞り31のピンホール
32を通して出射させることにより傾き測定用投光素子
19を点光源とみなすことができ、傾き測定用光16の
コリメート性を向上させ、傾きがないときの検出物体1
からの反射光を受光レンズ23の焦点に、つまり傾き測
定用受光素子22の原点の小さな領域に集中させること
ができる。つまり、受光スポットのボケを小さくでき
る。
FIG. 9 is a diagram showing a displacement sensor D according to still another embodiment of the present invention. In this displacement sensor D, an aperture stop 31 is provided at the light emission port of the inclination measuring light projecting element 19, that is, at the focal position of the light projecting lens 20. Then, by projecting the tilt measuring light 16 through the pinhole 32 of the aperture stop 31, the tilt measuring light projecting element 19 can be regarded as a point light source, and the collimating property of the tilt measuring light 16 is improved, and the tilt measuring light 16 is improved. Object 1 when there is no
The reflected light from can be focused on the focal point of the light receiving lens 23, that is, on the small area of the origin of the tilt measuring light receiving element 22. That is, the blur of the light receiving spot can be reduced.

【0062】図10は本発明のさらに別な実施例による
変位センサEを示す図である。この変位センサEにあっ
ては、傾き測定用投光素子19とダイクロイックミラー
17の中間において傾き測定用投光素子19から一定距
離離れた位置に開口絞り33を設けている。開口絞り3
3の開口34を通して傾き測定用光16を出射すること
により投光レンズ20の入射瞳を小さくすることがで
き、傾き測定用光16のビームサイズを投光レンズ20
の開口径より小さくできる。従って、この変位センサE
は、小さい検出物体1を検出する用途に適している。
FIG. 10 is a diagram showing a displacement sensor E according to still another embodiment of the present invention. In the displacement sensor E, an aperture stop 33 is provided in the middle of the tilt measuring light projecting element 19 and the dichroic mirror 17 at a position apart from the tilt measuring light projecting element 19 by a predetermined distance. Aperture stop 3
The incident pupil of the light projecting lens 20 can be made smaller by emitting the tilt measuring light 16 through the opening 34 of the third lens, and the beam size of the tilt measuring light 16 can be reduced.
Can be smaller than the opening diameter of. Therefore, this displacement sensor E
Is suitable for use in detecting a small detection object 1.

【0063】図11に示すものは本発明のさらに別な実
施例による変位センサFを示す図である。この実施例に
あっては、傾き測定用光源部において、一端でピンホー
ル状に小さくなった円錐状の開口36を有する開口絞り
35を用いている。しかして、この開口絞り35によれ
ば、受光スポットのボケを小さくすると共に変位測定用
光15のビームサイズを小さくできる。
FIG. 11 shows a displacement sensor F according to another embodiment of the present invention. In this embodiment, an aperture stop 35 having a conical aperture 36 that is pinhole-shaped at one end is used in the inclination measuring light source unit. Therefore, according to the aperture stop 35, it is possible to reduce the blur of the light receiving spot and the beam size of the displacement measuring light 15.

【0064】図12に示すものは本発明のさらに別な実
施例による変位センサGを示す図であって、ダイクロイ
ックミラー17,24のような光合成器や波長分離器に
かえて偏光ビームスプリッタのような光合成器と偏光分
離器を用いたものである。この変位センサGにおいて
は、変位測定用投光素子18と傾き測定用投光素子19
とからはいずれも直線偏光の変位測定用光15と傾き測
定用光16とが出射されており、変位測定用光15と傾
き測定用光16の偏光方向は互いに直交している。ある
いは、変位測定用投光素子18と傾き測定用投光素子1
9の光出射口付近にそれぞれ偏光方向を直交させて偏光
子を設けることにより、変位測定用光15と傾き測定用
光16を偏光させてもよい。
FIG. 12 is a diagram showing a displacement sensor G according to still another embodiment of the present invention, which is a polarization beam splitter instead of an optical combiner such as the dichroic mirrors 17 and 24 or a wavelength separator. It uses a simple photosynthesizer and a polarization separator. In this displacement sensor G, the displacement measuring light projecting element 18 and the tilt measuring light projecting element 19 are used.
The linearly polarized displacement measuring light 15 and the tilt measuring light 16 are emitted from both of the above, and the polarization directions of the displacement measuring light 15 and the tilt measuring light 16 are orthogonal to each other. Alternatively, the displacement measuring light emitting element 18 and the tilt measuring light emitting element 1
The displacement measuring light 15 and the tilt measuring light 16 may be polarized by providing polarizers in the vicinity of the light exit port of 9 with their polarization directions orthogonal to each other.

