JP2005208027A - Distance-measuring equipment, optical measurement equipment and method for them - Google Patents

Distance-measuring equipment, optical measurement equipment and method for them Download PDF

Info

Publication number
JP2005208027A
JP2005208027A JP2004108221A JP2004108221A JP2005208027A JP 2005208027 A JP2005208027 A JP 2005208027A JP 2004108221 A JP2004108221 A JP 2004108221A JP 2004108221 A JP2004108221 A JP 2004108221A JP 2005208027 A JP2005208027 A JP 2005208027A
Authority
JP
Japan
Prior art keywords
light
light receiving
receiving element
distance
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004108221A
Other languages
Japanese (ja)
Other versions
JP4589648B2 (en
Inventor
Hiromasa Furuta
裕正 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Industrial Devices SUNX Co Ltd
Original Assignee
Sunx Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sunx Ltd filed Critical Sunx Ltd
Priority to JP2004108221A priority Critical patent/JP4589648B2/en
Publication of JP2005208027A publication Critical patent/JP2005208027A/en
Application granted granted Critical
Publication of JP4589648B2 publication Critical patent/JP4589648B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical distance-measuring equipment, optical measurement equipment and a method for the same, capable of measuring distance with a principal error. <P>SOLUTION: The processes for distance measurement include (step 10) detecting of a reference pixel supposed to be maximum receiving light amount among pixel group constituting the imaging element 22, based on the imaging signal Sd from the imaging element 22; (step 20) calculating of the comprehensive volume of sum of difference between a threshold and light amount of a detected pixel, by setting the threshold having an arbitral ratio value to the maximum receiving light; (step 30) is Y. If the comprehensive volume agrees with a prescribed volume; and (step 40 ) for measuring the distance between the measurement objects, based on a pixel of center of gravity of the pixel group specified as the position of light-receiving spot and the pixel of reference position Ra, where in the pixel group detected at calculating the comprehensive volume, a pixel corresponding to the center of gravity is calculated and specified as the position of the light-receiving spot. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、距離測定装置、光学測定装置及びこれらの距離測定方法に関する。   The present invention relates to a distance measuring device, an optical measuring device, and a method for measuring these distances.

従来から知られている光学測定装置として三角測距の原理を用いて被測定対象物の距離及び傾きを測定するものであり、距離測定用光学系と傾き測定用光学系とを備えている。距離測定用光学系では、レンズにより収束された投光素子からの光を被測定対象物に対して斜めから投射し、反射光をレンズにより収束して撮像手段の撮像面に結像する構成とされており、その撮像面における結像位置により被測定対象物の距離を測定することができる。
また、傾き測定用光学系は、レンズにより平行光とされた投光素子からの光を被測定対象物に対して斜めから投射し、反射光をレンズにより収束して撮像手段の撮像面に結像する構成とされており、その撮像面における結像位置により被測定対象物の傾きを測定することができる。
特開平8−240408号公報
As a conventionally known optical measuring apparatus, it measures the distance and inclination of an object to be measured using the principle of triangulation, and includes a distance measuring optical system and an inclination measuring optical system. In the distance measuring optical system, the light from the light projecting element converged by the lens is projected obliquely onto the object to be measured, and the reflected light is converged by the lens to form an image on the imaging surface of the imaging means. The distance of the object to be measured can be measured from the imaging position on the imaging surface.
In addition, the tilt measurement optical system projects light from the light projecting element, which has been collimated by the lens, onto the object to be measured from an oblique direction, and the reflected light is converged by the lens to be connected to the imaging surface of the imaging means. The inclination of the object to be measured can be measured based on the imaging position on the imaging surface.
JP-A-8-240408

ところで、レンズの球面収差をはじめとする種々の収差が原因となって、被測定対象物からの反射光のスポット径がばらつくことは周知の事実である。
上記構成の場合では、図14に示すように、被測定対象物Wからの反射光がレンズ101の中心軸C付近を通過した場合と、中心軸Cから離れた周縁領域付近を通過した場合とでは、周縁領域付近を通過した場合の方が受光スポットが拡大されることとなる。これら両受光スポットの受光量分布をプロファイリングすると、両者は山型形状とされるのは共通しているものの、レンズ101の周縁領域付近を通過した場合のほうが最大受光量とされる画素の受光量は低くなっており、また、山型形状の傾斜がなだらかとなっていることは一目瞭然である。従って、閾値を固定とすることは測定精度がばらついてしまうから、最大受光量に基づいて閾値を決定することが不可欠となる。
By the way, it is a well-known fact that the spot diameter of the reflected light from the object to be measured varies due to various aberrations such as spherical aberration of the lens.
In the case of the above configuration, as shown in FIG. 14, the reflected light from the object W to be measured passes near the central axis C of the lens 101, and the case where it passes near the peripheral area away from the central axis C. In this case, the light receiving spot is enlarged when it passes through the vicinity of the peripheral region. When the received light amount distributions of these two light receiving spots are profiled, the two are common in the shape of a mountain, but the received light amount of the pixel that is the maximum received light amount when passing through the vicinity of the peripheral region of the lens 101. Is low, and it is obvious that the slope of the mountain shape is gentle. Therefore, since fixing the threshold value results in variations in measurement accuracy, it is essential to determine the threshold value based on the maximum amount of received light.

しかしながら、上記のような閾値の設定方法であっても、やはり測定精度にばらつきが生じてしまう。即ち、分解能が一定に定まらないという不具合をはらんでいたのである。
本発明は上記のような事情に基づいて完成されたものであって、一義的な誤差でもって距離測定を行なうことができる距離測定装置、光学測定装置及びこれらの距離測定方法を提供することを目的とする。
However, even with the threshold value setting method as described above, the measurement accuracy still varies. That is, there was a problem that the resolution was not fixed.
The present invention has been completed based on the above circumstances, and provides a distance measuring device, an optical measuring device, and a distance measuring method capable of measuring a distance with a unique error. Objective.

上記の目的を達成するための手段として、請求項1の発明は、投光素子からの光を収束レンズにて収束し、この収束光を被測定対象物に照射するとともに、当該被測定対象物からの正反射光を収束して撮像手段の受光素子群に集光し、前記撮像手段から出力される撮像信号に基づいて前記被測定対象物までの距離を測定する距離測定装置において、
前記撮像信号から前記受光素子群において最大受光量となる基準受光素子を検出し、当該基準受光素子を基準として受光スポットにおける各受光素子の受光量に基づいて総合体積値を算出し、その総合体積値が所定体積値と一致したときには、検出された受光素子群における重心位置を検出し、当該重心位置に相当する受光素子と基準位置に相当する受光素子との位置関係に基づいて前記被測定対象物の距離を測定する測定手段を備えるところに特徴を有する。
As a means for achieving the above object, the invention of claim 1 is characterized in that the light from the light projecting element is converged by the converging lens, and the object to be measured is irradiated with the convergent light. In the distance measuring apparatus for converging the regular reflected light from the light and condensing it on the light receiving element group of the imaging means, and measuring the distance to the object to be measured based on the imaging signal output from the imaging means,
A reference light receiving element having a maximum light receiving amount in the light receiving element group is detected from the image pickup signal, and a total volume value is calculated based on the light receiving amount of each light receiving element in the light receiving spot with reference to the reference light receiving element. When the value coincides with the predetermined volume value, the center of gravity position in the detected light receiving element group is detected, and the measurement target is based on the positional relationship between the light receiving element corresponding to the center of gravity position and the light receiving element corresponding to the reference position. It is characterized in that it has a measuring means for measuring the distance of an object.

請求項2の発明は、投光素子からの光を収束レンズにて収束し、この収束光を被測定対象物に照射するとともに、当該被測定対象物からの正反射光を収束して撮像手段の受光素子群に集光し、前記撮像手段から出力される撮像信号に基づいて前記被測定対象物までの距離を測定する距離測定装置において、
前記撮像信号から前記受光素子群において最大受光量となる基準受光素子を検出し、当該基準受光素子を基準として受光スポットにおける受光素子の受光量に基づいて総合面積値を算出し、この総合面積値が所定面積値と一致したときには検出された受光素子群における重心位置を検出し、当該重心位置に相当する受光素子と基準位置に相当する受光素子との位置関係に基づいて前記被測定対象物の距離を測定する測定手段を備えるところに特徴を有する。
According to the second aspect of the present invention, the light from the light projecting element is converged by the converging lens, and the convergent light is irradiated onto the object to be measured, and the specularly reflected light from the object to be measured is converged to capture the imaging means. In the distance measuring device that collects light on the light receiving element group and measures the distance to the object to be measured based on the imaging signal output from the imaging means,
A reference light receiving element that is the maximum light receiving amount in the light receiving element group is detected from the imaging signal, and a total area value is calculated based on the light receiving amount of the light receiving element at the light receiving spot with reference to the reference light receiving element. Is detected, the center of gravity position of the detected light receiving element group is detected, and based on the positional relationship between the light receiving element corresponding to the center of gravity position and the light receiving element corresponding to the reference position, the object to be measured is detected. It is characterized in that it has a measuring means for measuring the distance.

請求項3の発明は、請求項1又は請求項2に記載のものにおいて、前記距離測定用受光手段は2次元撮像素子から構成されているところに特徴を有する。   A third aspect of the invention is characterized in that, in the first or second aspect of the invention, the distance measuring light-receiving means is composed of a two-dimensional image sensor.

請求項4の発明は、請求項3に記載のものにおいて、前記距離測定用受光手段から出力される撮像信号を受信して各画素の受光量に関する情報を記憶する距離測定用記憶手段と、
前記受光量に関する情報から所定の閾値よりも高い受光量とされる画素を検出する距離測定用画素検出手段とを備え、
前記測定手段は前記距離測定用画素検出手段で検出された画素において、最大受光量とされる画素を前記基準受光素子として検出するところに特徴を有する。
According to a fourth aspect of the present invention, there is provided the distance measurement storage unit according to the third aspect, wherein the distance measurement storage unit receives the imaging signal output from the distance measurement light reception unit and stores information regarding the light reception amount of each pixel;
A distance measuring pixel detecting means for detecting a pixel having a light receiving amount higher than a predetermined threshold from the information on the light receiving amount;
The measuring means is characterized in that, among the pixels detected by the distance measuring pixel detecting means, a pixel having a maximum light receiving amount is detected as the reference light receiving element.

請求項5の発明は、請求項4に記載のものにおいて、前記画素検出手段において検出された画素を計数し、その数が所定数以下であることを条件に検出不能を報知する報知手段が備えられているところに特徴を有する。   According to a fifth aspect of the invention, there is provided the notifying means according to the fourth aspect, wherein the number of pixels detected by the pixel detecting means is counted, and notification is made that the detection is impossible on condition that the number is not more than a predetermined number. It is characterized by

請求項6の発明は、請求項3に記載のものにおいて、各画素の受光量に基づいて特定の画素を選択する距離測定用画素選択手段と、
前記距離測定用画素選択手段により選択された画素の受光量に関する情報を記憶する距離測定用記憶手段とを備え、
前記測定手段は前記距離測定用画素検出手段で検出された画素において、最大受光量とされる画素を前記基準受光素子として検出するところに特徴を有する。
According to a sixth aspect of the present invention, in the method according to the third aspect, distance measuring pixel selecting means for selecting a specific pixel based on the amount of light received by each pixel;
A distance measurement storage means for storing information relating to the amount of light received by the pixel selected by the distance measurement pixel selection means;
The measuring means is characterized in that, among the pixels detected by the distance measuring pixel detecting means, a pixel having a maximum light receiving amount is detected as the reference light receiving element.

請求項7の発明は、請求項6に記載のものにおいて、前記距離測定用画素選択手段は、
前記距離測定用撮像手段から出力される撮像信号を基に各画素の受光量を所定の閾値と比較し、当該所定の閾値を上回る受光量とされる画素を選択するところに特徴を有する。
According to a seventh aspect of the present invention, the distance measuring pixel selecting means according to the sixth aspect of the present invention,
It is characterized in that the received light amount of each pixel is compared with a predetermined threshold value based on an imaging signal output from the distance measuring imaging means, and a pixel having a received light amount exceeding the predetermined threshold value is selected.

請求項8の発明は、請求項6に記載のものにおいて、前記距離測定用画素選択手段は、
前記距離測定用撮像手段から出力される撮像信号を基に各画素の受光量を所定の閾値と比較し、当該所定の閾値を上回る受光量とされる画素を含むように領域を指定し、その領域内に含まれる画素の撮像信号を受信するように動作するところに特徴を有する。
The invention according to an eighth aspect is the one according to the sixth aspect, wherein the distance measuring pixel selecting means comprises:
Based on the imaging signal output from the distance measuring imaging means, the amount of light received by each pixel is compared with a predetermined threshold, and an area is specified so as to include a pixel whose amount of light received exceeds the predetermined threshold. It is characterized in that it operates so as to receive an imaging signal of pixels included in the region.

請求項9の発明は、請求項7または請求項8に記載のものにおいて、前記画素選択手段において検出された画素を計数し、その数が所定数以下であることを条件に検出不能を報知する報知手段が備えられているところに特徴を有する。   The invention according to claim 9 is the one according to claim 7 or 8, wherein the number of pixels detected by the pixel selection means is counted, and a notification of undetectability is provided on condition that the number is not more than a predetermined number. It is characterized in that a notification means is provided.