【0065】この変位センサGの投光部11では、偏光
方向の異なる変位測定用光15と傾き測定用光16とを
重ね合せるために光合成器(38)を用いている。ここ
でいう光合成器とは、複数の光(偏光)を重ね合わせて
出力する光学素子であって、この実施例では偏光ビーム
スプリッタ(PBS)38を用いている。この偏光ビー
ムスプリッタ38は、ある方向の偏光を透過させ、直交
する別な方向の偏光を反射させる光学素子であって、図
12では変位測定用光15を透過させ、傾き測定用光1
6を反射させるようにしている。従って、変位測定用投
光素子18から出射された変位測定用光15は偏光ビー
ムスプリッタ38を透過し、傾き測定用投光素子19か
ら出射された傾き測定用光16は偏光ビームスプリッタ
38で反射され、変位測定用光15と傾き測定用光16
は共軸状に重ね合わされ、検出物体1の表面に照射され
る。もちろん、変位測定用投光素子18と傾き測定用投
光素子19は逆の配置になっていても差し支えない。
The light projecting section 11 of the displacement sensor G uses an optical combiner (38) to superimpose the displacement measuring light 15 and the inclination measuring light 16 having different polarization directions. The optical combiner referred to here is an optical element for superimposing a plurality of lights (polarized light) and outputting them, and a polarization beam splitter (PBS) 38 is used in this embodiment. The polarization beam splitter 38 is an optical element that transmits polarized light in a certain direction and reflects polarized light in another orthogonal direction. In FIG. 12, the displacement measuring light 15 is transmitted and the tilt measuring light 1 is transmitted.
6 is reflected. Therefore, the displacement measuring light 15 emitted from the displacement measuring light projecting element 18 passes through the polarization beam splitter 38, and the tilt measuring light 16 emitted from the tilt measuring light projecting element 19 is reflected by the polarization beam splitter 38. The light 15 for displacement measurement and the light 16 for tilt measurement
Are coaxially overlapped and irradiated on the surface of the detection object 1. Of course, the displacement measuring light projecting element 18 and the tilt measuring light projecting element 19 may be arranged in reverse.

【0066】また、受光部13では、検出物体1で反射
された変位測定用光15及び傾き測定用光16を偏光分
離器(39)に入射させている。偏光分離器とは、偏光
方向の直交した偏光のうち、一方の偏光方向の光を反射
させ、他方の偏光方向の光を透過させるものであって、
ここでは偏光ビームスプリッタ39が用いられている。
従って、重なり合った変位測定用光15及び傾き測定用
光16を偏光ビームスプリッタ39で分離し、変位測定
用光15を透過させて変位測定用受光素子21に入射さ
せ、傾き測定用光16を反射させて傾き測定用受光素子
22に入射させ、変位量dと傾き量βを分離して測定で
きるようにしている。
In the light receiving section 13, the displacement measuring light 15 and the tilt measuring light 16 reflected by the detection object 1 are made incident on the polarization separator (39). The polarization separator is a component that reflects light of one polarization direction and transmits light of the other polarization direction among polarized lights orthogonal to the polarization direction,
Here, the polarization beam splitter 39 is used.
Therefore, the displacement measuring light 15 and the tilt measuring light 16 which are overlapped are separated by the polarization beam splitter 39, the displacement measuring light 15 is transmitted and made incident on the displacement measuring light receiving element 21, and the tilt measuring light 16 is reflected. Then, it is made incident on the light receiving element 22 for inclination measurement, and the displacement amount d and the inclination amount β can be separated and measured.

【0067】なお、この光合成器としてもハーフミラー
等を用いることもできる。また、この偏光分離器として
もハーフミラー単独では用いることはできないが、ハー
フミラーと検光子を組合せて用いることはできる。
A half mirror or the like can also be used as the photosynthesizer. Also, as this polarization separator, a half mirror alone cannot be used, but a half mirror and an analyzer can be used in combination.

【0068】上記のように偏光ビームスプリッタ38,
39のような光合成器や偏光分離器を用いた変位センサ
においても、ダイクロイックミラー17,24のような
光合成器や波長分離器を用いた変位センサと同様な種々
の実施例が可能である。例えば、図13に示す変位セン
サHは、図10の光センサEと同様、開口絞り33によ
って傾き測定用光源部の開口絞りを小さくし、傾き測定
用光16のビームサイズを小さくしたものである。ま
た、図14に示す変位センサIは、図11の光センサF
と同様、開口絞り35によって傾き測定用投光素子19
を点光源化すると共に傾き測定用光16のビームサイズ
を小さくしたものである。
As described above, the polarization beam splitter 38,
In the displacement sensor using the optical combiner or polarization separator such as 39, various embodiments similar to the displacement sensor using the optical combiner such as the dichroic mirrors 17 and 24 or the wavelength separator are possible. For example, the displacement sensor H shown in FIG. 13 is similar to the optical sensor E of FIG. 10 in that the aperture stop 33 reduces the aperture stop of the light source for tilt measurement and the beam size of the light 16 for tilt measurement is reduced. . The displacement sensor I shown in FIG. 14 is the optical sensor F shown in FIG.
Similarly to the above, the aperture stop 35 is used to incline the light emitting element 19 for tilt measurement.
Is a point light source and the beam size of the tilt measuring light 16 is reduced.

【0069】図15は本発明のさらに別な実施例による
変位センサJの光学系を示す概略構成図である。この変
位センサJにあっては、変位測定用光学系と傾き測定用
光学系とを分離している。すなわち、変位測定用投光レ
ンズ20aと傾き測定用投光レンズ20bを兼用させる
ことなく別個とし、変位測定用受光レンズ23aと傾き
測定用投光レンズ23bも兼用させることなく別個と
し、変位測定用光15と傾き測定用光16を異なる角度
から検出物体1に照射させるようにしている。なお、こ
の実施例では、変位測定用光15と傾き測定用光16と
して異なる波長の光を用い、変位測定用受光素子21の
前面には変位測定用光15だけを透過させる波長選択フ
ィルタ40を置き、傾き測定用受光素子22の前面には
傾き測定用光16のみを透過させる波長選択フィルタ4
1を配置し、変位測定用光学系と傾き測定用光学系を光
学的に分離している。
FIG. 15 is a schematic block diagram showing an optical system of a displacement sensor J according to still another embodiment of the present invention. In this displacement sensor J, the displacement measuring optical system and the tilt measuring optical system are separated. That is, the displacement measuring light projecting lens 20a and the tilt measuring light projecting lens 20b are separately used without being used in common, and the displacement measuring light receiving lens 23a and the tilt measuring light projecting lens 23b are also used separately, and are used in displacement measuring The light 15 and the tilt measuring light 16 are made to irradiate the detection object 1 from different angles. In this embodiment, light having different wavelengths is used as the displacement measuring light 15 and the inclination measuring light 16, and a wavelength selection filter 40 that transmits only the displacement measuring light 15 is provided on the front surface of the displacement measuring light receiving element 21. On the front surface of the light receiving element 22 for tilt measurement, the wavelength selection filter 4 that transmits only the light 16 for tilt measurement is placed.
1 is arranged to optically separate the displacement measuring optical system and the tilt measuring optical system.

【0070】さらに、図16(a)は本発明のさらに別
な実施例による変位センサKの光学系を示す概略平面
図、図16(b)は図16(a)のX−X線断面図、図
16(c)は図16(a)のY−Y線断面図である。こ
の変位センサKにあっては、図15の変位センサJと同
じく変位測定用光学系と傾き測定用光学系とを別個と
し、さらに変位測定用光学系と傾き測定用光学系を互い
に略90度異なる方向に構成している。
Further, FIG. 16A is a schematic plan view showing an optical system of a displacement sensor K according to still another embodiment of the present invention, and FIG. 16B is a sectional view taken along line XX of FIG. 16A. 16 (c) is a sectional view taken along line YY of FIG. 16 (a). In the displacement sensor K, the displacement measuring optical system and the tilt measuring optical system are separated from each other as in the displacement sensor J of FIG. 15, and the displacement measuring optical system and the tilt measuring optical system are approximately 90 degrees from each other. Configured in different directions.

【0071】また、変位測定用光や傾き測定用光として
は、レーザ光を用いてもよい。図17に示す変位センサ
Lは、傾き測定用光16aとしてレーザ光を用いた実施
例である。レーザ光を出射するための傾き測定用投光素
子19aとしては、ヘリウム−ネオン(He−Ne)レ
ーザ、半導体レーザ素子(LD)等のレーザ発振器や、
レーザ発振器から出力されたレーザ光を導く光ファイバ
等の光導管などを用いることができる。変位測定用投光
レンズ20aよりも検出領域に近い側には、変位測定用
光15を透過し傾き測定用光16aを反射するダイクロ
イックミラー17が配置されている。また、受光レンズ
23と変位測定用受光素子21との間には、変位測定用
光15を透過し傾き測定用光16aを反射するダイクロ
イックミラー24が配置されており、傾き測定用受光素
子22は受光レンズ23から焦点距離fの位置に設けら
れている。しかして、傾き測定用投光素子19aから出
射された傾き測定用光(レーザ光)16aはダイクロイ
ックミラー17で反射され、変位測定用投光レンズ20
aで集光されてダイクロイックミラー17を透過した変
位測定用光15と重ね合わされて検出物体1に照射さ
れ、検出物体1により反射される。波長の異なる変位測
定用光15と傾き測定用光16aのうち、変位測定用光
15は受光レンズ23を通過した後、ダイクロイックミ
ラー24を通過して変位測定用受光素子21に受光され
る。一方、傾き測定用光16aは受光レンズ23を通過
した後、ダイクロイックミラー24で反射され、傾き測
定用受光素子22に受光される。この傾き測定用光学系
においても、傾き測定用受光素子22は受光レンズ23
から焦点距離fの位置に配置されており、検出物体1の
変位(平行移動)によっては受光スポットの位置は変化
せず、検出物体1の傾きのみによって受光スポットの位
置が変化するので、傾き量βを変位量dから分離して単
独で計測することができる。また、傾き測定用光16a
としてレーザ光を用いることにより、傾き測定用光学系
においては受光レンズを不要にすることができる。
Laser light may be used as the displacement measuring light and the inclination measuring light. The displacement sensor L shown in FIG. 17 is an example in which laser light is used as the inclination measuring light 16a. A laser oscillator such as a helium-neon (He-Ne) laser or a semiconductor laser element (LD) is used as the inclination measuring light projecting element 19a for emitting a laser beam.
An optical conduit such as an optical fiber for guiding the laser light output from the laser oscillator can be used. A dichroic mirror 17 that transmits the displacement measuring light 15 and reflects the tilt measuring light 16a is disposed on the side closer to the detection area than the displacement measuring light projecting lens 20a. Further, a dichroic mirror 24 that transmits the displacement measuring light 15 and reflects the tilt measuring light 16a is arranged between the light receiving lens 23 and the displacement measuring light receiving element 21, and the tilt measuring light receiving element 22 is It is provided at a position of a focal length f from the light receiving lens 23. Then, the tilt measuring light (laser light) 16 a emitted from the tilt measuring light projecting element 19 a is reflected by the dichroic mirror 17, and the displacement measuring light projecting lens 20.
The displacement measuring light 15 which is condensed by a and is transmitted through the dichroic mirror 17 is superposed on the detection object 1 to be irradiated therewith, and reflected by the detection object 1. Of the displacement measuring light 15 and the inclination measuring light 16a having different wavelengths, the displacement measuring light 15 passes through the light receiving lens 23, and then passes through the dichroic mirror 24 to be received by the displacement measuring light receiving element 21. On the other hand, the tilt measuring light 16a passes through the light receiving lens 23, is reflected by the dichroic mirror 24, and is received by the tilt measuring light receiving element 22. Also in this tilt measuring optical system, the tilt measuring light receiving element 22 includes the light receiving lens 23.
Since the position of the light receiving spot does not change due to the displacement (parallel movement) of the detection object 1 and the position of the light receiving spot changes only by the tilt of the detection object 1, the tilt amount is β can be separated from the displacement amount d and measured independently. Also, the inclination measuring light 16a
By using a laser beam as the above, it is possible to eliminate the need for a light receiving lens in the tilt measuring optical system.