請求項10の発明は、距離測定用投光手段からの光を収束レンズにて収束し、この収束光を被測定対象物に照射するとともに、当該被測定対象物からの正反射光を収束して距離測定用撮像手段の受光素子群に集光し、前記距離測定用撮像手段から出力される撮像信号に基づいて前記被測定対象物までの距離を測定する距離測定用光学系と、傾角測定用投光手段からの光をコリメータレンズにより平行光に変換し、この平行光を前記被測定対象物に照射するとともに、前記被測定対象物からの反射光を収束して傾角測定用撮像手段の撮像面に照射し、前記傾角測定用撮像手段から出力される撮像信号に基づいて前記被測定対象物の傾きを測定する傾角測定用光学系とを有する光学測定装置において、
前記撮像信号から前記受光素子群において最大受光量となる基準受光素子を検出し、当該基準受光素子を基準として受光スポットにおける各受光素子の受光量に基づいて総合体積値を算出し、その総合体積値が所定体積値と一致したときには、検出された受光素子群における重心位置を検出し、当該重心位置に相当する受光素子と基準位置に相当する受光素子との位置関係に基づいて前記被測定対象物の距離を測定する測定手段を備えるところに特徴を有する。
The invention of claim 10 converges the light from the distance measuring light projecting means by the converging lens, irradiates the object to be measured with the converged light, and converges the regular reflection light from the object to be measured. A distance measuring optical system for focusing on the light receiving element group of the distance measuring imaging means and measuring the distance to the object to be measured based on an imaging signal output from the distance measuring imaging means; The light from the light projecting means is converted into parallel light by a collimator lens, and the parallel light is irradiated onto the object to be measured, and the reflected light from the object to be measured is converged to be used for the image sensor for tilt angle measurement. In an optical measurement apparatus having an inclination measurement optical system that irradiates an imaging surface and measures the inclination of the measurement object based on an imaging signal output from the inclination measurement imaging means,
A reference light receiving element having a maximum light receiving amount in the light receiving element group is detected from the image pickup signal, and a total volume value is calculated based on the light receiving amount of each light receiving element in the light receiving spot with reference to the reference light receiving element. When the value coincides with the predetermined volume value, the center of gravity position in the detected light receiving element group is detected, and the measurement target is based on the positional relationship between the light receiving element corresponding to the center of gravity position and the light receiving element corresponding to the reference position. It is characterized in that it has a measuring means for measuring the distance of an object.

請求項11の発明は、距離測定用投光手段からの光を収束レンズにて収束し、この収束光を被測定対象物に照射するとともに、当該被測定対象物からの正反射光を収束して距離測定用撮像手段の受光素子群に集光し、前記距離測定用撮像手段から出力される撮像信号に基づいて前記被測定対象物までの距離を測定する距離測定用光学系と、傾角測定用投光手段からの光をコリメータレンズにより平行光に変換し、この平行光を前記被測定対象物に照射するとともに、前記被測定対象物からの反射光を収束して傾角測定用撮像手段の撮像面に照射し、前記傾角測定用撮像手段から出力される撮像信号に基づいて前記被測定対象物の傾きを測定する傾角測定用光学系とを有する光学測定装置において、
前記撮像信号から前記受光素子群において最大受光量となる基準受光素子を検出し、当該基準受光素子を基準として受光スポットにおける各受光素子の受光量に基づいて総合面積値を算出し、この総合面積値が所定面積値と一致したときには検出された受光素子群における重心位置を検出し、当該重心位置に相当する受光素子と基準位置に相当する受光素子との位置関係に基づいて前記被測定対象物の距離を測定する測定手段を備えるところに特徴を有する。
In the eleventh aspect of the invention, the light from the distance measuring light projecting means is converged by the converging lens, and the convergent light is irradiated onto the object to be measured, and the regular reflection light from the object to be measured is converged. A distance measuring optical system for focusing on the light receiving element group of the distance measuring imaging means and measuring the distance to the object to be measured based on an imaging signal output from the distance measuring imaging means; The light from the light projecting means is converted into parallel light by a collimator lens, and the parallel light is irradiated onto the object to be measured, and the reflected light from the object to be measured is converged to be used for the image sensor for tilt angle measurement. In an optical measurement apparatus having an inclination measurement optical system that irradiates an imaging surface and measures the inclination of the measurement object based on an imaging signal output from the inclination measurement imaging means,
A reference light receiving element having a maximum light receiving amount in the light receiving element group is detected from the imaging signal, and a total area value is calculated based on the light receiving amount of each light receiving element in the light receiving spot with reference to the reference light receiving element. When the value coincides with a predetermined area value, the center of gravity position in the detected light receiving element group is detected, and the object to be measured is based on the positional relationship between the light receiving element corresponding to the center of gravity position and the light receiving element corresponding to the reference position. It is characterized in that it has a measuring means for measuring the distance.

請求項12の発明は、請求項10又は請求項11に記載のものにおいて、前記距離測定用受光手段は2次元撮像素子から構成されているところに特徴を有する。   The invention of claim 12 is characterized in that, in the invention of claim 10 or 11, the distance measuring light-receiving means is composed of a two-dimensional image sensor.

請求項13の発明は、請求項12に記載のものにおいて、前記距離測定用受光手段から出力される撮像信号を受信して各画素の受光量に関する情報を記憶する距離測定用記憶手段と、
前記受光量に関する情報から所定の閾値よりも高い受光量とされる画素を検出する距離測定用画素検出手段とを備え、
前記測定手段は前記距離測定用画素検出手段で検出された画素において、最大受光量とされる画素を前記基準受光素子として検出するところに特徴を有する。
A thirteenth aspect of the present invention is the distance measuring storage unit according to the twelfth aspect, wherein the distance measurement storage unit receives the imaging signal output from the distance measurement light reception unit and stores information related to the light reception amount of each pixel;
A distance measuring pixel detecting means for detecting a pixel having a light receiving amount higher than a predetermined threshold from the information on the light receiving amount;
The measuring means is characterized in that, among the pixels detected by the distance measuring pixel detecting means, a pixel having a maximum light receiving amount is detected as the reference light receiving element.

請求項14の発明は、請求項13に記載のものにおいて、前記画素検出手段において検出された画素を計数し、その数が所定数以下であることを条件に検出不能を報知する報知手段が備えられているところに特徴を有する。   According to a fourteenth aspect of the invention, in the thirteenth aspect of the invention, there is provided notifying means for counting the number of pixels detected by the pixel detecting means and notifying that detection is impossible on the condition that the number is not more than a predetermined number. It is characterized by

請求項15の発明は、請求項12に記載のものにおいて、各画素の受光量に基づいて特定の画素を選択する距離測定用画素選択手段と、
前記距離測定用画素選択手段により選択された画素の受光量に関する情報を記憶する距離測定用記憶手段とを備え、
前記測定手段は前記距離測定用画素検出手段で検出された画素において、最大受光量とされる画素を前記基準受光素子として検出するところに特徴を有する。
According to a fifteenth aspect of the invention, in the twelfth aspect of the invention, distance measurement pixel selection means for selecting a specific pixel based on the amount of light received by each pixel;
A distance measurement storage means for storing information relating to the amount of light received by the pixel selected by the distance measurement pixel selection means;
The measuring means is characterized in that, among the pixels detected by the distance measuring pixel detecting means, a pixel having a maximum light receiving amount is detected as the reference light receiving element.

請求項16の発明は、請求項12に記載のものにおいて、前記距離測定用画素選択手段は、
前記距離測定用撮像手段から出力される撮像信号を基に各画素の受光量を所定の閾値と比較し、当該所定の閾値を上回る受光量とされる画素を選択するところに特徴を有する。
According to a sixteenth aspect of the invention, in the twelfth aspect of the invention, the distance measurement pixel selecting means includes:
It is characterized in that the received light amount of each pixel is compared with a predetermined threshold value based on an imaging signal output from the distance measuring imaging means, and a pixel having a received light amount exceeding the predetermined threshold value is selected.

請求項17の発明は、請求項12に記載のものにおいて、前記距離測定用画素選択手段は、
前記距離測定用撮像手段から出力される撮像信号を基に各画素の受光量を所定の閾値と比較し、当該所定の閾値を上回る受光量とされる画素を含むように領域を指定し、その領域内に含まれる画素の撮像信号を受信するように動作するところに特徴を有する。
According to a seventeenth aspect of the invention, in the twelfth aspect of the invention, the distance measurement pixel selecting means includes:
Based on the imaging signal output from the distance measuring imaging means, the amount of light received by each pixel is compared with a predetermined threshold, and an area is specified so as to include a pixel whose amount of light received exceeds the predetermined threshold. It is characterized in that it operates so as to receive an imaging signal of pixels included in the region.

請求項18の発明は、請求項15ないし請求項18に記載のものにおいて、前記画素選択手段において検出された画素を計数し、その数が所定数以下であることを条件に検出不能を報知する報知手段が備えられているところに特徴を有する。   According to an eighteenth aspect of the present invention, in any of the fifteenth to eighteenth aspects, the number of pixels detected by the pixel selection means is counted, and a notification that the detection is impossible is made on condition that the number is a predetermined number or less. It is characterized in that a notification means is provided.

請求項19の発明は、距離測定用投光手段からの光を収束レンズにて収束し、この収束光を被測定対象物に照射するとともに、当該被測定対象物からの正反射光を収束して距離測定用撮像手段の受光素子群に集光し、前記距離測定用撮像手段から出力される撮像信号に基づいて前記被測定対象物までの距離を測定する距離測定装置における距離測定方法であって、
前記撮像信号から前記受光素子群において最大受光量となる基準受光素子を検出する処理と、
前記基準受光素子を基準として受光スポットにおける各受光素子の受光量に基づいて総合体積値を算出する処理と、
その総合体積値が所定体積値と一致したときには、検出された受光素子群における重心位置を検出し、当該重心位置に相当する受光素子と基準位置に相当する受光素子との位置関係に基づいて前記被測定対象物の距離を測定する処理とを含むところに特徴を有する。
The invention of claim 19 converges the light from the distance measuring light projecting means with a converging lens, irradiates the object to be measured with the converged light, and converges the regular reflection light from the object to be measured. The distance measuring method is a distance measuring method in a distance measuring device that collects light on a light receiving element group of a distance measuring imaging means and measures the distance to the object to be measured based on an imaging signal output from the distance measuring imaging means. And
A process of detecting a reference light receiving element that is a maximum light receiving amount in the light receiving element group from the imaging signal;
A process of calculating a total volume value based on the amount of light received by each light receiving element at a light receiving spot with reference to the reference light receiving element;
When the total volume value coincides with the predetermined volume value, the center of gravity position in the detected light receiving element group is detected, and based on the positional relationship between the light receiving element corresponding to the center of gravity position and the light receiving element corresponding to the reference position, And a process for measuring the distance of the object to be measured.

請求項20の発明は、距離測定用投光手段からの光を収束レンズにて収束し、この収束光を被測定対象物に照射するとともに、当該被測定対象物からの正反射光を収束して距離測定用撮像手段の受光素子群に集光し、前記距離測定用撮像手段から出力される撮像信号に基づいて前記被測定対象物までの距離を測定する距離測定装置における距離測定方法であって、
前記撮像信号から前記受光素子群において最大受光量となる基準受光素子を検出する処理と、
前記基準受光素子を基準として受光スポットにおける各受光素子の受光量に基づいて総合面積値を算出する処理と、
その総合面積値が所定面積値と一致したときには検出された受光素子群における重心位置を検出し、当該重心位置に相当する受光素子と基準位置に相当する受光素子との位置関係に基づいて前記被測定対象物の距離を測定する処理とを含むところに特徴を有する。
The invention of claim 20 converges the light from the distance measuring light projecting means by the converging lens, irradiates the object to be measured with the converged light, and converges the regular reflection light from the object to be measured. The distance measuring method is a distance measuring method in a distance measuring device that collects light on a light receiving element group of a distance measuring imaging means and measures the distance to the object to be measured based on an imaging signal output from the distance measuring imaging means. And
A process of detecting a reference light receiving element that is a maximum light receiving amount in the light receiving element group from the imaging signal;
A process of calculating a total area value based on the amount of light received by each light receiving element at a light receiving spot with reference to the reference light receiving element;
When the total area value coincides with the predetermined area value, the center of gravity position in the detected light receiving element group is detected, and based on the positional relationship between the light receiving element corresponding to the center of gravity position and the light receiving element corresponding to the reference position. And a process for measuring the distance of the measurement object.

請求項21の発明は、距離測定用投光手段からの光を収束レンズにて収束し、この収束光を被測定対象物に照射するとともに、当該被測定対象物からの正反射光を収束して距離測定用撮像手段の受光素子群に集光し、前記距離測定用撮像手段から出力される撮像信号に基づいて前記被測定対象物までの距離を測定する距離測定用光学系と、傾角測定用投光手段からの光をコリメータレンズにより平行光に変換し、この平行光を前記被測定対象物に照射するとともに、前記被測定対象物からの反射光を収束して傾角測定用撮像手段の撮像面に照射し、前記傾角測定用撮像手段から出力される撮像信号に基づいて前記被測定対象物の傾きを測定する傾角測定用光学系とを有する光学測定装置における距離測定方法であって、
前記撮像信号から前記受光素子群において最大受光量となる基準受光素子を検出する処理と、
前記基準受光素子を基準として受光スポットにおける各受光素子の受光量に基づいて総合体積値を算出する処理と、
その総合体積値が所定体積値と一致したときには、検出された受光素子群における重心位置を検出し、当該重心位置に相当する受光素子と基準位置に相当する受光素子との位置関係に基づいて前記被測定対象物の距離を測定する処理とを含むところに特徴を有する。
The invention of claim 21 converges the light from the distance measuring light projecting means with a converging lens, irradiates the object to be measured with the converged light, and converges the regular reflection light from the object to be measured. A distance measuring optical system for focusing on the light receiving element group of the distance measuring imaging means and measuring the distance to the object to be measured based on an imaging signal output from the distance measuring imaging means; The light from the light projecting means is converted into parallel light by a collimator lens, and the parallel light is irradiated onto the object to be measured, and the reflected light from the object to be measured is converged to be used for the image sensor for tilt angle measurement. A distance measurement method in an optical measurement apparatus having an inclination measurement optical system that irradiates an imaging surface and measures the inclination of the measurement object based on an imaging signal output from the inclination measurement imaging means,
A process of detecting a reference light receiving element that is a maximum light receiving amount in the light receiving element group from the imaging signal;
A process of calculating a total volume value based on the amount of light received by each light receiving element at a light receiving spot with reference to the reference light receiving element;
When the total volume value coincides with the predetermined volume value, the center of gravity position in the detected light receiving element group is detected, and based on the positional relationship between the light receiving element corresponding to the center of gravity position and the light receiving element corresponding to the reference position, And a process for measuring the distance of the object to be measured.