【0072】図18は本発明のさらに別な実施例による
変位センサMを示す図であって、変位測定用光15aと
してレーザ光を用いた実施例である。レーザ光を出射す
るための変位測定用投光素子18aとしても、ヘリウム
−ネオン(He−Ne)レーザ、半導体レーザ素子(L
D)等のレーザ発振器や、レーザ発振器から出力された
レーザ光を導く光ファイバ等の光導管などを用いること
ができる。この実施例にあっては、傾き測定用投光レン
ズ20bの焦点に傾き測定用投光素子19を配置し、傾
き測定用投光レンズ20bよりも検出領域に近い側にダ
イクロイックミラー17を配置している。ダイクロイッ
クミラー17は、傾き測定用光16を透過し変位測定用
光15aを反射するものである。また、傾き測定用受光
レンズ23bの焦点には傾き測定用受光素子22が配置
されており、傾き測定用受光レンズ23bよりも検出領
域に近い側には傾き測定用光16を透過させ変位測定用
光15aを反射するダイクロイックミラー24が配置さ
れている。しかして、変位測定用投光素子18aから出
射された変位測定用光15a(レーザ光)はダイクロイ
ックミラー17で反射され、傾き測定用投光レンズ20
bでコリメートされてダイクロイックミラー17を透過
した傾き測定用光16と重ね合わされて検出物体1に照
射され、検出物体1により反射される。波長の異なる変
位測定用光15aと傾き測定用光16のうち、傾き測定
用光16はダイクロイックミラー24を透過した後、傾
き測定用受光レンズ23bを通過して傾き測定用受光素
子22に受光される。一方、変位測定用光15aはダイ
クロイックミラー24で反射されて変位測定用受光素子
21に受光される。検出物体1が変位すると、検出物体
1で反射した変位測定用光15aは平行移動して受光ス
ポットの位置が変化するので、変位量dを測定すること
ができる。また、変位測定用光15aとしてレーザ光を
用いることにより、変位測定用光学系においては投光レ
ンズ及び受光レンズを不要にすることができる。
FIG. 18 is a diagram showing a displacement sensor M according to still another embodiment of the present invention, in which a laser beam is used as the displacement measuring light 15a. A helium-neon (He-Ne) laser, a semiconductor laser element (L) is also used as the displacement measuring light emitting element 18a for emitting a laser beam.
It is possible to use a laser oscillator such as D) or an optical conduit such as an optical fiber for guiding the laser light output from the laser oscillator. In this embodiment, the tilt measuring light projecting element 19 is arranged at the focal point of the tilt measuring light projecting lens 20b, and the dichroic mirror 17 is arranged closer to the detection area than the tilt measuring light projecting lens 20b. ing. The dichroic mirror 17 transmits the tilt measuring light 16 and reflects the displacement measuring light 15a. Further, the tilt measuring light receiving element 22 is arranged at the focal point of the tilt measuring light receiving lens 23b, and the tilt measuring light 16 is transmitted to the side closer to the detection area than the tilt measuring light receiving lens 23b to measure the displacement. A dichroic mirror 24 that reflects the light 15a is arranged. Then, the displacement measuring light 15a (laser light) emitted from the displacement measuring light projecting element 18a is reflected by the dichroic mirror 17, and the inclination measuring light projecting lens 20 is reflected.
The tilt measuring light 16 collimated by b and transmitted through the dichroic mirror 17 is superposed on the detection object 1 and is reflected by the detection object 1. Of the displacement measuring light 15a and the tilt measuring light 16 having different wavelengths, the tilt measuring light 16 passes through the dichroic mirror 24, then passes through the tilt measuring light receiving lens 23b, and is received by the tilt measuring light receiving element 22. It On the other hand, the displacement measuring light 15a is reflected by the dichroic mirror 24 and received by the displacement measuring light receiving element 21. When the detection object 1 is displaced, the displacement measuring light 15a reflected by the detection object 1 moves in parallel and the position of the light receiving spot changes, so that the displacement amount d can be measured. Further, by using laser light as the displacement measuring light 15a, it is possible to eliminate the need for a light projecting lens and a light receiving lens in the displacement measuring optical system.

【0073】図19に示すものは変位測定用光15a及
び傾き測定用光16aとしてレーザ光を用いた変位セン
サNであって、レンズ系としては傾き測定用受光レンズ
23bのみとすることができ、光学系を簡単にすること
ができる。
FIG. 19 shows a displacement sensor N using laser light as the displacement measuring light 15a and the inclination measuring light 16a, and the lens system can be only the inclination measuring light receiving lens 23b. The optical system can be simplified.

【0074】なお、図17、図18及び図19の実施例
では変位測定用光及び傾き測定用光として波長の異なる
光を用い、その合成・分離にはダイクロイックミラー1
7,24を用いたが、変位測定用光及び傾き測定用光と
して偏光方向の異なる直線偏光を用い、その合成・分離
に偏光ビームスプリッタ38,39を用いてもよい。
In the embodiments shown in FIGS. 17, 18 and 19, light having different wavelengths is used as the displacement measuring light and the inclination measuring light, and the dichroic mirror 1 is used for combining and separating them.
7 and 24 are used, linear polarizations having different polarization directions may be used as the displacement measurement light and the inclination measurement light, and the polarization beam splitters 38 and 39 may be used for combining and separating them.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の変位センサにおける光学系の構成を示す
図である。
FIG. 1 is a diagram showing a configuration of an optical system in a conventional displacement sensor.

【図2】本発明の一実施例による変位センサの光学系の
構成を示す図である。
FIG. 2 is a diagram showing a configuration of an optical system of a displacement sensor according to an embodiment of the present invention.

【図3】同上の傾き測定原理を説明するための光線図で
ある。
FIG. 3 is a ray diagram for explaining the tilt measurement principle of the above.

【図4】同上の変位測定原理を説明するための光線図で
ある。
FIG. 4 is a ray diagram for explaining the displacement measurement principle of the above.

【図5】検出物体が変位及び傾きを有している場合の変
位測定用受光素子の受光スポットの移動量を求めるため
の説明図である。
FIG. 5 is an explanatory diagram for obtaining a movement amount of a light receiving spot of a light receiving element for displacement measurement when a detected object has displacement and inclination.

【図6】同上の変位センサの信号処理回路の一例を示す
ブロック図である。
FIG. 6 is a block diagram showing an example of a signal processing circuit of the above displacement sensor.

【図7】同上の変位センサにおける投光レンズと受光レ
ンズの寸法効果を説明する図である。
FIG. 7 is a diagram illustrating dimensional effects of a light projecting lens and a light receiving lens in the above displacement sensor.

【図8】本発明の別な実施例による変位センサの光学系
の構成を示す図である。
FIG. 8 is a diagram showing a configuration of an optical system of a displacement sensor according to another embodiment of the present invention.

【図9】本発明のさらに別な実施例による変位センサの
光学系の構成を示す図である。
FIG. 9 is a diagram showing a configuration of an optical system of a displacement sensor according to still another embodiment of the present invention.

【図10】本発明のさらに別な実施例による変位センサ
の光学系の構成を示す図である。
FIG. 10 is a diagram showing a configuration of an optical system of a displacement sensor according to still another embodiment of the present invention.

【図11】本発明のさらに別な実施例による変位センサ
の光学系の構成を示す図である。
FIG. 11 is a diagram showing a configuration of an optical system of a displacement sensor according to still another embodiment of the present invention.

【図12】本発明のさらに別な実施例であって、偏光方
向の異なる変位測定用光と傾き測定用光を用いた変位セ
ンサの光学系の構成を示す図である。
FIG. 12 is a diagram showing a configuration of an optical system of a displacement sensor which is another embodiment of the present invention and which uses displacement measuring light and inclination measuring light having different polarization directions.

【図13】本発明のさらに別な実施例による変位センサ
の光学系の構成を示す図である。
FIG. 13 is a diagram showing a configuration of an optical system of a displacement sensor according to still another embodiment of the present invention.

【図14】本発明のさらに別な実施例による変位センサ
の光学系の構成を示す図である。
FIG. 14 is a diagram showing a configuration of an optical system of a displacement sensor according to still another embodiment of the present invention.

【図15】本発明のさらに別な実施例による変位センサ
の光学系の構成を示す図である。
FIG. 15 is a diagram showing a configuration of an optical system of a displacement sensor according to still another embodiment of the present invention.