請求項22の発明は、距離測定用投光手段からの光を収束レンズにて収束し、この収束光を被測定対象物に照射するとともに、当該被測定対象物からの正反射光を収束して距離測定用撮像手段の受光素子群に集光し、前記距離測定用撮像手段から出力される撮像信号に基づいて前記被測定対象物までの距離を測定する距離測定用光学系と、傾角測定用投光手段からの光をコリメータレンズにより平行光に変換し、この平行光を前記被測定対象物に照射するとともに、前記被測定対象物からの反射光を収束して傾角測定用撮像手段の撮像面に照射し、前記傾角測定用撮像手段から出力される撮像信号に基づいて前記被測定対象物の傾きを測定する傾角測定用光学系とを有する光学測定装置における距離測定方法であって、
前記撮像信号から前記受光素子群において最大受光量となる基準受光素子を検出する処理と、
前記基準受光素子を基準として受光スポットにおける各受光素子の受光量に基づいて総合面積値を算出する処理と、
その総合面積値が所定面積値と一致したときには検出された受光素子群における重心位置を検出し、当該重心位置に相当する受光素子と基準位置に相当する受光素子との位置関係に基づいて前記被測定対象物の距離を測定する処理とを含むところに特徴を有する。
The invention of claim 22 converges the light from the distance measuring light projecting means with a converging lens, irradiates the object to be measured with the convergent light, and converges the regular reflection light from the object to be measured. A distance measuring optical system for focusing on the light receiving element group of the distance measuring imaging means and measuring the distance to the object to be measured based on an imaging signal output from the distance measuring imaging means; The light from the light projecting means is converted into parallel light by a collimator lens, and the parallel light is irradiated onto the object to be measured, and the reflected light from the object to be measured is converged to be used for the image sensor for inclination measurement. A distance measurement method in an optical measurement apparatus having an inclination measurement optical system that irradiates an imaging surface and measures the inclination of the measurement object based on an imaging signal output from the inclination measurement imaging means,
A process of detecting a reference light receiving element that is a maximum light receiving amount in the light receiving element group from the imaging signal;
A process of calculating a total area value based on the amount of light received by each light receiving element at a light receiving spot with reference to the reference light receiving element;
When the total area value coincides with the predetermined area value, the center of gravity position in the detected light receiving element group is detected, and based on the positional relationship between the light receiving element corresponding to the center of gravity position and the light receiving element corresponding to the reference position. And a process for measuring the distance of the measurement object.

<請求項1、2,3,10,11,12,19,20,21,22の発明>
上記発明では、総合体積値あるいは総合面積値を所定の値に固定して閾値に設定するようにしている。
そもそも、上記の距離測定の方法に到達したのには、発明者による鋭意研究によるところが多大にあり、従来の距離測定の方法からは容易に想到することは極めて困難である。
<Invention of Claims 1, 2, 3, 10, 11, 12, 19, 20, 21, 22>
In the above invention, the total volume value or the total area value is fixed to a predetermined value and set as a threshold value.
In the first place, the above-mentioned distance measurement method has been reached by a great deal of research by the inventors, and it is extremely difficult to conceive easily from the conventional distance measurement method.

まず、図6に示すように、レンズの中心軸あるいはその近辺を通過した光とレンズの周縁領域を通過した光とでは、その最大受光量が相違している。それぞれの最大受光量における所定割合の値を閾値と定めた場合、両者間で測定精度が一致していないことは明らかである。この図6に示されているグラフが背景技術で述べた従来の距離測定方法の問題点を明確に表している。   First, as shown in FIG. 6, the maximum amount of received light is different between light passing through the central axis of the lens or the vicinity thereof and light passing through the peripheral region of the lens. When the predetermined ratio value in each maximum received light amount is set as the threshold value, it is clear that the measurement accuracy does not match between the two. The graph shown in FIG. 6 clearly shows the problems of the conventional distance measuring method described in the background art.

一方、図7に示すように、受光素子群のうち最大受光量とされる基準受光素子を基準として、その最大受光量から所定割合の値を閾値として設定し、閾値を上回る受光量とされる受光素子を検出しつつ、検出された受光素子の受光量と閾値との差分値の和となる総合体積値を算出する。上記の閾値を変更しながら算出された総合体積値と閾値との関係を確認したところ、その関係は逆比例となっていることが発明者が行なった実験によって明らかにされた。   On the other hand, as shown in FIG. 7, with a reference light receiving element as the maximum light receiving amount in the light receiving element group as a reference, a predetermined ratio value is set as a threshold value from the maximum light receiving amount, and the received light amount exceeds the threshold value. While detecting the light receiving element, a total volume value that is the sum of the difference values between the detected light receiving amount of the light receiving element and the threshold value is calculated. When the relationship between the total volume value calculated while changing the above threshold value and the threshold value was confirmed, it was revealed by an experiment conducted by the inventors that the relationship was inversely proportional.

そして、上記図6及び図7から測定精度と総合体積値との関係が導かれ、これによると、総合体積値が所定の体積値となるように閾値を設定することで、測定精度が略一定となることが確認された(図8参照)。
従って、上記方法で距離測定を行なうことで、測定精度のばらつきをなくすることができ、もって、測定精度の安定化を図ることができる。
Then, the relationship between the measurement accuracy and the total volume value is derived from FIGS. 6 and 7, and according to this, the measurement accuracy is substantially constant by setting the threshold value so that the total volume value becomes a predetermined volume value. (See FIG. 8).
Therefore, by performing the distance measurement by the above method, it is possible to eliminate variations in measurement accuracy, and it is possible to stabilize the measurement accuracy.

また、受光素子群として2次元撮像素子を用いた構成としても良い。これによれば、被測定対象物からの反射光が2次元的に移動する場合であっても確実に距離測定を行なうことができる。特に、上記光学測定装置のように被測定対象物の傾き及び距離測定を行なう場合には、被測定対象物からの反射光が2次元的に移動することとなるから、このような場合には好適な構成とされる。   Moreover, it is good also as a structure using a two-dimensional image sensor as a light receiving element group. According to this, even if the reflected light from the object to be measured moves two-dimensionally, distance measurement can be reliably performed. In particular, when measuring the tilt and distance of an object to be measured as in the optical measuring device, the reflected light from the object to be measured moves two-dimensionally. A suitable configuration is adopted.

<請求項4及び請求項17の発明>
上記発明では、所定の閾値以上の受光量とされている画素を検出し、その検出された画素から受光中心位置(最大輝度位置、面積重心位置、体積重心位置)を検出するようにしている。このようにすれば全画素の受光量情報を参照することなく受光中心位置を検出することが出来るから、処理時間の短縮化を図ることができる。
<Invention of Claims 4 and 17>
In the above-described invention, a pixel having a light reception amount equal to or greater than a predetermined threshold is detected, and a light reception center position (maximum luminance position, area centroid position, volume centroid position) is detected from the detected pixel. In this way, the light reception center position can be detected without referring to the light reception amount information of all the pixels, so that the processing time can be shortened.

<請求項4,6,7,8,13,15,16,17、の発明>
このような構成では、受光中心位置の検出において不要な受光量情報が排除されて、処理時間の短縮化を図ることができる。
例えば、複数回にわたって測定動作を行ない、それぞれの結果に基づいての傾角または距離を算出する場合には、初回の測定動作において、撮像面における全画素を指定し、2回目以降の測定動作では、初回の測定動作における各画素の受光量を基に光照射面において受光中心位置の検出に必要な領域を指定するようにすればよい。このようにすることで、2回目以降の測定動作の処理時間を短縮化することができるという利点がある。
<Invention of Claims 4, 6, 7, 8, 13, 15, 16, 17>
With such a configuration, unnecessary amount of received light amount information is eliminated in the detection of the light receiving center position, and the processing time can be shortened.
For example, when performing a measurement operation a plurality of times and calculating the tilt angle or distance based on each result, in the first measurement operation, all the pixels on the imaging surface are designated, and in the second and subsequent measurement operations, A region necessary for detection of the light receiving center position on the light irradiation surface may be designated based on the amount of light received by each pixel in the first measurement operation. By doing in this way, there exists an advantage that the processing time of the measurement operation | movement after the 2nd time can be shortened.

<請求項5,9,14,18の発明>
例えば、測定対象物の傾き角(距離)が装置の測定許容範囲から外れた場合には、撮像手段に被測定物からの反射光が照射されなくなる。このようなイレギュラーな使用においては、正確な測定を行なうことができないから、管理者や使用者に対して何らかの方法により測定できないことを知らしめなければならない。
これに対して、上記発明では、測定不能とされた場合には、報知手段にて報知することができるから、確実な測定に寄与することができる。
<Inventions of Claims 5, 9, 14, 18>
For example, when the tilt angle (distance) of the measurement object deviates from the measurement allowable range of the apparatus, the imaging unit is not irradiated with the reflected light from the measurement object. In such irregular use, since accurate measurement cannot be performed, it is necessary to inform the administrator or user that measurement cannot be performed by any method.
On the other hand, in the said invention, when it is set as measurement impossible, since it can alert | report by an alerting | reporting means, it can contribute to a reliable measurement.

<実施形態1>
本発明に係る光学測定装置の実施形態1を図1ないし図8を参照して説明する。本実施形態の構成は図1に示す通りであり、角度測定用レーザ光源11及び距離測定用レーザ光源21から出射された光をダイクロイックミラー31、ビームスプリッタ32及びコリメータレンズ33(「コリメータレンズ」及び「収束レンズ」に相当)を介してワークW(被測定対象物)に両者の光を照射し、正反射光をコリメータレンズ33、ビームスプリッタ32及びダイクロイックミラー34を介して例えば2次元CCDからなる角度測定用撮像素子12及び同じく2次元CCDからなる距離測定用撮像素子22(「受光素子群」、「2次元撮像素子」に相当)の撮像面に照射し、その照射位置に基づいてCPU4(「設定手段」に相当)によりワークWの傾き及び距離が算出されるようになっている。尚、ワークWの表面は鏡面であっても非鏡面であってもよい。
<Embodiment 1>
A first embodiment of an optical measuring device according to the present invention will be described with reference to FIGS. The configuration of the present embodiment is as shown in FIG. 1, and the light emitted from the angle measuring laser light source 11 and the distance measuring laser light source 21 is converted into dichroic mirror 31, beam splitter 32, and collimator lens 33 ("collimator lens" and The workpiece W (object to be measured) is irradiated with both lights via a “convergence lens”), and the specularly reflected light is composed of, for example, a two-dimensional CCD via a collimator lens 33, a beam splitter 32, and a dichroic mirror 34. The imaging surface of the angle measuring image sensor 12 and the distance measuring image sensor 22 (corresponding to “light receiving element group” and “two-dimensional image sensor”), which is also formed of a two-dimensional CCD, are irradiated, and the CPU 4 ( Corresponding to “setting means”), the inclination and distance of the work W are calculated. The surface of the workpiece W may be a mirror surface or a non-mirror surface.

両レーザ光源11,21はそれぞれ波長の異なる光を照射するようになっており、例えば、角度測定用レーザ光源11は波長λ1のレーザ光を出射するものとされており、一方、距離測定用レーザ光源21は波長λ2のレーザ光を出射するものとされている。また、両レーザ光源11,21にはそれぞれレーザ駆動回路13,23が接続されており,CPU4からの制御信号Sa,Sbに基づいてそれぞれのレーザ光源11,21に駆動電流Ia,Ibを供給する(角度測定用レーザ光源11及びレーザ駆動回路13により角度測定用投光手段を構成し、距離測定用レーザ光源21及びレーザ駆動回路23により距離測定用投光手段を構成している)。なお、レーザ光源11,21は間欠的又は連続的に駆動することができる。   Both laser light sources 11 and 21 emit light having different wavelengths, for example, the angle measuring laser light source 11 emits laser light having a wavelength λ1, while the distance measuring laser. The light source 21 emits laser light having a wavelength λ2. Laser drive circuits 13 and 23 are connected to the laser light sources 11 and 21, respectively, and drive currents Ia and Ib are supplied to the laser light sources 11 and 21 based on control signals Sa and Sb from the CPU 4, respectively. (An angle measuring light source 11 and a laser driving circuit 13 constitute an angle measuring light projecting means, and a distance measuring laser light source 21 and a laser driving circuit 23 constitute a distance measuring light projecting means). The laser light sources 11 and 21 can be driven intermittently or continuously.

ダイクロイックミラー31は、波長λ1の光を透過させ、波長λ2の光を反射させるように構成されており、これによって、角度測定用レーザ光源11のレーザ光はこのダイクロイックミラー31を透過してビームスプリッタ32に向かうとともに、距離測定用レーザ光源21からの光はこのダイクロイックミラー31を反射してビームスプリッタ32に向かう。
また、角度測定用レーザ光源11からのレーザ光はダイクロイックミラー31の入射面に垂直に入射させており、距離測定用レーザ光源21からのレーザ光はダイクロイックミラー31の入射面に対して斜めに入射させるように構成している。これによって、角度測定用レーザ光源11の光線軸は光学系の光軸LC(L´C´)と平行とされるとともに、距離測定用レーザ光源21の光線軸は光学系の光軸LC(L´C´)に対して傾いた状態とされる。
The dichroic mirror 31 is configured to transmit the light with the wavelength λ1 and reflect the light with the wavelength λ2, so that the laser light of the angle measuring laser light source 11 is transmitted through the dichroic mirror 31 and the beam splitter. The light from the distance measuring laser light source 21 is reflected by the dichroic mirror 31 and travels toward the beam splitter 32.
The laser light from the angle measuring laser light source 11 is incident on the incident surface of the dichroic mirror 31 perpendicularly, and the laser light from the distance measuring laser light source 21 is incident obliquely on the incident surface of the dichroic mirror 31. It is configured to make it. As a result, the beam axis of the angle measuring laser light source 11 is made parallel to the optical axis LC (L′ C ′) of the optical system, and the beam axis of the distance measuring laser light source 21 is set to the optical axis LC (L of the optical system). 'C') is inclined.

ビームスプリッタ32を反射したレーザ光はコリメータレンズ33により平行光とされて、ワークWに照射される。このとき、角度測定用レーザ光源11からのレーザ光はワークWが傾きのない姿勢とされているときには、ワークWの表面に対して垂直に光が照射されているのに対して、距離測定用レーザ光源21からのレーザ光は光学系の光軸LC(L´C´)に対して傾いているので、ワークWの表面に対して斜めから光が照射されている。また、ワークWに照射されたレーザ光のスポット径はレーザ光源11のレーザ光よりもレーザ光源21のレーザ光のほうが小さくされており、かつ、レーザ光源21のレーザ光はレーザ光源11のレーザ光の照射範囲内に照射されるようになっている。   The laser light reflected from the beam splitter 32 is converted into parallel light by the collimator lens 33 and irradiated onto the workpiece W. At this time, the laser light from the angle measurement laser light source 11 is irradiated perpendicularly to the surface of the workpiece W when the workpiece W is in a posture without inclination, whereas the laser beam for distance measurement is used. Since the laser light from the laser light source 21 is inclined with respect to the optical axis LC (L′ C ′) of the optical system, the light is irradiated obliquely onto the surface of the workpiece W. The spot diameter of the laser light applied to the workpiece W is smaller for the laser light from the laser light source 21 than for the laser light from the laser light source 11, and the laser light from the laser light source 21 is the laser light from the laser light source 11. Irradiation is within the irradiation range.

ワークWからの正反射光はそれぞれ、コリメータレンズ33により集光され、上記ダイクロイックミラー31と同様の特性を有するダイクロイックミラー34により、角度測定用レーザ光源11による正反射光(角度測定用正反射光)は角度測定用撮像素子12の撮像面に結像して集光スポットが形成される。また、距離測定用レーザ光源21による正反射光(距離測定用正反射光)はダイクロイックミラー34を反射して距離測定用撮像素子22の撮像面に照射される。この距離測定用撮像素子22の撮像面は正反射光の焦点位置Fよりも後方に配置されているため、撮像面上には所定の大きさの光像が形成される。ここで、距離測定用撮像素子22の撮像面を焦点位置Fに一致させなかったのは、ワークWの距離に応じて焦点位置Fに至るまでの光路が変化するので、その光像の位置からワークWの距離が算出できるからである。   The specularly reflected light from the workpiece W is collected by the collimator lens 33, and is specularly reflected by the angle measuring laser light source 11 (the specularly reflected light for angle measurement) by the dichroic mirror 34 having the same characteristics as the dichroic mirror 31. ) Forms an image on the imaging surface of the angle-measuring imaging device 12 to form a focused spot. Further, the regular reflection light (distance measurement regular reflection light) from the distance measurement laser light source 21 is reflected by the dichroic mirror 34 and applied to the imaging surface of the distance measurement image sensor 22. Since the image pickup surface of the distance measuring image pickup element 22 is arranged behind the focal position F of the regular reflection light, a light image having a predetermined size is formed on the image pickup surface. Here, the reason why the imaging surface of the distance measuring image pickup element 22 is not coincident with the focal position F is that the optical path to the focal position F changes according to the distance of the workpiece W. This is because the distance of the workpiece W can be calculated.

角度測定用撮像素子12及び距離測定用撮像素子22は撮像面上に形成されている光像あるいは集光スポットに応じたディジタル信号列からなる撮像信号Sc,SdをCPU4に送信する。当該撮像信号は各画素における受光量を例えば0〜255までの数値に振り分け、この数値をディジタル信号としてCPU4に送信するようになっている。
尚、撮像面12A,21Aにおいて、図10における横方向をX軸、縦方向をY軸とする座標系を設定し、撮像面15Aの中央を原点Oと規定する。また、撮像面12A,21Aは複数の画素がマトリクス状に配されて矩形形状に構成されている。
The angle measuring image pickup device 12 and the distance measuring image pickup device 22 transmit to the CPU 4 image pickup signals Sc and Sd formed of a digital signal sequence corresponding to a light image or a condensing spot formed on the image pickup surface. In the imaging signal, the amount of light received at each pixel is assigned to a numerical value from 0 to 255, for example, and this numerical value is transmitted to the CPU 4 as a digital signal.
In the imaging surfaces 12A and 21A, a coordinate system in which the horizontal direction in FIG. 10 is the X axis and the vertical direction is the Y axis is set, and the center of the imaging surface 15A is defined as the origin O. The imaging surfaces 12A and 21A are configured in a rectangular shape with a plurality of pixels arranged in a matrix.

CPU4は、前述したレーザ駆動回路13,23に制御信号Sa,Sbを送信するとともに、制御信号Saの送信に同期して角度測定用撮像素子12からの撮像信号Scを取り込み、制御信号Sbの送信に同期して距離測定用撮像素子22からの撮像信号Sdを取り込む。そして、撮像信号Sc,Sdに基づいてワークWの傾きとコリメータレンズ33からワークWまでの距離とを測定する。   The CPU 4 transmits the control signals Sa and Sb to the laser drive circuits 13 and 23 described above, captures the imaging signal Sc from the angle measurement imaging device 12 in synchronization with the transmission of the control signal Sa, and transmits the control signal Sb. The image pickup signal Sd from the distance measuring image pickup device 22 is captured in synchronization with the above. Then, the inclination of the workpiece W and the distance from the collimator lens 33 to the workpiece W are measured based on the imaging signals Sc and Sd.

本実施形態の構成は以上であり、続いてその動作について説明する。   The configuration of the present embodiment is as described above, and the operation will be described next.

「傾き検出」
本実施形態では周知のオートコリメーション法を用いて傾き測定を行なう構成とされており、ここでは、詳細な説明は割愛する。まず、角度測定用撮像素子12からの撮像信号Scから、最大の受光量を有する画素を集光スポットSの中心位置S0と決定し、撮像面における基準位置Ra(例えば、撮像面の中央位置)と中心位置S0との位置関係から傾きの方向と傾き角とを算出する。
"Tilt detection"
In the present embodiment, the tilt measurement is performed using a well-known autocollimation method, and detailed description thereof is omitted here. First, the pixel having the maximum light reception amount is determined as the center position S0 of the condensing spot S from the imaging signal Sc from the angle measurement imaging device 12, and the reference position Ra (for example, the center position of the imaging surface) on the imaging surface is determined. And a tilt direction and a tilt angle are calculated from the positional relationship between the center position S0 and the center position S0.

「距離検出」
例えば、ワークWが図1中の(1)の位置(距離d1、傾き角0)にある場合には(詳しくは図2参照)、角度測定用撮像素子12の撮像面に形成される集光スポットの位置S1は基準位置Raと一致するから、傾き角は0°と測定される。 また、距離測定については、距離測定用撮像素子122の撮像面における光像L1の形成位置及び前記集光スポットの位置S1とに基づいて距離d1が測定される。
"Distance detection"
For example, when the workpiece W is at the position (1) (distance d1, tilt angle 0) in FIG. 1 (see FIG. 2 for details), the light condensing formed on the imaging surface of the angle measurement imaging device 12 Since the spot position S1 coincides with the reference position Ra, the inclination angle is measured as 0 °. For distance measurement, the distance d1 is measured based on the formation position of the optical image L1 on the imaging surface of the distance measurement imaging element 122 and the position S1 of the focused spot.

ワークWが図1中の(2)の位置(距離d2、傾き角0)にある場合には(詳しくは図3参照)、角度測定用撮像素子22の撮像面に形成される集光スポットの位置S2は基準位置Raと一致するから、傾き角は0°と測定される。
また、距離測定用撮像素子112の撮像面における光像L2の形成位置及び前記集光スポットの位置S2とに基づいて距離d2が測定される。
When the workpiece W is at the position (2) (distance d2, inclination angle 0) in FIG. 1 (see FIG. 3 for details), the condensing spot formed on the imaging surface of the angle measurement imaging device 22 Since the position S2 coincides with the reference position Ra, the inclination angle is measured as 0 °.
Further, the distance d2 is measured based on the formation position of the optical image L2 on the imaging surface of the distance measuring image sensor 112 and the position S2 of the focused spot.

ワークWが図1中の(3)の位置(距離d2、傾き角θ1)にある場合には(詳しくは図4参照)、角度測定用撮像素子12の撮像面に形成される受光スポットの位置S3は基準位置Raから距離dだけ離れているから、これに基づいて、傾き角θ1が測定される。
また、距離測定用撮像素子122の撮像面に形成される光像L3は(2)の位置の場合の光像L2と異なる位置に形成される。しかしながら、光像L3の形成位置と前記集光スポットの位置S3とに基づいて距離を算出しているから、結局、距離はd2と測定される。
When the workpiece W is at the position (3) (distance d2, inclination angle θ1) in FIG. 1 (see FIG. 4 for details), the position of the light receiving spot formed on the imaging surface of the angle measurement imaging device 12 Since S3 is separated from the reference position Ra by the distance d, the inclination angle θ1 is measured based on this distance.
The optical image L3 formed on the imaging surface of the distance measuring image sensor 122 is formed at a position different from the optical image L2 in the case of the position (2). However, since the distance is calculated based on the formation position of the optical image L3 and the position S3 of the focused spot, the distance is eventually measured as d2.

上記距離測定をさらに詳しく説明する。
図5のフローチャートに示すように、距離測定用撮像素子22からの撮像信号Sdに基づいて撮像素子22を構成する画素群のうち最大受光量とされている基準画素を検出し(ステップS10)、その最大受光量に対する任意の割合の値を閾値として設定して当該閾値を上回る受光量とされる画素を検出するとともに、検出された画素の受光量と閾値との差分値の和となる総合体積値を算出する(ステップS20)。その総合体積値が所定体積値と一致したときには(ステップS30で「Y」)、その総合体積値を算出する際に検出された画素群において重心に相当する画素を算出し、この重心に相当する画素を受光スポットの位置として特定し、上記の基準位置Raに相当する画素との位置関係に基づいて被測定対象物の距離を算出する(ステップS40)。
The distance measurement will be described in more detail.
As shown in the flowchart of FIG. 5, a reference pixel having a maximum light receiving amount is detected from the pixel group constituting the image sensor 22 based on the image signal Sd from the distance measurement image sensor 22 (step S10). A total volume that is a sum of the difference between the received light amount of the detected pixel and the threshold, while detecting a pixel having a light reception amount that exceeds the threshold by setting an arbitrary ratio of the maximum received light amount as a threshold value A value is calculated (step S20). When the total volume value matches the predetermined volume value (“Y” in step S30), a pixel corresponding to the center of gravity is calculated in the pixel group detected when the total volume value is calculated, and this pixel corresponds to the center of gravity. The pixel is specified as the position of the light receiving spot, and the distance of the object to be measured is calculated based on the positional relationship with the pixel corresponding to the reference position Ra (step S40).

尚、「重心位置」には、いわゆる面積重心位置と体積重心位置とが含まれ、それぞれ次のように定義される。
<面積重心位置>
面積重心位置={Σ(MI)/ΣM}
I:撮像素子の受光面上における任意の領域内の各画素の位置ベクトル
M:上記各画素の受光量レベルが所定レベル以上であるときには例えば1、そうでないときには0
<体積重心位置>
体積重心位置={Σ(mI)/Σm}
I:上記面積重心位置の場合と同じ
m:上記各画素の受光量レベルに応じた係数
The “centroid position” includes a so-called area centroid position and a volume centroid position, which are defined as follows.
<Area of center of gravity>
Area centroid position = {Σ (MI) / ΣM}
I: Position vector of each pixel in an arbitrary area on the light receiving surface of the image sensor M: For example, 1 when the received light level of each pixel is equal to or higher than a predetermined level, 0 otherwise
<Volume center of gravity position>
Volume centroid position = {Σ (mI) / Σm}
I: Same as in the case of the area centroid position m: Coefficient according to the light reception level of each pixel

上記の距離算出方法についての根拠を以下に示す。
まず、図14に示したように、レンズ33の中心軸あるいはその近辺を通過した光とレンズ33の周縁領域を通過した光とでは、最大受光量とされた画素における受光量が相違している。それぞれの最大受光量における所定割合の値を閾値と定めた場合、両者間で測定精度が一致していないことは図13のグラフからして明白である。
尚、図6〜図8では、レンズ33の中心軸あるいはその近辺を通過した光によって形成された受光スポットのうち最大受光量とされた画素の受光量が「225」、レンズ33の周縁領域を通過した光によって形成された受光スポットのうち最大受光量とされた画素の受光量が「120」とされている。また、横軸の閾値は最大受光量とされた画素の受光量に対する割合(%)として示されている。
The basis for the above distance calculation method is shown below.
First, as shown in FIG. 14, the amount of light received by the pixel having the maximum amount of received light differs between the light passing through the central axis of the lens 33 or the vicinity thereof and the light passing through the peripheral region of the lens 33. . It is clear from the graph of FIG. 13 that the measurement accuracy does not coincide between the two when the value of a predetermined ratio in each maximum received light amount is set as the threshold value.
6 to 8, the light reception amount of the pixel having the maximum light reception amount among the light reception spots formed by the light passing through the central axis of the lens 33 or the vicinity thereof is “225”, and the peripheral region of the lens 33 is shown. Of the light receiving spots formed by the light that has passed, the light receiving amount of the pixel that is the maximum light receiving amount is “120”. Further, the threshold value on the horizontal axis is shown as a ratio (%) with respect to the light reception amount of the pixel which is the maximum light reception amount.