【図16】(a)は本発明のさらに別な実施例による変
位センサの光学系の構成を示す平面図、(b)は(a)
のX−X線断面図、(c)は(a)のY−Y線断面図で
ある。
16A is a plan view showing a configuration of an optical system of a displacement sensor according to still another embodiment of the present invention, and FIG. 16B is a diagram showing FIG.
2 is a cross-sectional view taken along line XX of FIG.

【図17】本発明のさらに別な実施例による変位センサ
の光学系の構成を示す図である。
FIG. 17 is a diagram showing a configuration of an optical system of a displacement sensor according to still another embodiment of the present invention.

【図18】本発明のさらに別な実施例による変位センサ
の光学系の構成を示す図である。
FIG. 18 is a diagram showing a configuration of an optical system of a displacement sensor according to still another embodiment of the present invention.

【図19】本発明のさらに別な実施例による変位センサ
の光学系の構成を示す図である。
FIG. 19 is a diagram showing a configuration of an optical system of a displacement sensor according to still another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 検出物体 15 変位測定用光 16 傾き測定用光 17,24 ダイクロイックミラー 18 変位測定用投光素子 19 傾き測定用投光素子 20 投光レンズ 21 変位測定用受光素子 22 傾き測定用受光素子 23 受光レンズ 31,33,35 開口絞り 38,39 偏光ビームスプリッタ d 検出物体の変位量 β 検出物体の傾き量 1 Detecting Object 15 Displacement Measuring Light 16 Tilt Measuring Light 17,24 Dichroic Mirror 18 Displacement Measuring Light Emitting Element 19 Tilt Measuring Light Emitting Element 20 Light Emitting Lens 21 Displacement Measuring Light Sensing Element 22 Tilt Measuring Light Sensing Element 23 Light Receiving Lens 31, 33, 35 Aperture stop 38, 39 Polarization beam splitter d Displacement amount of detected object β Inclination amount of detected object

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 検出領域に向けて変位測定用光を出射す
る変位測定用光源部、および、検出領域で反射された変
位測定用光を受光する変位測定用受光部からなる変位測
定用光学系と;検出領域にある物体の傾きを検出するた
めの傾き測定用光学系と;を備えていることを特徴とす
る変位センサ。
1. A displacement measuring optical system comprising a displacement measuring light source section for emitting displacement measuring light toward a detection area and a displacement measuring light receiving section for receiving the displacement measuring light reflected by the detection area. A displacement sensor comprising: an inclination measuring optical system for detecting the inclination of an object in a detection area.
【請求項2】 前記傾き測定用光学系からの出力情報に
基づいて、前記変位測定用光学系の出力情報を補正する
補正手段をさらに備えたことを特徴とする、請求項1に
記載の変位センサ。
2. The displacement according to claim 1, further comprising a correction unit that corrects output information of the displacement measuring optical system based on output information from the tilt measuring optical system. Sensor.
【請求項3】 前記傾き測定用光学系は、傾き測定用光
を出射する傾き測定用投光素子と、傾き測定用投光素子
から出射された傾き測定用光をコリメートして検出物体
に照射させる傾き測定用投光レンズと、検出物体で反射
した傾き測定用光を集光させる傾き測定用受光レンズ
と、当該受光レンズの焦点位置に配置された傾き測定用
受光素子とからなることを特徴とする、請求項1又は2
に記載の変位センサ。
3. The tilt measuring optical system collimates the tilt measuring light projecting element that emits the tilt measuring light and the tilt measuring light that is emitted from the tilt measuring light projecting element and irradiates the detected object. A tilt measuring light projecting lens, a tilt measuring light receiving lens for collecting the tilt measuring light reflected by the detection object, and a tilt measuring light receiving element arranged at the focal position of the light receiving lens. And claim 1 or 2
The displacement sensor described in.
【請求項4】 前記傾き測定用光学系は、傾き測定用光
であるレーザ光を検出物体に向けて出射する傾き測定用
投光素子と、検出物体で反射した傾き測定用光を屈折さ
せる傾き測定用受光レンズと、当該受光レンズの焦点位
置に配置された傾き測定用受光素子とからなることを特
徴とする、請求項1又は2に記載の変位センサ。
4. The tilt measuring optical system includes a tilt measuring light-projecting element that emits laser light, which is tilt measuring light, toward a detection object, and a tilt that refracts the tilt measuring light reflected by the detection object. The displacement sensor according to claim 1 or 2, which comprises a light receiving lens for measurement and a light receiving element for tilt measurement arranged at a focal position of the light receiving lens.
【請求項5】 前記傾き測定用受光レンズが、前記変位
測定用受光部の受光レンズを兼用していることを特徴と
する、請求項3又は4に記載の変位センサ。
5. The displacement sensor according to claim 3, wherein the inclination measuring light receiving lens also serves as the light receiving lens of the displacement measuring light receiving section.
【請求項6】前記傾き測定用投光レンズが、前記変位測
定用光源部の投光レンズを兼用していることを特徴とす
る、請求項3に記載の変位センサ。
6. The displacement sensor according to claim 3, wherein the tilt measuring light projecting lens also serves as a light projecting lens of the displacement measuring light source section.
【請求項7】 前記変位測定用光源部が投光レンズを有
し、前記変位測定用受光部が受光レンズを有し、当該変
位測定用受光レンズの開口径が当該変位測定用投光レン
ズの開口径以上の寸法を有していることを特徴とする、
請求項1又は2に記載の変位センサ。
7. The displacement measuring light source section has a light projecting lens, the displacement measuring light receiving section has a light receiving lens, and the aperture diameter of the displacement measuring light receiving lens is equal to that of the displacement measuring light projecting lens. Characterized by having a size equal to or larger than the opening diameter,
The displacement sensor according to claim 1 or 2.
【請求項8】 変位測定用光により検出物体の表面に生
じる光スポットが、傾き測定用光により検出物体の表面
に生じる光スポットの内部にあることを特徴とする、請
求項1又は2に記載の変位センサ。
8. The light spot generated on the surface of the detection object by the displacement measuring light is inside the light spot generated on the surface of the detection object by the inclination measuring light, according to claim 1 or 2. Displacement sensor.
【請求項9】 前記変位測定用光と前記傾き測定用光と
が互いに波長を異にしていることを特徴とする、請求項
1又は2に記載の変位センサ。
9. The displacement sensor according to claim 1, wherein the displacement measuring light and the tilt measuring light have different wavelengths from each other.
【請求項10】 変位測定用光源部及び傾き測定用光学
系の光源側から出射された互いに波長の異なる変位測定
用光及び傾き測定用光を光合成器で重ね合わせて検出物
体に照射することを特徴とする、請求項9に記載の変位
センサ。
10. A displacement measuring light and a tilt measuring light having different wavelengths emitted from the light source side of the displacement measuring light source section and the tilt measuring optical system are overlapped by a photosynthesizer to irradiate the detected object. Displacement sensor according to claim 9, characterized in that
【請求項11】 互いに重なり合った波長の異なる変位
測定用光及び傾き測定用光を波長分離器で分離し、変位
測定用光を変位測定用受光部へ導き、傾き測定用光を傾
き測定用光学系の受光側へ導くようにしたことを特徴と
する、請求項9又は10に記載の変位センサ。
11. A displacement measuring light and a tilt measuring light, which have mutually different wavelengths and are overlapped with each other, are separated by a wavelength separator, and the displacement measuring light is guided to a displacement measuring light receiving section, and the tilt measuring light is tilt measuring optical. The displacement sensor according to claim 9 or 10, wherein the displacement sensor is guided to the light receiving side of the system.
【請求項12】 前記変位測定用光と前記傾き測定用光
がいずれも偏光であって、その偏光方向が互いに異なっ
ていることを特徴とする、請求項1又は2に記載の変位
センサ。
12. The displacement sensor according to claim 1, wherein the displacement measuring light and the inclination measuring light are both polarized light, and the polarization directions thereof are different from each other.
【請求項13】 変位測定用光源部及び傾き測定用光学
系の光源側から出射された互いに偏光方向の異なる変位
測定用光及び傾き測定用光を光合成器で重ね合わせて検
出物体に照射することを特徴とする、請求項12に記載
の変位センサ。
13. The displacement measuring light and the inclination measuring light emitted from the light source side of the displacement measuring light source and the inclination measuring optical system and having different polarization directions are overlapped with each other by an optical combiner to irradiate the detected object. The displacement sensor according to claim 12, wherein:
【請求項14】 互いに重なり合った偏光方向の異なる
変位測定用光及び傾き測定用光を偏光分離器を用いて分
離し、変位測定用光を変位測定用受光部へ導き、傾き測
定用光を傾き測定用光学系の受光側へ導くようにしたこ
とを特徴とする、請求項12又は13に記載の変位セン
サ。
14. The polarization measuring device separates the displacement measuring light and the tilt measuring light, which are different in polarization direction from each other, and guides the displacement measuring light to a displacement measuring light receiving section to tilt the tilt measuring light. The displacement sensor according to claim 12 or 13, characterized in that the displacement sensor is guided to the light receiving side of the measuring optical system.
【請求項15】 傾き測定用投光レンズの入射側焦点位
置に微小開口の開口絞りを設けたことを特徴とする、請
求項3に記載の変位センサ。
15. The displacement sensor according to claim 3, wherein an aperture stop having a minute aperture is provided at a focal position on the incident side of the projection lens for tilt measurement.
【請求項16】 傾き測定用投光レンズの入射側に、傾
き測定用光のビームサイズを制限するための開口絞りを
設けたことを特徴とする、請求項3に記載の変位セン
サ。
16. The displacement sensor according to claim 3, wherein an aperture stop for limiting the beam size of the tilt measuring light is provided on the incident side of the tilt measuring light projecting lens.
JP7080995A 1995-03-02 1995-03-02 Displacement sensor Pending JPH08240408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7080995A JPH08240408A (en) 1995-03-02 1995-03-02 Displacement sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7080995A JPH08240408A (en) 1995-03-02 1995-03-02 Displacement sensor

Publications (1)

Publication Number Publication Date
JPH08240408A true JPH08240408A (en) 1996-09-17

Family

ID=13442275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7080995A Pending JPH08240408A (en) 1995-03-02 1995-03-02 Displacement sensor