一方、図6に示すように、距離測定用撮像手段22を構成する画素群のうち最大受光量とされる基準画素を基準として、その最大受光量から所定割合の値を閾値として設定し、閾値を上回る受光量とされる画素を検出しつつ、検出された画素の受光量の和となる総合体積値を算出する。上記の閾値を変更しながら算出された総合体積値と閾値との関係を確認したところ、その関係は逆比例となっていることが発明者が行なった実験によって明らかにされた。   On the other hand, as shown in FIG. 6, with reference to a reference pixel that is the maximum light reception amount in the pixel group constituting the distance measurement imaging means 22, a predetermined ratio value is set as a threshold value from the maximum light reception amount. The total volume value that is the sum of the received light amounts of the detected pixels is calculated while detecting the pixels with the received light amount exceeding. When the relationship between the total volume value calculated while changing the above threshold value and the threshold value was confirmed, it was revealed by an experiment conducted by the inventors that the relationship was inversely proportional.

そして、上記図6及び図7から測定精度と総合体積値との関係が導かれ、これによると総合体積値が所定の体積値となるように閾値を設定することで、測定精度が略一定となることが確認された(図8参照)。
従って、上記方法で距離測定を行なうことで、測定精度のばらつきを無くすることができ、もって、測定精度の安定化を図ることができる。
Then, the relationship between the measurement accuracy and the total volume value is derived from FIGS. 6 and 7, and according to this, by setting the threshold value so that the total volume value becomes a predetermined volume value, the measurement accuracy is substantially constant. (See FIG. 8).
Therefore, by performing the distance measurement by the above method, variation in measurement accuracy can be eliminated, and thus measurement accuracy can be stabilized.

また、2次元撮像素子12を用いた構成としたことにより、被測定対象物からの反射光が2次元状に移動する場合であっても確実に距離測定を行なうことができる。特に、上記光学測定装置のようにワークWの傾き及び距離測定を行なう場合には、反射光が2次元方向に移動することとなるから、最適な構成とされる。   Further, by using the configuration using the two-dimensional imaging device 12, it is possible to reliably measure the distance even when the reflected light from the object to be measured moves two-dimensionally. In particular, when measuring the tilt and distance of the workpiece W as in the optical measuring device, the reflected light moves in a two-dimensional direction, so that the optimum configuration is obtained.

また、上記構成において、両レーザ光源11,21から同一波長のレーザ光を出射する構成とすることもできる。この場合には、それぞれのレーザ光源11,21交互にパルス点灯させるようにCPU4から制御信号Sa,Sbをレーザ駆動回路13,23に供給し、ダイクロイックミラー31,34に代わって例えばビームスプリッタを配置するようにすればよい。また、CPU4は前述したようにレーザ駆動回路13,23に制御信号Sa,Sbを送信するとともに、制御信号Saの送信に同期して角度測定用撮像素子12からの撮像信号Scを取り込み、制御信号Sbの送信に同期して距離測定用撮像素子22からの撮像信号Sdを取り込む。そして、撮像信号Sc,Sdに基づいてワークWの傾き及びコリメータレンズ33からワークWまでの距離を測定する構成とする。このようにすると、例えばレーザ光は交互に出射されることとなり、光の干渉が抑制され、測定精度が向上するという効果が得られる。   Moreover, in the said structure, it can also be set as the structure which radiate | emits the laser beam of the same wavelength from both the laser light sources 11 and 21. FIG. In this case, the control signals Sa and Sb are supplied from the CPU 4 to the laser drive circuits 13 and 23 so that the respective laser light sources 11 and 21 are alternately lit, and a beam splitter, for example, is arranged in place of the dichroic mirrors 31 and 34. You just have to do it. Further, as described above, the CPU 4 transmits the control signals Sa and Sb to the laser drive circuits 13 and 23, and captures the image pickup signal Sc from the angle measurement image pickup device 12 in synchronization with the transmission of the control signal Sa. In synchronization with the transmission of Sb, the imaging signal Sd from the distance measuring imaging element 22 is captured. The tilt of the workpiece W and the distance from the collimator lens 33 to the workpiece W are measured based on the imaging signals Sc and Sd. If it does in this way, for example, a laser beam will be radiate | emitted alternately, interference of light will be suppressed and the effect that a measurement precision improves will be acquired.

本実施形態では、所定の閾値以上の受光量とされている画素Pを抽出し、その抽出された画素Pから集光スポットSの中心位置S0を検出するようにしている。このようにすれば全画素の受光量を参照することなく中心位置S0を検出することができるから、処理時間の短縮化を図ることができる。   In the present embodiment, a pixel P having a received light amount equal to or greater than a predetermined threshold is extracted, and the center position S0 of the focused spot S is detected from the extracted pixel P. In this way, since the center position S0 can be detected without referring to the amount of light received by all pixels, the processing time can be shortened.

<実施形態2>
本実施形態では、いわゆる総合面積値に基づいて距離測定を行なっているところが実施形態1と相違しており、その他の構成は同一とされている。
距離測定用撮像素子22からの撮像信号Sdによりこれを構成する画素群において最大受光量となる基準画素を検出し、その最大受光量に対する任意の割合の値を閾値として設定して当該閾値を上回る受光量とされる画素を検出するととともに、検出された受光素子数の合計値からなる総合面積値を算出する。そして、この総合面積値が所定面積値と一致したときには検出された画素群における重心位置を検出し、当該重心位置に相当する画素と基準位置に相当する画素との位置関係に基づいて被測定対象物Wの距離を測定している。
尚、「重心位置」は、実施形態1で説明したように、面積重心位置と体積重心位置とが含まれており、どちらを適用しもよい。
<Embodiment 2>
In the present embodiment, the distance measurement is performed based on the so-called total area value, which is different from the first embodiment, and other configurations are the same.
A reference pixel that is the maximum light reception amount is detected in the pixel group constituting the image pickup signal Sd from the distance measurement image pickup device 22, and an arbitrary ratio value with respect to the maximum light reception amount is set as a threshold value, which exceeds the threshold value. In addition to detecting a pixel that is the amount of received light, a total area value that is a total value of the detected number of light receiving elements is calculated. When the total area value matches the predetermined area value, the center of gravity position in the detected pixel group is detected, and the measurement target is based on the positional relationship between the pixel corresponding to the center of gravity position and the pixel corresponding to the reference position. The distance of the object W is measured.
As described in the first embodiment, the “centroid position” includes the area centroid position and the volume centroid position, and either may be applied.

<実施形態3>
本発明の光学測定装置の実施形態について図9ないし図11を参照して説明する。尚、上記実施形態1と同一の部分には同一の符号を付して重複する説明を省略する。
本実施形態の光学測定装置は、図11に示すように撮像素子12,22とメモリ5との間にコンパレータ6(請求項に記載の「画素選択手段」に相当)が介在されており、さらに、CPU4からの駆動信号を受けて発光動作を行なう発光部7が設けられているところが実施形態1の構成と相違している。
コンパレータ6は撮像素子12(22)から出力される撮像信号Sc,Sdを受信し、この撮像信号Sc(Sd)のレベルと所定の閾値とを比較し、所定の閾値を上回る撮像信号Sc(Sd)をメモリ5に送信するように構成されている。
<Embodiment 3>
An embodiment of the optical measurement apparatus of the present invention will be described with reference to FIGS. In addition, the same code | symbol is attached | subjected to the part same as the said Embodiment 1, and the overlapping description is abbreviate | omitted.
In the optical measurement apparatus of the present embodiment, as shown in FIG. 11, a comparator 6 (corresponding to “pixel selection means” described in the claims) is interposed between the imaging elements 12 and 22 and the memory 5. The configuration of the first embodiment is different from that of the first embodiment in that a light emitting unit 7 that performs a light emitting operation in response to a drive signal from the CPU 4 is provided.
The comparator 6 receives the imaging signals Sc and Sd output from the imaging device 12 (22), compares the level of the imaging signal Sc (Sd) with a predetermined threshold value, and compares the imaging signal Sc (Sd) exceeding the predetermined threshold value. ) To the memory 5.

以下、本実施形態の測定動作は、まず撮像素子12(22)から出力された撮像信号Sc(Sd)がコンパレータ6にて所定の閾値と比較され、この閾値を上回る撮像信号Sc(Sd)がメモリ5に送信されてその受光量情報がこれに記憶される。
ここで、所定の閾値を上回る受光量を有する画素Pの数が所定の数n(n=1,2,3・・・・)に達していない場合には、CPU4から発光部7に対して駆動信号を送信して発光部を動作させることで、使用者や管理者等に測定不能の旨が報知される(CPU4、コンパレータ6及び発光部7で請求項に記載の「報知手段」が構成されている)。
尚、上記のような場合には、ワークWの傾き角が装置の測定許容範囲を越えているというようなことが考えられ、このようなイレギュラーな使用においては、正確な傾角測定を行なうことができない。しかし、発光部7の動作によってそれを報知することができるから確実な測定が約束される。
この後、領域指定処理、受光中心位置検出処理及び傾角算出処理を行なうこととなる。これらの処理は上記実施形態1ないし実施形態4のいずれかに記載した処理を適用することにより可能であるから、詳細な説明については省略する。
Hereinafter, in the measurement operation of the present embodiment, first, the imaging signal Sc (Sd) output from the imaging device 12 (22) is compared with a predetermined threshold by the comparator 6, and the imaging signal Sc (Sd) exceeding this threshold is detected. The amount of received light is transmitted to the memory 5 and stored therein.
Here, when the number of pixels P having a light receiving amount exceeding a predetermined threshold does not reach a predetermined number n (n = 1, 2, 3,...), The CPU 4 applies the light emission unit 7 to the light emitting unit 7. By transmitting the drive signal and operating the light emitting unit, the user, the administrator, and the like are notified that measurement is impossible (the CPU 4, the comparator 6, and the light emitting unit 7 constitute the “notification unit” described in the claims). Have been).
In the above case, it is conceivable that the tilt angle of the workpiece W exceeds the allowable measurement range of the apparatus. In such irregular use, accurate tilt angle measurement should be performed. I can't. However, since this can be notified by the operation of the light emitting unit 7, reliable measurement is promised.
Thereafter, an area designation process, a light receiving center position detection process, and an inclination angle calculation process are performed. Since these processes can be performed by applying the processes described in any of the first to fourth embodiments, detailed description thereof will be omitted.

本実施形態では、所定の閾値以上のレベルとされる受光量情報をメモリ81に記憶し、このメモリ5に記憶されている受光量情報からワークWの傾角(距離)を測定するようにしている。これにより、中心位置S0の検出において不要な受光量情報が排除されて、処理時間の短縮化を図ることができる。また、本実施形態においては、図10に示すようにCPU4にコンパレータ6の機能を持たせるような構成であってもよい。   In the present embodiment, received light amount information having a level equal to or higher than a predetermined threshold value is stored in the memory 81, and the tilt angle (distance) of the workpiece W is measured from the received light amount information stored in the memory 5. . Thereby, unnecessary received light amount information in the detection of the center position S0 is eliminated, and the processing time can be shortened. In the present embodiment, the CPU 4 may be configured to have the function of the comparator 6 as shown in FIG.

また、図11に示すような構成であってもよい。これは、撮像素子としてCMOSイメージセンサ112(122)を配し、その光照射面112A(122A)にワークWからの正反射光を照射させるようになっている。また、CPU4からはCMOSイメージセンサ112(122)へ駆動信号Se(Sf)及び制御信号Sg(Sh)が送信されるようになっている。   Moreover, a structure as shown in FIG. 11 may be sufficient. In this case, a CMOS image sensor 112 (122) is arranged as an image pickup element, and the light irradiation surface 112A (122A) is irradiated with regular reflection light from the work W. Further, the drive signal Se (Sf) and the control signal Sg (Sh) are transmitted from the CPU 4 to the CMOS image sensor 112 (122).

上記CMOSイメージセンサ112(122)はCPU4からの駆動信号Se(Sf)を受信することで、各画素の受光量に応じた撮像信号Sc(Sd)を出力する。一方、制御信号Sg(Sh)を受信したときには、この制御信号Sg(Sh)により指定された画素あるいは指定された領域内の画素に関する撮像信号Sc(Sd)を出力するようになっている。   The CMOS image sensor 112 (122) receives the drive signal Se (Sf) from the CPU 4 and outputs an imaging signal Sc (Sd) corresponding to the amount of light received by each pixel. On the other hand, when the control signal Sg (Sh) is received, the imaging signal Sc (Sd) relating to the pixel designated by the control signal Sg (Sh) or the pixel in the designated region is output.

CPU4は、CMOSイメージセンサ112(122)に駆動信号Se(Sf)及び制御信号Sg(Sh)を出力するようになっている。駆動信号Se(sf)はCMOSイメージセンサ112(122)から撮像信号Sc(Sd)を取り出す際に出力する信号である。また、制御信号Sg(Sh)は光照射面112A(122A)を構成する画素群において、所定の画素あるいは所定の領域内の画素を指定するための信号である。従って、制御信号Sg(Sh)にて光照射面112A(122A)における画素または領域を指定して、駆動信号Se(Sf)をCMOSイメージセンサ112(122)に送信すると、指定された画素あるいは指定された領域内の画素からの撮像信号Sc(Sd)のみがCMOSイメージセンサ112,122から出力されるのである。   The CPU 4 outputs a drive signal Se (Sf) and a control signal Sg (Sh) to the CMOS image sensor 112 (122). The drive signal Se (sf) is a signal that is output when the imaging signal Sc (Sd) is extracted from the CMOS image sensor 112 (122). The control signal Sg (Sh) is a signal for designating a predetermined pixel or a pixel in a predetermined region in the pixel group constituting the light irradiation surface 112A (122A). Accordingly, when a pixel or region on the light irradiation surface 112A (122A) is designated by the control signal Sg (Sh) and the drive signal Se (Sf) is transmitted to the CMOS image sensor 112 (122), the designated pixel or designation is designated. Only the image pickup signal Sc (Sd) from the pixels in the set area is output from the CMOS image sensors 112 and 122.