Country Status (1)

Country Link
JP (1) JPH08240408A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005208027A (en) * 2003-12-25 2005-08-04 Sunx Ltd Distance-measuring equipment, optical measurement equipment and method for them
JP2005241621A (en) * 2003-08-20 2005-09-08 Sunx Ltd Optical measuring device, and distance calculation method for optical measuring device
JP2007064670A (en) * 2005-08-29 2007-03-15 Tokyo Seimitsu Co Ltd Device for measuring surface shape
JP2008196970A (en) * 2007-02-13 2008-08-28 Niigata Univ Shape measurement method and instrument
JP2010019836A (en) * 2008-06-13 2010-01-28 Katsura Opto Systems:Kk Displacement tilt sensor
JP2010181235A (en) * 2009-02-04 2010-08-19 Micro Uintekku Kk Displacement and inclination angle measurement apparatus
JP2010261949A (en) * 2009-04-30 2010-11-18 Corning Inc Method and apparatus for measuring relative positions of specular reflection surface
JP2011064617A (en) * 2009-09-18 2011-03-31 Fukuoka Institute Of Technology Three-dimensional information measuring device and three-dimensional information measuring method
JP2012137619A (en) * 2010-12-27 2012-07-19 Ricoh Co Ltd Image forming apparatus
JP2013019890A (en) * 2011-06-13 2013-01-31 Canon Inc Information processor and information processing method
WO2016031935A1 (en) * 2014-08-29 2016-03-03 株式会社ニコン Surface shape measuring device
JP2016166747A (en) * 2015-03-09 2016-09-15 テスト リサーチ, インク. Optical detection system
US9885561B2 (en) 2014-12-15 2018-02-06 Test Research, Inc. Optical inspection system

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005241621A (en) * 2003-08-20 2005-09-08 Sunx Ltd Optical measuring device, and distance calculation method for optical measuring device
JP2005208027A (en) * 2003-12-25 2005-08-04 Sunx Ltd Distance-measuring equipment, optical measurement equipment and method for them
JP2007064670A (en) * 2005-08-29 2007-03-15 Tokyo Seimitsu Co Ltd Device for measuring surface shape
JP2008196970A (en) * 2007-02-13 2008-08-28 Niigata Univ Shape measurement method and instrument
JP2010019836A (en) * 2008-06-13 2010-01-28 Katsura Opto Systems:Kk Displacement tilt sensor
JP2010181235A (en) * 2009-02-04 2010-08-19 Micro Uintekku Kk Displacement and inclination angle measurement apparatus
JP2010261949A (en) * 2009-04-30 2010-11-18 Corning Inc Method and apparatus for measuring relative positions of specular reflection surface
JP2011064617A (en) * 2009-09-18 2011-03-31 Fukuoka Institute Of Technology Three-dimensional information measuring device and three-dimensional information measuring method
JP2012137619A (en) * 2010-12-27 2012-07-19 Ricoh Co Ltd Image forming apparatus
JP2013019890A (en) * 2011-06-13 2013-01-31 Canon Inc Information processor and information processing method
WO2016031935A1 (en) * 2014-08-29 2016-03-03 株式会社ニコン Surface shape measuring device
JPWO2016031935A1 (en) * 2014-08-29 2017-06-08 株式会社ニコン Surface shape measuring device
EP3187822A4 (en) * 2014-08-29 2018-03-28 Nikon Corporation Surface shape measuring device
US9885561B2 (en) 2014-12-15 2018-02-06 Test Research, Inc. Optical inspection system
JP2016166747A (en) * 2015-03-09 2016-09-15 テスト リサーチ, インク. Optical detection system

Similar Documents

Publication Publication Date Title
US7715025B2 (en) Optical displacement measuring apparatus
JPH08240408A (en) Displacement sensor
JP2510786B2 (en) Object shape detection method and apparatus
US5311288A (en) Method and apparatus for detecting surface deviations from a reference plane
JP2008032668A (en) Scanning type shape measuring machine
JPS6098413A (en) Focusing detector
JP3688560B2 (en) Optical measuring device
US6897421B2 (en) Optical inspection system having an internal rangefinder
JPH08247713A (en) Displacement sensor
JP2005017127A (en) Interferometer and shape measuring system
JP2003177292A (en) Lens adjusting device and method
JP2020071414A (en) Measuring device for collimation adjustment and method for adjusting collimation optical system
JP2003083723A (en) Three-dimensional shape measuring optical system
JPH0823484B2 (en) Device for orienting, inspecting and / or measuring two-dimensional objects
JP2949179B2 (en) Non-contact type shape measuring device and shape measuring method
JP2010164354A (en) Autocollimator
JP5330114B2 (en) Displacement tilt sensor
JP2003161610A (en) Optical measurement device
US11774740B2 (en) Apparatus for monitoring a focal state of microscope
JP2757541B2 (en) Focus detection device and observation device having the same
JPH0275906A (en) Image formation type displacement gauge
JP2005147703A (en) Device and method for measuring surface distance
JP2001296104A (en) Interference fringe detecting apparatus
JP2001324314A (en) Measuring instrument
JPH09236408A (en) Focal position detecting device