測定動作においては、CMOSイメージセンサ112(122)の光照射面112A(122A)において、集光スポットSが形成されている領域を指定する制御信号Se(Sf)をCPU4からCOMSイメージセンサ112(122)へ送信する。
そうすると、CMOSイメージセンサ112(122)からは指定された領域内の画素の受光量に関する撮像信号Sc(Sd)がCPU4へ出力される。この後、上記実施形態1ないし実施形態4の処理を適用することによりワークWの傾角(距離)を測定することができる。
In the measurement operation, the CPU 4 sends a control signal Se (Sf) for designating a region where the focused spot S is formed on the light irradiation surface 112A (122A) of the CMOS image sensor 112 (122) from the CPU 4 to the COMS image sensor 112 (122). ).
As a result, the CMOS image sensor 112 (122) outputs to the CPU 4 an imaging signal Sc (Sd) relating to the amount of light received by the pixels in the designated area. Thereafter, the tilt angle (distance) of the workpiece W can be measured by applying the processing of the first to fourth embodiments.

上記構成は、例えば、複数回にわたって傾角算出動作を行ない、それぞれの結果に基づいてワークWの傾角を算出する場合には、初回の傾角算出動作において、制御信号Se(Sf)により光照射面112A(122A)における全画素を指定し、2回目以降の傾角算出動作では、初回の傾角算出動作における撮像信号Sc(Sd)を基に光照射面112A(122A)において集光スポットSが含まれる領域を制御信号Sg(Sh)により指定するようにすればよい。このようにすることで、2回目以降の傾角算出動作の処理時間を短縮化することができるという利点がある。   In the above configuration, for example, when the tilt angle calculating operation is performed a plurality of times and the tilt angle of the workpiece W is calculated based on the respective results, the light irradiation surface 112A is used by the control signal Se (Sf) in the initial tilt angle calculating operation. All pixels in (122A) are designated, and in the second and subsequent tilt angle calculation operations, a region including the condensed spot S on the light irradiation surface 112A (122A) based on the imaging signal Sc (Sd) in the first tilt angle calculation operation May be specified by the control signal Sg (Sh). By doing in this way, there exists an advantage that the processing time of the inclination calculation operation | movement after the 2nd time can be shortened.

<第4実施形態>
次に、本発明の実施形態を図12を参照して説明する。本実施形態と上記実施形態との相違は、角度測定用レーザ光源11とダイクロイックミラー31との間にコリメータレンズ14が配されているとともに、距離測定用レーザ光源21とダイクロイックミラー31との間にコリメータレンズ24が配されており、それぞれのレーザ光源11,21からの光が平行光に変えられてからダイクロイックミラー31に至るように構成されている。また、ダイクロイックミラー34とビームスプリッタ33との間に収束レンズ36が配されている。
<Fourth embodiment>
Next, an embodiment of the present invention will be described with reference to FIG. The difference between the present embodiment and the above embodiment is that a collimator lens 14 is disposed between the angle measuring laser light source 11 and the dichroic mirror 31, and between the distance measuring laser light source 21 and the dichroic mirror 31. A collimator lens 24 is arranged so that the light from each of the laser light sources 11 and 21 is converted into parallel light and then reaches the dichroic mirror 31. A converging lens 36 is disposed between the dichroic mirror 34 and the beam splitter 33.

このように構成することで、両レーザ光源11,21からのレーザ光をそれぞれのコリメータレンズ14,24により平行光に変えてからビームスプリッタ33に導く構成としているから、両レーザ光源11,21からビームスプリッタ33までの光学的距離の調整を行なう必要がなく装置内の光学系の組付け精度を緩やかにすることができるとともに、光学系の調整作業も簡略化することもできる。   With this configuration, the laser light from both laser light sources 11 and 21 is converted into parallel light by the respective collimator lenses 14 and 24 and then guided to the beam splitter 33. It is not necessary to adjust the optical distance to the beam splitter 33, and the assembly accuracy of the optical system in the apparatus can be moderated, and the adjustment work of the optical system can be simplified.

<第7実施形態>
次に、本発明の実施形態を図13を参照して説明する。本実施形態と実施形態6との相違点は、ビームスプリッタ33に代わってS偏光を反射しP偏光を透過させる偏光ビームスプリッタ37を配し、さらに、この偏光ビームスプリッタ37とワークWとの間に1/4波長板38を設けたところにある。また、ワークWの表面は鏡面であることが望ましい。
<Seventh embodiment>
Next, an embodiment of the present invention will be described with reference to FIG. The difference between the present embodiment and the sixth embodiment is that a polarizing beam splitter 37 that reflects S-polarized light and transmits P-polarized light is disposed in place of the beam splitter 33, and further between the polarizing beam splitter 37 and the workpiece W. Are provided with a quarter-wave plate 38. The surface of the workpiece W is preferably a mirror surface.

一般にレーザ光は直線偏光とされているから、両レーザ光源11,21からのレーザ光を偏光ビームスプリッタ37に照射すると、S偏光が反射して1/4波長板37に向かうとともに、P偏光は透過する。S偏光は1/4波長板38を透過することで円偏光に変えられてワークWに照射される。ワークWからの正反射光は円偏光のまま1/4波長板38を透過する。このときに円偏光からP偏光に変えられ、これによって偏光ビームスプリッタ37を透過してそれぞれの撮像素子12,22に照射される。   In general, the laser light is linearly polarized. Therefore, when the laser beams from both laser light sources 11 and 21 are irradiated onto the polarization beam splitter 37, the S-polarized light is reflected and travels toward the quarter-wave plate 37, and the P-polarized light is To Penetrate. The S-polarized light is changed to circularly-polarized light by passing through the quarter-wave plate 38 and is irradiated onto the workpiece W. The regular reflection light from the work W is transmitted through the quarter-wave plate 38 as circularly polarized light. At this time, the circularly polarized light is changed to P-polarized light, and the light is transmitted through the polarizing beam splitter 37 and irradiated to the respective image pickup devices 12 and 22.

本実施形態のような構成とすることで光学的な損失を低減することが可能となり、鏡面体検出におけるS/N比を向上させることができる。また、レーザ光源11,21から出射される光は直線偏光であるから、直線偏光を出射させるための構成を極めて簡略化することができる。   By adopting the configuration of this embodiment, it is possible to reduce optical loss and improve the S / N ratio in mirror body detection. In addition, since the light emitted from the laser light sources 11 and 21 is linearly polarized light, the configuration for emitting linearly polarized light can be greatly simplified.

<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
(1)上記実施形態では、2次元CCDに受光スポットを形成させ、この受光スポットから距離測定を行なうように構成していたが、例えば、1次元CCDに受光スポットを形成させる事により距離測定を行なうような構成であってもよい。
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention, and further, within the scope not departing from the gist of the invention other than the following. Various modifications can be made.
(1) In the above embodiment, the light receiving spot is formed on the two-dimensional CCD and the distance is measured from the light receiving spot. For example, the distance is measured by forming the light receiving spot on the one-dimensional CCD. The structure which performs may be sufficient.

(2)また、上記実施形態では、個別体積値の算出と並行して総合体積値の算出を行なう構成としていたが、双方を並行して処理する構成としても良い。   (2) Moreover, in the said embodiment, although it was set as the structure which calculates a total volume value in parallel with calculation of an individual volume value, it is good also as a structure which processes both in parallel.

(3)上記実施形態では、ワークWに照射される光において、角度測定用レーザ光源11からの光によって形成される照射スポットが距離測定用レーザ光源21からの光によって形成される照射スポットを包囲するよように構成していたが、距離測定用レーザ光源21からの光によって形成される照射スポットが角度測定用レーザ光源11からの光によって形成される照射スポットを包囲するよように構成してもよい。また、両レーザ光源11,21からの光によって形成される照射スポットが互いに重なり合うような構成であってもよい。   (3) In the above embodiment, in the light irradiated to the workpiece W, the irradiation spot formed by the light from the angle measuring laser light source 11 surrounds the irradiation spot formed by the light from the distance measuring laser light source 21. However, the irradiation spot formed by the light from the distance measuring laser light source 21 surrounds the irradiation spot formed by the light from the angle measuring laser light source 11. Also good. Moreover, the structure which the irradiation spot formed with the light from both the laser light sources 11 and 21 mutually overlaps may be sufficient.

実施形態1に係る光学測定装置の全体構成を示した模式図Schematic diagram showing the overall configuration of the optical measurement apparatus according to the first embodiment ワークの位置と反射光の光路を示した概略図Schematic showing work position and reflected light path ワークの位置と反射光の光路を示した概略図Schematic showing work position and reflected light path ワークの位置と反射光の光路を示した概略図Schematic showing work position and reflected light path 距離測定の処理内容を示したフローチャートFlow chart showing the details of the distance measurement process 閾値と測定精度の関係を示したグラフGraph showing the relationship between threshold and measurement accuracy 閾値と総合体積値との関係を示したグラフGraph showing the relationship between threshold and total volume 閾値、測定精度及び総合体積値の相互関係を示したグラフGraph showing the correlation between threshold, measurement accuracy and total volume value 実施形態3に係る光学測定装置の全体構成を示した図The figure which showed the whole structure of the optical measuring device which concerns on Embodiment 3. 光学測定装置の構成を示した概念図Conceptual diagram showing the configuration of the optical measurement device 光学測定装置の構成を示した概念図Conceptual diagram showing the configuration of the optical measurement device 実施形態6に係る光学測定装置の全体構成を示した図The figure which showed the whole structure of the optical measuring device which concerns on Embodiment 6. FIG. 実施形態7に係る光学測定装置の全体構成を示した図The figure which showed the whole structure of the optical measuring device which concerns on Embodiment 7. レンズの通過位置と受光スポットの光強度分布との関係を示した概念図Conceptual diagram showing the relationship between the lens passing position and the light intensity distribution of the light receiving spot

符号の説明Explanation of symbols

4…CPU
11…角度測定用レーザ光源
12…角度測定用撮像素子
13…レーザ駆動回路
21…距離測定用レーザ光源
22…距離測定用撮像素子
23…レーザ駆動回路
31…ダイクロイックミラー
32…ビームスプリッタ
33…コリメータレンズ
W…ワーク
LC…光学系の光軸
4 ... CPU
DESCRIPTION OF SYMBOLS 11 ... Laser light source for angle measurement 12 ... Image sensor for angle measurement 13 ... Laser drive circuit 21 ... Laser light source for distance measurement 22 ... Image sensor for distance measurement 23 ... Laser drive circuit 31 ... Dichroic mirror 32 ... Beam splitter 33 ... Collimator lens W ... Work LC ... Optical axis of optical system

Claims (22)

距離測定用投光手段からの光を収束レンズにて収束し、この収束光を被測定対象物に照射するとともに、当該被測定対象物からの正反射光を収束して距離測定用受光手段の受光素子群に集光し、前記距離測定用受光手段から出力される撮像信号に基づいて前記被測定対象物までの距離を測定する距離測定装置において、
前記撮像信号から前記受光素子群において最大受光量となる基準受光素子を検出し、当該基準受光素子を基準として受光スポットにおける各受光素子の受光量に基づいて総合体積値を算出し、その総合体積値が所定体積値と一致したときには、検出された受光素子群における重心位置を検出し、当該重心位置に相当する受光素子と基準位置に相当する受光素子との位置関係に基づいて前記被測定対象物の距離を測定する測定手段を備えることを特徴とする距離測定装置。
The light from the distance measuring light projecting means is converged by the converging lens, and the converged light is irradiated onto the object to be measured, and the specularly reflected light from the object to be measured is converged so that the distance measuring light receiving means In a distance measuring device that collects light on a light receiving element group and measures the distance to the object to be measured based on an imaging signal output from the light receiving means for distance measurement,
A reference light receiving element having a maximum light receiving amount in the light receiving element group is detected from the image pickup signal, and a total volume value is calculated based on the light receiving amount of each light receiving element in the light receiving spot with reference to the reference light receiving element. When the value coincides with the predetermined volume value, the center of gravity position in the detected light receiving element group is detected, and the measurement target is based on the positional relationship between the light receiving element corresponding to the center of gravity position and the light receiving element corresponding to the reference position. A distance measuring device comprising measuring means for measuring the distance of an object.
距離測定用投光手段からの光を収束レンズにて収束し、この収束光を被測定対象物に照射するとともに、当該被測定対象物からの正反射光を収束して距離測定用受光手段の受光素子群に集光し、前記距離測定用受光手段から出力される撮像信号に基づいて前記被測定対象物までの距離を測定する距離測定装置において、
前記撮像信号から前記受光素子群において最大受光量となる基準受光素子を検出し、当該基準受光素子を基準として受光スポットにおける各受光素子の受光量に基づいて総合面積値を算出し、この総合面積値が所定面積値と一致したときには検出された受光素子群における重心位置を検出し、当該重心位置に相当する受光素子と基準位置に相当する受光素子との位置関係に基づいて前記被測定対象物の距離を測定する測定手段を備えることを特徴とする距離測定装置。
The light from the distance measuring light projecting means is converged by the converging lens, and the converged light is irradiated onto the object to be measured, and the specularly reflected light from the object to be measured is converged so that the distance measuring light receiving means In a distance measuring device that collects light on a light receiving element group and measures the distance to the object to be measured based on an imaging signal output from the light receiving means for distance measurement,
A reference light receiving element having a maximum light receiving amount in the light receiving element group is detected from the imaging signal, and a total area value is calculated based on the light receiving amount of each light receiving element in the light receiving spot with reference to the reference light receiving element. When the value coincides with a predetermined area value, the center of gravity position in the detected light receiving element group is detected, and the object to be measured is based on the positional relationship between the light receiving element corresponding to the center of gravity position and the light receiving element corresponding to the reference position. A distance measuring device comprising a measuring means for measuring the distance.
前記距離測定用受光手段は2次元撮像素子から構成されていることを特徴とする請求項1又は請求項2に記載の距離測定装置。 3. The distance measuring device according to claim 1, wherein the distance measuring light receiving means is constituted by a two-dimensional image sensor. 前記距離測定用受光手段から出力される撮像信号を受信して各画素の受光量に関する情報を記憶する距離測定用記憶手段と、
前記受光量に関する情報から所定の閾値よりも高い受光量とされる画素を検出する距離測定用画素検出手段とを備え、
前記測定手段は前記距離測定用画素検出手段で検出された画素において、最大受光量とされる画素を前記基準受光素子として検出することを特徴とする請求項3に記載の距離測定装置。
A distance measuring storage means for receiving an imaging signal output from the distance measuring light receiving means and storing information relating to the amount of light received by each pixel;
A distance measuring pixel detecting means for detecting a pixel having a light receiving amount higher than a predetermined threshold from the information on the light receiving amount;
4. The distance measuring apparatus according to claim 3, wherein the measuring unit detects a pixel having a maximum light receiving amount as the reference light receiving element among the pixels detected by the distance measuring pixel detecting unit.
前記画素検出手段において検出された画素を計数し、その数が所定数以下であることを条件に検出不能を報知する報知手段が備えられていることを特徴とする請求項4に記載の距離測定装置。 The distance measurement according to claim 4, further comprising a notifying unit that counts the pixels detected by the pixel detecting unit and notifies that detection is impossible on the condition that the number is not more than a predetermined number. apparatus. 各画素の受光量に基づいて特定の画素を選択する距離測定用画素選択手段と、
前記距離測定用画素選択手段により選択された画素の受光量に関する情報を記憶する距離測定用記憶手段とを備え、
前記測定手段は前記距離測定用画素検出手段で検出された画素において、最大受光量とされる画素を前記基準受光素子として検出することを特徴とする請求項3に記載の距離測定装置。
Distance measuring pixel selection means for selecting a specific pixel based on the amount of light received by each pixel;
A distance measurement storage means for storing information relating to the amount of light received by the pixel selected by the distance measurement pixel selection means;
4. The distance measuring apparatus according to claim 3, wherein the measuring unit detects a pixel having a maximum light receiving amount as the reference light receiving element among the pixels detected by the distance measuring pixel detecting unit.
前記距離測定用画素選択手段は、
前記距離測定用撮像手段から出力される撮像信号を基に各画素の受光量を所定の閾値と比較し、当該所定の閾値を上回る受光量とされる画素を選択することを特徴とする請求項6に記載の距離測定装置。
The distance measurement pixel selection means includes:
The received light amount of each pixel is compared with a predetermined threshold based on an imaging signal output from the distance measuring imaging means, and a pixel having a received light amount exceeding the predetermined threshold is selected. 6. The distance measuring device according to 6.
前記距離測定用画素選択手段は、
前記距離測定用撮像手段から出力される撮像信号を基に各画素の受光量を所定の閾値と比較し、当該所定の閾値を上回る受光量とされる画素を含むように領域を指定し、その領域内に含まれる画素の撮像信号を受信するように動作することを特徴とする請求項6に記載の距離測定装置。
The distance measurement pixel selection means includes:
Based on the imaging signal output from the distance measuring imaging means, the amount of light received by each pixel is compared with a predetermined threshold, and an area is specified so as to include a pixel whose amount of light received exceeds the predetermined threshold. The distance measuring device according to claim 6, wherein the distance measuring device operates so as to receive an imaging signal of a pixel included in the region.
前記画素選択手段において検出された画素を計数し、その数が所定数以下であることを条件に検出不能を報知する報知手段が備えられていることを特徴とする請求項7または請求項8に記載の距離測定装置。 9. A notification means for counting the number of pixels detected by the pixel selection means and notifying that detection is impossible on condition that the number is equal to or less than a predetermined number. The described distance measuring device. 距離測定用投光手段からの光を収束レンズにて収束し、この収束光を被測定対象物に照射するとともに、当該被測定対象物からの正反射光を収束して距離測定用撮像手段の受光素子群に集光し、前記距離測定用撮像手段から出力される撮像信号に基づいて前記被測定対象物までの距離を測定する距離測定用光学系と、傾角測定用投光手段からの光をコリメータレンズにより平行光に変換し、この平行光を前記被測定対象物に照射するとともに、前記被測定対象物からの反射光を収束して傾角測定用撮像手段の撮像面に照射し、前記傾角測定用撮像手段から出力される撮像信号に基づいて前記被測定対象物の傾きを測定する傾角測定用光学系とを有する光学測定装置において、
前記撮像信号から前記受光素子群において最大受光量となる基準受光素子を検出し、当該基準受光素子を基準として受光スポットにおける各受光素子の受光量に基づいて総合体積値を算出し、その総合体積値が所定体積値と一致したときには、検出された受光素子群における重心位置を検出し、当該重心位置に相当する受光素子と基準位置に相当する受光素子との位置関係に基づいて前記被測定対象物の距離を測定する測定手段を備えることを特徴とする光学測定装置。
The light from the distance measurement light projecting means is converged by the converging lens, and the converged light is irradiated onto the object to be measured, and the specularly reflected light from the object to be measured is converged so that the distance measurement imaging means Light from a distance measuring optical system that collects light on a light receiving element group and measures the distance to the object to be measured based on an imaging signal output from the distance measuring imaging means, and light from a tilt measuring light projecting means Is converted into parallel light by a collimator lens, and the parallel light is irradiated onto the object to be measured, and the reflected light from the object to be measured is converged and irradiated onto the imaging surface of the inclination measuring imaging unit, In an optical measurement apparatus having an inclination measurement optical system that measures the inclination of the measurement object based on an imaging signal output from an inclination measurement imaging means,
A reference light receiving element having a maximum light receiving amount in the light receiving element group is detected from the image pickup signal, and a total volume value is calculated based on the light receiving amount of each light receiving element in the light receiving spot with reference to the reference light receiving element. When the value coincides with the predetermined volume value, the center of gravity position in the detected light receiving element group is detected, and the measurement target is based on the positional relationship between the light receiving element corresponding to the center of gravity position and the light receiving element corresponding to the reference position. An optical measuring apparatus comprising measuring means for measuring the distance of an object.
距離測定用投光手段からの光を収束レンズにて収束し、この収束光を被測定対象物に照射するとともに、当該被測定対象物からの正反射光を収束して距離測定用撮像手段の受光素子群に集光し、前記距離測定用撮像手段から出力される撮像信号に基づいて前記被測定対象物までの距離を測定する距離測定用光学系と、傾角測定用投光手段からの光をコリメータレンズにより平行光に変換し、この平行光を前記被測定対象物に照射するとともに、前記被測定対象物からの反射光を収束して傾角測定用撮像手段の撮像面に照射し、前記傾角測定用撮像手段から出力される撮像信号に基づいて前記被測定対象物の傾きを測定する傾角測定用光学系とを有する光学測定装置において、
前記撮像信号から前記受光素子群において最大受光量となる基準受光素子を検出し、当該基準受光素子を基準として受光スポットにおける各受光素子の受光量に基づいて総合面積値を算出し、この総合面積値が所定面積値と一致したときには検出された受光素子群における重心位置を検出し、当該重心位置に相当する受光素子と基準位置に相当する受光素子との位置関係に基づいて前記被測定対象物の距離を測定する測定手段を備えることを特徴とする光学測定装置。
The light from the distance measurement light projecting means is converged by the converging lens, and the converged light is irradiated onto the object to be measured, and the specularly reflected light from the object to be measured is converged so that the distance measurement imaging means Light from a distance measuring optical system that collects light on a light receiving element group and measures the distance to the object to be measured based on an imaging signal output from the distance measuring imaging means, and light from a tilt measuring light projecting means Is converted into parallel light by a collimator lens, and the parallel light is irradiated onto the object to be measured, and the reflected light from the object to be measured is converged and irradiated onto the imaging surface of the inclination measuring imaging unit, In an optical measurement apparatus having an inclination measurement optical system that measures the inclination of the measurement object based on an imaging signal output from an inclination measurement imaging means,
A reference light receiving element having a maximum light receiving amount in the light receiving element group is detected from the imaging signal, and a total area value is calculated based on the light receiving amount of each light receiving element in the light receiving spot with reference to the reference light receiving element. When the value coincides with a predetermined area value, the center of gravity position in the detected light receiving element group is detected, and the object to be measured is based on the positional relationship between the light receiving element corresponding to the center of gravity position and the light receiving element corresponding to the reference position. An optical measuring device comprising a measuring means for measuring the distance.
前記距離測定用受光手段は2次元撮像素子から構成されていることを特徴とする請求項10又は請求項11に記載の光学測定装置。 The optical measuring device according to claim 10 or 11, wherein the distance measuring light-receiving means comprises a two-dimensional image sensor. 前記距離測定用受光手段から出力される撮像信号を受信して各画素の受光量に関する情報を記憶する距離測定用記憶手段と、
前記受光量に関する情報から所定の閾値よりも高い受光量とされる画素を検出する距離測定用画素検出手段とを備え、
前記測定手段は前記距離測定用画素検出手段で検出された画素において、最大受光量とされる画素を前記基準受光素子として検出することを特徴とする請求項12に記載の光学測定装置。
A distance measuring storage means for receiving an imaging signal output from the distance measuring light receiving means and storing information relating to the amount of light received by each pixel;
A distance measuring pixel detecting means for detecting a pixel having a light receiving amount higher than a predetermined threshold from the information on the light receiving amount;
13. The optical measurement apparatus according to claim 12, wherein the measurement unit detects a pixel having a maximum light reception amount as the reference light receiving element among the pixels detected by the distance measurement pixel detection unit.
前記画素検出手段において検出された画素を計数し、その数が所定数以下であることを条件に検出不能を報知する報知手段が備えられていることを特徴とする請求項13に記載の光学測定装置。 14. The optical measurement according to claim 13, further comprising a notifying unit that counts the pixels detected by the pixel detecting unit and notifies that the detection is impossible on condition that the number is not more than a predetermined number. apparatus. 各画素の受光量に基づいて特定の画素を選択する距離測定用画素選択手段と、
前記距離測定用画素選択手段により選択された画素の受光量に関する情報を記憶する距離測定用記憶手段とを備え、
前記測定手段は前記距離測定用画素検出手段で検出された画素において、最大受光量とされる画素を前記基準受光素子として検出することを特徴とする請求項12に記載の光学測定装置。
Distance measuring pixel selection means for selecting a specific pixel based on the amount of light received by each pixel;
A distance measurement storage means for storing information relating to the amount of light received by the pixel selected by the distance measurement pixel selection means;
13. The optical measurement apparatus according to claim 12, wherein the measurement unit detects a pixel having a maximum light reception amount as the reference light receiving element among the pixels detected by the distance measurement pixel detection unit.
前記距離測定用画素選択手段は、
前記距離測定用撮像手段から出力される撮像信号を基に各画素の受光量を所定の閾値と比較し、当該所定の閾値を上回る受光量とされる画素を選択することを特徴とする請求項12に記載の光学測定装置。
The distance measurement pixel selection means includes:
The received light amount of each pixel is compared with a predetermined threshold based on an imaging signal output from the distance measuring imaging means, and a pixel having a received light amount exceeding the predetermined threshold is selected. 12. The optical measuring device according to 12.
前記距離測定用画素選択手段は、
前記距離測定用撮像手段から出力される撮像信号を基に各画素の受光量を所定の閾値と比較し、当該所定の閾値を上回る受光量とされる画素を含むように領域を指定し、その領域内に含まれる画素の撮像信号を受信するように動作することを特徴とする請求項12に記載の光学測定装置。
The distance measurement pixel selection means includes:
Based on the imaging signal output from the distance measuring imaging means, the amount of light received by each pixel is compared with a predetermined threshold, and an area is specified so as to include a pixel whose amount of light received exceeds the predetermined threshold. The optical measurement apparatus according to claim 12, wherein the optical measurement apparatus operates to receive an imaging signal of a pixel included in the region.
前記画素選択手段において検出された画素を計数し、その数が所定数以下であることを条件に検出不能を報知する報知手段が備えられていることを特徴とする請求項15ないし請求項18に記載の光学測定装置。 19. A notification unit that counts the pixels detected by the pixel selection unit and notifies that detection is impossible on condition that the number is equal to or less than a predetermined number. The optical measuring device described. 距離測定用投光手段からの光を収束レンズにて収束し、この収束光を被測定対象物に照射するとともに、当該被測定対象物からの正反射光を収束して距離測定用撮像手段の受光素子群に集光し、前記距離測定用撮像手段から出力される撮像信号に基づいて前記被測定対象物までの距離を測定する距離測定装置における距離測定方法であって、
前記撮像信号から前記受光素子群において最大受光量となる基準受光素子を検出する処理と、
前記基準受光素子を基準として受光スポットにおける各受光素子の受光量に基づいて総合体積値を算出する処理と、
その総合体積値が所定体積値と一致したときには、検出された受光素子群における重心位置を検出し、当該重心位置に相当する受光素子と基準位置に相当する受光素子との位置関係に基づいて前記被測定対象物の距離を測定する処理とを含むことを特徴とする距離測定装置の距離測定方法。
The light from the distance measurement light projecting means is converged by the converging lens, and the converged light is irradiated onto the object to be measured, and the specularly reflected light from the object to be measured is converged so that the distance measurement imaging means A distance measuring method in a distance measuring device that collects light on a light receiving element group and measures the distance to the object to be measured based on an imaging signal output from the distance measuring imaging means,
A process of detecting a reference light receiving element that is a maximum light receiving amount in the light receiving element group from the imaging signal;
A process of calculating a total volume value based on the amount of light received by each light receiving element at a light receiving spot with reference to the reference light receiving element;
When the total volume value coincides with the predetermined volume value, the center of gravity position in the detected light receiving element group is detected, and based on the positional relationship between the light receiving element corresponding to the center of gravity position and the light receiving element corresponding to the reference position, And a distance measuring method for measuring the distance of the object to be measured.
距離測定用投光手段からの光を収束レンズにて収束し、この収束光を被測定対象物に照射するとともに、当該被測定対象物からの正反射光を収束して距離測定用撮像手段の受光素子群に集光し、前記距離測定用撮像手段から出力される撮像信号に基づいて前記被測定対象物までの距離を測定する距離測定装置における距離測定方法であって、
前記撮像信号から前記受光素子群において最大受光量となる基準受光素子を検出する処理と、
前記基準受光素子を基準として受光スポットにおける各受光素子の受光量に基づいて総合面積値を算出する処理と、
その総合面積値が所定面積値と一致したときには検出された受光素子群における重心位置を検出し、当該重心位置に相当する受光素子と基準位置に相当する受光素子との位置関係に基づいて前記被測定対象物の距離を測定する処理とを含むことを特徴とする距離測定装置における距離測定方法。
The light from the distance measurement light projecting means is converged by the converging lens, and the converged light is irradiated onto the object to be measured, and the specularly reflected light from the object to be measured is converged so that the distance measurement imaging means A distance measuring method in a distance measuring device that collects light on a light receiving element group and measures the distance to the object to be measured based on an imaging signal output from the distance measuring imaging means,
A process of detecting a reference light receiving element that is a maximum light receiving amount in the light receiving element group from the imaging signal;
A process of calculating a total area value based on the amount of light received by each light receiving element at a light receiving spot with reference to the reference light receiving element;
When the total area value coincides with the predetermined area value, the center of gravity position in the detected light receiving element group is detected, and based on the positional relationship between the light receiving element corresponding to the center of gravity position and the light receiving element corresponding to the reference position. And a process for measuring the distance of the measurement object.
距離測定用投光手段からの光を収束レンズにて収束し、この収束光を被測定対象物に照射するとともに、当該被測定対象物からの正反射光を収束して距離測定用撮像手段の受光素子群に集光し、前記距離測定用撮像手段から出力される撮像信号に基づいて前記被測定対象物までの距離を測定する距離測定用光学系と、傾角測定用投光手段からの光をコリメータレンズにより平行光に変換し、この平行光を前記被測定対象物に照射するとともに、前記被測定対象物からの反射光を収束して傾角測定用撮像手段の撮像面に照射し、前記傾角測定用撮像手段から出力される撮像信号に基づいて前記被測定対象物の傾きを測定する傾角測定用光学系とを有する光学測定装置における距離測定方法であって、
前記撮像信号から前記受光素子群において最大受光量となる基準受光素子を検出する処理と、
前記基準受光素子を基準として受光スポットにおける各受光素子の受光量に基づいて総合体積値を算出する処理と、
その総合体積値が所定体積値と一致したときには、検出された受光素子群における重心位置を検出し、当該重心位置に相当する受光素子と基準位置に相当する受光素子との位置関係に基づいて前記被測定対象物の距離を測定する処理とを含むことを特徴とする光学測定装置の距離測定方法。
The light from the distance measurement light projecting means is converged by the converging lens, and the converged light is irradiated onto the object to be measured, and the specularly reflected light from the object to be measured is converged so that the distance measurement imaging means Light from a distance measuring optical system that collects light on a light receiving element group and measures the distance to the object to be measured based on an imaging signal output from the distance measuring imaging means, and light from a tilt measuring light projecting means Is converted into parallel light by a collimator lens, and the parallel light is irradiated onto the object to be measured, and the reflected light from the object to be measured is converged and irradiated onto the imaging surface of the inclination measuring imaging unit, A distance measurement method in an optical measurement apparatus having an inclination measurement optical system that measures the inclination of the measurement object based on an imaging signal output from an inclination measurement imaging means,
A process of detecting a reference light receiving element that is a maximum light receiving amount in the light receiving element group from the imaging signal;
A process of calculating a total volume value based on the amount of light received by each light receiving element at a light receiving spot with reference to the reference light receiving element;
When the total volume value coincides with the predetermined volume value, the center of gravity position in the detected light receiving element group is detected, and based on the positional relationship between the light receiving element corresponding to the center of gravity position and the light receiving element corresponding to the reference position, A distance measuring method for an optical measuring apparatus, comprising: a process for measuring a distance of an object to be measured.
距離測定用投光手段からの光を収束レンズにて収束し、この収束光を被測定対象物に照射するとともに、当該被測定対象物からの正反射光を収束して距離測定用撮像手段の受光素子群に集光し、前記距離測定用撮像手段から出力される撮像信号に基づいて前記被測定対象物までの距離を測定する距離測定用光学系と、傾角測定用投光手段からの光をコリメータレンズにより平行光に変換し、この平行光を前記被測定対象物に照射するとともに、前記被測定対象物からの反射光を収束して傾角測定用撮像手段の撮像面に照射し、前記傾角測定用撮像手段から出力される撮像信号に基づいて前記被測定対象物の傾きを測定する傾角測定用光学系とを有する光学測定装置における距離測定方法であって、
前記撮像信号から前記受光素子群において最大受光量となる基準受光素子を検出する処理と、
前記基準受光素子を基準として受光スポットにおける各受光素子の受光量に基づいて総合面積値を算出する処理と、
その総合面積値が所定面積値と一致したときには検出された受光素子群における重心位置を検出し、当該重心位置に相当する受光素子と基準位置に相当する受光素子との位置関係に基づいて前記被測定対象物の距離を測定する処理とを含むことを特徴とする光学測定装置における距離測定方法。
The light from the distance measurement light projecting means is converged by the converging lens, and the converged light is irradiated onto the object to be measured, and the specularly reflected light from the object to be measured is converged so that the distance measurement imaging means Light from a distance measuring optical system that collects light on a light receiving element group and measures the distance to the object to be measured based on an imaging signal output from the distance measuring imaging means, and light from a tilt measuring light projecting means Is converted into parallel light by a collimator lens, and the parallel light is irradiated onto the object to be measured, and the reflected light from the object to be measured is converged and irradiated onto the imaging surface of the inclination measuring imaging unit, A distance measurement method in an optical measurement apparatus having an inclination measurement optical system that measures the inclination of the measurement object based on an imaging signal output from an inclination measurement imaging means,
A process of detecting a reference light receiving element that is a maximum light receiving amount in the light receiving element group from the imaging signal;
A process of calculating a total area value based on the amount of light received by each light receiving element at a light receiving spot with reference to the reference light receiving element;
When the total area value coincides with the predetermined area value, the center of gravity position in the detected light receiving element group is detected, and based on the positional relationship between the light receiving element corresponding to the center of gravity position and the light receiving element corresponding to the reference position. A distance measuring method in the optical measuring device, comprising: a process of measuring a distance of the measuring object.
JP2004108221A 2003-12-25 2004-03-31 Optical measuring device and distance measuring method thereof Expired - Fee Related JP4589648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004108221A JP4589648B2 (en) 2003-12-25 2004-03-31 Optical measuring device and distance measuring method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003430551 2003-12-25
JP2004108221A JP4589648B2 (en) 2003-12-25 2004-03-31 Optical measuring device and distance measuring method thereof

Publications (2)

Publication Number Publication Date
JP2005208027A true JP2005208027A (en) 2005-08-04
JP4589648B2 JP4589648B2 (en) 2010-12-01

Family

ID=34914152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004108221A Expired - Fee Related JP4589648B2 (en) 2003-12-25 2004-03-31 Optical measuring device and distance measuring method thereof

Country Status (1)

Country Link
JP (1) JP4589648B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007064670A (en) * 2005-08-29 2007-03-15 Tokyo Seimitsu Co Ltd Device for measuring surface shape
US8602449B2 (en) 2009-05-11 2013-12-10 Toyota Jidosha Kabushiki Kaisha Vehicle seat
KR20160121993A (en) * 2015-04-13 2016-10-21 삼성전자주식회사 Apparatus and method for measuring a temperature in an electronic device
WO2016185729A1 (en) * 2015-05-20 2016-11-24 オリンパス株式会社 Specimen shape measurement method and specimen shape measurement device
WO2017119118A1 (en) * 2016-01-08 2017-07-13 オリンパス株式会社 Sample shape measuring method and sample shape measuring apparatus
WO2018092247A1 (en) * 2016-11-17 2018-05-24 オリンパス株式会社 Specimen shape measurement method and specimen shape measurement device
WO2018092248A1 (en) * 2016-11-17 2018-05-24 オリンパス株式会社 Sample shape measurement device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05187845A (en) * 1992-01-13 1993-07-27 Nissan Motor Co Ltd Method for processing picture signal
JPH08240408A (en) * 1995-03-02 1996-09-17 Omron Corp Displacement sensor
JPH10332335A (en) * 1997-04-03 1998-12-18 Keyence Corp Optical displacement gauge
JP2000234907A (en) * 1999-02-12 2000-08-29 Ricoh Co Ltd Displacement inclination measuring apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05187845A (en) * 1992-01-13 1993-07-27 Nissan Motor Co Ltd Method for processing picture signal
JPH08240408A (en) * 1995-03-02 1996-09-17 Omron Corp Displacement sensor
JPH10332335A (en) * 1997-04-03 1998-12-18 Keyence Corp Optical displacement gauge
JP2000234907A (en) * 1999-02-12 2000-08-29 Ricoh Co Ltd Displacement inclination measuring apparatus

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007064670A (en) * 2005-08-29 2007-03-15 Tokyo Seimitsu Co Ltd Device for measuring surface shape
US8602449B2 (en) 2009-05-11 2013-12-10 Toyota Jidosha Kabushiki Kaisha Vehicle seat
KR20160121993A (en) * 2015-04-13 2016-10-21 삼성전자주식회사 Apparatus and method for measuring a temperature in an electronic device
KR102392787B1 (en) 2015-04-13 2022-05-02 삼성전자주식회사 Apparatus and method for measuring a temperature in an electronic device
US10458785B2 (en) 2015-05-20 2019-10-29 Olympus Corporation Sample shape measuring method and sample shape measuring apparatus
JPWO2016185729A1 (en) * 2015-05-20 2018-03-08 オリンパス株式会社 Sample shape measuring method and sample shape measuring apparatus
WO2016185729A1 (en) * 2015-05-20 2016-11-24 オリンパス株式会社 Specimen shape measurement method and specimen shape measurement device
JPWO2017119118A1 (en) * 2016-01-08 2018-11-01 オリンパス株式会社 Sample shape measuring method and sample shape measuring apparatus
WO2017119118A1 (en) * 2016-01-08 2017-07-13 オリンパス株式会社 Sample shape measuring method and sample shape measuring apparatus
US10458781B2 (en) 2016-01-08 2019-10-29 Olympus Corporation Sample shape measuring method and sample shape measuring apparatus
WO2018092247A1 (en) * 2016-11-17 2018-05-24 オリンパス株式会社 Specimen shape measurement method and specimen shape measurement device
WO2018092248A1 (en) * 2016-11-17 2018-05-24 オリンパス株式会社 Sample shape measurement device
US10539411B2 (en) 2016-11-17 2020-01-21 Olympus Corporation Sample shape measuring apparatus
US10697764B2 (en) 2016-11-17 2020-06-30 Olympus Corporation Sample shape measuring apparatus for calculating a shape of a sample disposed between an illumination optical system and an observation optical system

Also Published As

Publication number Publication date
JP4589648B2 (en) 2010-12-01

Similar Documents

Publication Publication Date Title
US8314939B2 (en) Reference sphere detecting device, reference sphere position detecting device, and three-dimensional-coordinate measuring device
JP4427389B2 (en) Surveying instrument
US9401024B2 (en) Measuring device for determining the spatial position of an auxiliary measuring instrument
US20180343381A1 (en) Distance image acquisition apparatus and application thereof
JP2007147299A (en) Apparatus and method for measuring displacement
TWI411860B (en) Focal position detecting method
JP2010261949A (en) Method and apparatus for measuring relative positions of specular reflection surface
US6565210B2 (en) Ocular optical characteristic measuring apparatus
JP4500097B2 (en) Optical measuring device and distance calculating method in optical measuring device
JP2017020873A (en) Measurement device for measuring shape of measurement object
JPH11257917A (en) Reflection type optical sensor
JP4589648B2 (en) Optical measuring device and distance measuring method thereof
JP2008096197A (en) Device for measuring eccentricity
JP2010085395A (en) Optical position angle detector
KR101487251B1 (en) Optical tracking system and method for tracking using the same
JP4339166B2 (en) Angle measuring device and tilt angle measuring method thereof
JP2005017257A (en) Optical measuring device
JP2005291938A (en) Light receiving center detection method, distance measuring apparatus, angle-measuring apparatus and optical measuring apparatus
JP2006292513A (en) Refractive index distribution measuring method for refractive index distribution type lens
JP2005283249A (en) Angle measuring device and optical measuring device
JP2005300478A (en) Optical measuring apparatus
KR20160069806A (en) Distance measuring apparatus and distance measuring method
JP5057962B2 (en) Optical displacement measuring instrument
JP2005315573A (en) Angle measuring instrument, angle adjuster, and optical measuring instrument
JP3945120B2 (en) Ranging sensor and adjustment method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070209

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070709

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070710

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090924

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100910

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees