JPH0384737A - Focus control method - Google Patents

Focus control method

Info

Publication number
JPH0384737A
JPH0384737A JP22037689A JP22037689A JPH0384737A JP H0384737 A JPH0384737 A JP H0384737A JP 22037689 A JP22037689 A JP 22037689A JP 22037689 A JP22037689 A JP 22037689A JP H0384737 A JPH0384737 A JP H0384737A
Authority
JP
Japan
Prior art keywords
photodetector
intensity
light
objective lens
focus control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22037689A
Other languages
Japanese (ja)
Inventor
Hiroo Fujita
宏夫 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP22037689A priority Critical patent/JPH0384737A/en
Publication of JPH0384737A publication Critical patent/JPH0384737A/en
Pending legal-status Critical Current

Links

Landscapes

  • Automatic Focus Adjustment (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

PURPOSE:To stably attain focus control with high accuracy by devising the method such that a 1st photodetector detects a luminous intensity of an area having a large intensity of light beam so as to discriminate the deviation of a focal position and a 2nd photodetector detects a luminous intensity of an area having a small intensity of light beam so as to discriminate the deviation of a focal position. CONSTITUTION:A 1st photodetector 11 is provided in an optical path of a reflected light from a recording medium 6, and the intensity of part of the reflected light including the maximum strength when viewing a face orthogonal in the optical axis direction of the reflected light is detected and its output is stored in a luminous intensity storage section 13. Moreover, a 2nd photodetector 12 is provided at a different position from that of the 1st photodetector 11 to detect the intensity of a light beam of the lower strength area. Then an objective lens 5 is controlled based on an output signal of the 1st and 2nd photodetectors 11, 12 and the difference between the luminous intensity before and after the movement of the objective lens 5 is controlled to be nearly 0 thereby applying focus control. Thus, the focus control method operated stably is obtained with simple constitution.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は情報の記録・再生が光学的に行なわれる光デイ
スク装置におけるフォーカス制御方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a focus control method in an optical disk device in which information is recorded and reproduced optically.

〔従来の技術〕[Conventional technology]

近年になり大容量の情報が記録・再生できる光デイスク
装置が実用化されてきた。光デイスク装置においては、
微小なスポット径に集光したレーザ光を、情報の記録ト
ラック上に最小のスポット径の状態で照射することが必
要で、このために光学ヘッドをディスク変動に追随させ
るためのフォーカス制御が重要な技術となっている。フ
ォーカス制御は従来から多くの方法が提案され、実用化
されている。代表的な方法はナイフェツジ法、非点収差
法、臨界角法である。
In recent years, optical disk devices capable of recording and reproducing large amounts of information have been put into practical use. In optical disk devices,
It is necessary to irradiate the information recording track with a laser beam focused on a minute spot diameter, with the minimum spot diameter, and for this purpose, focus control is important to make the optical head follow the disc fluctuations. It has become a technology. Many methods of focus control have been proposed and put into practical use. Typical methods are the Naifetsu method, the astigmatism method, and the critical angle method.

第2図にフォーカス制御にナイフェツジ法を用いたとき
の光デイスク装置の光学ヘッド構成例を示す。半導体レ
ーザ1かも放射された直線偏光を有するレーザ光は偏光
ビームスプリッタ・−(PBS )2で反射され、17
4波長板3で円偏光に変換された後に、コリメータレン
ズ4で平行光に変換され、対物レンズ5で微小なスポッ
ト径に集光して、ディスク乙の情報記録媒体に照射する
。ディスク6の情報記録媒体で反射したレーザ光は、対
物レンズ5、コリメータレンズ4.1/4波長板6を透
過して再び直線偏光に変換さし、偏光ビームスプリンタ
ー2を透過し、ノ・−フプリズム7に入射する。ハーフ
プリズム7を透過したレーザ光は、ナイフェツジ21.
2分割光検出器22、差動増幅器23かも成るフォーカ
ス制御部20に入射され、ハーフプリズム7で反射され
たレーザ光はトラッキング制御部8に入射する。
FIG. 2 shows an example of the configuration of an optical head of an optical disk device when the Knifezi method is used for focus control. The linearly polarized laser beam emitted from the semiconductor laser 1 is reflected by the polarization beam splitter (PBS) 2 and
After being converted into circularly polarized light by the four-wavelength plate 3, it is converted into parallel light by the collimator lens 4, condensed into a minute spot diameter by the objective lens 5, and irradiated onto the information recording medium of the disk B. The laser beam reflected by the information recording medium of the disk 6 passes through the objective lens 5, the collimator lens 4, and the 1/4 wavelength plate 6, is converted into linearly polarized light again, and is transmitted through the polarization beam splinter 2, where it is then transmitted through the polarization beam splinter 2 and is then converted into linearly polarized light. incident on the prism 7. The laser beam transmitted through the half prism 7 passes through the knife lens 21.
The laser beam enters a focus control section 20 which also includes a two-split photodetector 22 and a differential amplifier 23, and is reflected by a half prism 7, and enters a tracking control section 8.

ここでトラッキング制御は従来からプッシュプル法が多
く用いられ、公知の技術であるから本願明細書において
は説明を省略する。
Here, the push-pull method is often used for tracking control and is a well-known technique, so its explanation will be omitted in this specification.

フォーカス制御部20で検出されたフォーカスエラー情
報に基づきフィードバンク回路系(図示せず)を通して
、対物レンズアクチ1.エータを構成するフォーカスコ
イル9を励起して対物レンズ5を光軸方向に移動させて
フォーカス制御を行な第3図でナイフェツジ法によるフ
ォーカスエラー検出の動作を説明する。第3図では動作
原理を説明するために直接に関与する光学部材のみを示
している。ディスク6の情報記録媒体により反射された
レーザ光はコリメータレンズ4を通過すると収束光とな
るが、ディスク6の情報記録媒体が合焦点位置になると
きの収束光のビームウェスト位置、即ちコリメータレン
ズ4の焦点位置300にナイフェツジ21を設けておく
。この場合はナイフェツジの後方に設置した2分割光検
出器22の受光面22a及び22bには等量の反射光が
入射されるために、差動増幅器23の出力はOとなる。
Based on the focus error information detected by the focus control unit 20, the objective lens actuator 1. Focus control is performed by exciting the focus coil 9 constituting the ether to move the objective lens 5 in the optical axis direction.The operation of focus error detection using the Knifezi method will be described with reference to FIG. In FIG. 3, only optical members directly involved are shown in order to explain the operating principle. The laser beam reflected by the information recording medium on the disk 6 becomes a convergent beam when it passes through the collimator lens 4, but the beam waist position of the convergent light when the information recording medium on the disk 6 comes to the focused position, that is, the collimator lens 4 A knife 21 is provided at a focal point position 300. In this case, since equal amounts of reflected light are incident on the light receiving surfaces 22a and 22b of the two-split photodetector 22 installed behind the knife, the output of the differential amplifier 23 becomes O.

ところがディスク6が対物レンズ5に近づいてくると、
収束光のビームウェスト位置は点300の位置から遠ざ
かり、ナイフェツジ21により光がけられるようになり
、受光器22bの方により多くの光が入射するために差
動増幅器26の出力は負となる。逆にディスク6が対物
1ノンズ5から遠ざかると、受光器22aの方により多
くの光が入射するために差動増幅器26の出力は正とな
る。このように1〜て、2分割光検出器の差動検出を行
なうことによりフォ・−カス制御を行なっている。
However, when the disk 6 approaches the objective lens 5,
The beam waist position of the convergent light moves away from the point 300, the light is eclipsed by the knife 21, and more light enters the light receiver 22b, so the output of the differential amplifier 26 becomes negative. Conversely, when the disk 6 moves away from the objective lens 5, more light enters the photoreceiver 22a, so the output of the differential amplifier 26 becomes positive. In this manner, focus control is performed by differentially detecting the two-split photodetector.

〔発明が解決1−ようとする課題3 以上述べた従来のナイフェツジ法によるフォーカス制御
の方法は、光ビームの一部を遮断するために光量損失が
大きいこと、また合焦点時に2分割光検出器22へ等量
の光ビームを入射させるためのナイフェツジ位置の設定
のための調整が複雑であること、更には2分割光検出器
22へ入射する光ビームの光量の差に応じた差動増幅を
行なうために、差動増幅器26のゲイン調整が複雑とな
ること等の各種の課題がある。
[Solution 1-Problem 3 of the Invention] The conventional focus control method using the Knifetzge method described above suffers from a large amount of light loss due to blocking a part of the light beam, and also requires the use of a two-split photodetector at the time of focusing. The adjustment for setting the knife position in order to make an equal amount of light beam incident on the two-split photodetector 22 is complicated, and the differential amplification according to the difference in the light amount of the light beam incident on the two-split photodetector 22 is required. Therefore, there are various problems such as complicated gain adjustment of the differential amplifier 26.

本発明は上記の課題を解決12、簡素な構成で、高い精
度での調整が不要で、かつ安定に動作するフォーカス制
御方法を提供することを目的とする。
It is an object of the present invention to solve the above-mentioned problems (12) and to provide a focus control method that has a simple configuration, does not require highly accurate adjustment, and operates stably.

〔課題を解決するための手段〕[Means to solve the problem]

情報記録媒体からの反射光の収束光路中に第1の光検出
器を設けて、反射光の光軸方向と直交する面で見た光強
度分布の強度最大部を含み、前記反射光の一部分の強度
を検出L、該検出出力を光強度記憶部に記憶せしめ、前
記第1の光検出器とは異なる位置に第2の光検出器を設
け、前記第1の光検出器で検出する領域よりも低い強度
領域の光ビームの強度を検出せしめ、前記第1の光検I
B器と前記第2の光検出器の出力信号に基づいて前記対
物レンズを制御するとと4)に前記対物レンズの移動前
後における前記光強度記憶部で記憶された光強度の差強
度がOとみなせる状態に制御l−てフォーカス制御を行
なう。
A first photodetector is provided in the convergence optical path of the reflected light from the information recording medium to detect a portion of the reflected light that includes the maximum intensity part of the light intensity distribution seen in a plane orthogonal to the optical axis direction of the reflected light. detecting the intensity L, storing the detection output in a light intensity storage section, providing a second photodetector at a position different from the first photodetector, and detecting an area with the first photodetector. detecting the intensity of the light beam in a lower intensity region than the first optical detector I;
When the objective lens is controlled based on the output signals of the B detector and the second photodetector, the difference intensity between the light intensities stored in the light intensity storage section before and after the movement of the objective lens is O. Focus control is performed to maintain a viewable state.

〔作用〕[Effect]

一般にレーザ光の光強度分布はガウス型分布をしていて
、光ビームの中央部が強度が強く、周辺部は強度が低く
なっている。情報記録媒体からO反射光の収束光路中に
設けた2つの光検出器の中で、第1の光検出器は光ビー
ムの強度の大きい領域の光強度を検出してフォーカス位
置のズレ量を判定する。第2の光検出器は比較的低い強
度領域の光強度を検出してフォーカス位置のズレの方向
を判定する。第1の光検出器と第2の光検出器の両方の
出力信号に基づいて、フォーカスはずれを補正する方向
へフォーカス制御を行なうとき、対物レンズの移動の前
後における反射光強度の変化を検出する。フォーカス位
置に近づいてくると第1の光検出器で検出される光強度
は増加してくると共に、対物レンズの移動の前後におけ
る差強度は減少してくる。従って前述の差強度がOある
いはOとみなせる大きさになれば、その位置がペストフ
ォーカス位置と判定する。
Generally, the light intensity distribution of a laser beam has a Gaussian distribution, with the light beam having a high intensity at the center and a low intensity at the periphery. Among the two photodetectors installed in the convergence optical path of the O reflected light from the information recording medium, the first photodetector detects the light intensity of the region where the light beam intensity is high and determines the amount of shift in the focus position. judge. The second photodetector detects light intensity in a relatively low intensity region to determine the direction of focus position shift. Based on the output signals of both the first photodetector and the second photodetector, when performing focus control in the direction of correcting out-of-focus, detecting changes in reflected light intensity before and after movement of the objective lens. . As the focus position is approached, the light intensity detected by the first photodetector increases, and the difference in intensity between before and after the movement of the objective lens decreases. Therefore, if the above-mentioned difference intensity becomes O or a magnitude that can be considered as O, that position is determined to be the pest focus position.

〔実施例〕〔Example〕

以下に本発明の実施例を図面を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図に本発明のフォーカス制御装置を用いた光デイス
ク装置の構成例を示す。
FIG. 1 shows an example of the configuration of an optical disk device using the focus control device of the present invention.

番号1〜9は第2図で説明したのと同じ構成である。デ
ィスク6の情報記録媒体で反射されたレーザ光はコリメ
ータレンズ4で集光されて収束光となり、1/4波長板
6、偏光ビームスプリッタ−2を透過し、更にハーフプ
リズム7に入射する。
Numbers 1 to 9 have the same configuration as explained in FIG. The laser beam reflected by the information recording medium of the disk 6 is focused by the collimator lens 4 to become convergent light, passes through the quarter-wave plate 6 and the polarizing beam splitter 2, and further enters the half prism 7.

ハーフプリズム7で反射されたレーザ光はトラッキング
制御部8に入射せられてトラッキング制御を行なう。ト
ラッキング制御はプッシュプル法が多く用いられていて
、公知の技術であるため本願明細書においては説明を省
略する。ハーフプリズム7を透過したレーザ光は本発明
によるフォーカス制御装置10に入射する。
The laser beam reflected by the half prism 7 is incident on a tracking control section 8 to perform tracking control. The push-pull method is often used for tracking control, and since it is a well-known technique, its explanation will be omitted in this specification. The laser beam transmitted through the half prism 7 enters the focus control device 10 according to the present invention.

以上の構成による光デイスク装置におけるフォーカス制
御装置10は以下に述べる構成部材から成る。
The focus control device 10 in the optical disk device having the above configuration is comprised of the constituent members described below.

11は第1の光検出器、12は第2の光検出器で、いず
れもコリメータレンズ4による収束光路中に設置する。
11 is a first photodetector, and 12 is a second photodetector, both of which are installed in the convergence optical path of the collimator lens 4.

なお本例ではコリメータレンズ4による収束光の例を示
したが、他の構成の光ヘッドで、コリメータレンズ4に
よらないで他の集光用のレンズを用いて反射光を収束さ
せてもよい。
Although this example shows an example of convergent light using the collimator lens 4, an optical head with a different configuration may use another condensing lens to converge the reflected light instead of using the collimator lens 4. .

レーザ光の光強度分布はガウス型の強度分布を有するが
、第1の光検出器11はガウス型強度分布のピーク強度
を含み、ピーク強度付近の一部分の光強度を検出する。
The light intensity distribution of the laser beam has a Gaussian intensity distribution, and the first photodetector 11 includes the peak intensity of the Gaussian intensity distribution and detects a portion of the light intensity near the peak intensity.

従って第1の光検出器11は対物レンズ5が合焦点位置
にあるとき、収束する反射光のビームウェスト位置ある
いはビームウェストに近い位置に設定する。第1の光検
出器11は反射光の強度の強い領域の光強度を検出して
フォーカスはずれの大きさを判定するために用いる。
Therefore, the first photodetector 11 is set at the beam waist position of the converging reflected light or at a position close to the beam waist when the objective lens 5 is at the focused position. The first photodetector 11 is used to detect the light intensity of a region where the intensity of reflected light is strong and to determine the magnitude of defocus.

第2の光検出器12は第1の光検出器11とは異なる位
置に設定し、前述のピーク強度付近を除いた比較的光強
度の低い領域の光強度を検出する。
The second photodetector 12 is set at a different position from the first photodetector 11, and detects light intensity in a region where the light intensity is relatively low, excluding the vicinity of the peak intensity described above.

第2の光検出器12は第1の光検出器11の補助的動作
を行なうもので、フォーカス位置のズレの方向・・・・
・・対物レンズ5がディスク6に近い方にズしているか
、遠い方にズしているか・・・・・・を判定するもので
ある。
The second photodetector 12 performs an auxiliary operation of the first photodetector 11, and the direction of focus position shift...
. . . It is determined whether the objective lens 5 is shifted closer to the disk 6 or farther away.

16は第1の光検出器11で検出された光強度を記憶す
る′光強度記憶部である。反射光強度をディジタル的に
記憶する場合は、第1の光検出器11で検出されたアナ
ログ量である光強度信号をA/D変換してメモリー回路
に記憶すればよい。
Reference numeral 16 denotes a light intensity storage unit that stores the light intensity detected by the first photodetector 11. When the reflected light intensity is stored digitally, the light intensity signal, which is an analog quantity detected by the first photodetector 11, may be A/D converted and stored in the memory circuit.

この場合はA/D変換を行なうサンプリング周期JTs
に同期した記憶を行なう。反射光強度をアナログ的に記
憶する場合は、第1の光検出器11で検出されたアナロ
グ量である光強度信号をチャージポンプ回路に印加して
コンデンサーに貯えられる電荷量として記憶すればよい
。対物レンズ5がディスク6の合焦点位置から離れてい
る場合は、第1の光検出器11で検出される光強度は低
く、焦点位置に近づいてくるに従って光強度が増加して
くる。14は対物レンズ駆動制御部で、第1の光検出器
11と第2の光検出器12の両方の検出情報に基づいて
、対物レンズ5を駆動するための制御信号105を作成
して、対物レンズアクチュエータを構成するフォーカス
コイル9に励起電流を印加して対物レンズ5を駆動する
。ここで、第1の光検出器11の光強度に応じた大きさ
の制御信号を設定し、第2の光検出器12の光強度に応
じた制御方向への制御信号を設定する。
In this case, the sampling period JTs for performing A/D conversion is
Perform memorization in sync with When the reflected light intensity is stored in analog form, the light intensity signal, which is an analog quantity detected by the first photodetector 11, may be applied to the charge pump circuit and stored as the quantity of charge stored in the capacitor. When the objective lens 5 is far from the focused position of the disk 6, the light intensity detected by the first photodetector 11 is low, and increases as it approaches the focused position. 14 is an objective lens drive control unit which creates a control signal 105 for driving the objective lens 5 based on the detection information of both the first photodetector 11 and the second photodetector 12, and controls the objective lens 5. An excitation current is applied to a focus coil 9 constituting a lens actuator to drive the objective lens 5. Here, a control signal having a magnitude corresponding to the light intensity of the first photodetector 11 is set, and a control signal in a control direction corresponding to the light intensity of the second photodetector 12 is set.

15は差速度検出部で、対物レンズ5の移動の前後にお
いて第】の光検出器11で検出、記憶された光強度の差
の強度を検出する。例えば時刻tにおいて検出された光
強度It+  (信号110)に基づいて対物レンズ5
を移動させ、At、後の状態で検出された光強度1tx
 (信号115)についてItz  Ilt+を検出す
る。この差強度を対物レンズ5の駆動期間全体について
検出する。16はフォーカス状態判定部で、差速度検出
部15の出力信号に基づいて差強度の大きさの変化から
フォーカス状態の判定を行なう。
Reference numeral 15 denotes a differential speed detection section which detects the intensity of the difference in light intensity detected and stored by the photodetector 11 before and after the movement of the objective lens 5. For example, the objective lens 5
, the light intensity detected in the later state is 1tx
Detect Itz Ilt+ for (signal 115). This difference intensity is detected for the entire driving period of the objective lens 5. Reference numeral 16 denotes a focus state determination section, which determines the focus state based on the change in the magnitude of the difference intensity based on the output signal of the difference speed detection section 15.

対物レンズ5が合焦点位置から離れている場合は、第1
の光検出器11で検出される光強度は小さいが、合焦点
方向へ制御されているときの、前述の対物レンズ5の移
動前後の差強度は大きい。この場合は信号120により
フォーカス制御を続行する。
If the objective lens 5 is far from the in-focus position, the first
Although the light intensity detected by the photodetector 11 is small, the difference in intensity between before and after the movement of the objective lens 5 is large when the objective lens 5 is controlled in the direction of the focal point. In this case, focus control is continued using the signal 120.

合焦点位置に近づいてくると、第1の光検出器11で検
出される光強度は大きくなり、前述の対物レンズ5の移
動前後の差強度は小さくなってくる。合焦点位置では第
1の光検出器11で検出される光強度は最大となり、前
述の差強度は0あるいはほぼOとみなせる状態と1よる
。合焦点位置と判定し、たら信号125を対物レンズ駆
動制御部14に印加して、フォーカスコイル9への駆動
信号を一定の制御状態に保持して対物レンズ5の移動を
停止さセる。なおフォーカス状態判定部160判足動作
を更に確実に行なわせるために、差速度検出部15の出
力信号の他に、第1の光検出器11及び第2の光検出器
12の出力信号を入力し。
As the focus position approaches, the light intensity detected by the first photodetector 11 increases, and the difference in intensity before and after the movement of the objective lens 5 described above decreases. At the focal point position, the light intensity detected by the first photodetector 11 is maximum, and the above-mentioned difference intensity is 1, which can be regarded as 0 or almost O. When the focus position is determined, a signal 125 is applied to the objective lens drive control unit 14 to maintain the drive signal to the focus coil 9 in a constant control state and stop the movement of the objective lens 5. Note that in order to make the focus state determination section 160 perform the foot operation more reliably, the output signals of the first photodetector 11 and the second photodetector 12 are input in addition to the output signal of the differential speed detection section 15. death.

て、3つの情報に基づいてフォーカス状態の判定を行な
わせてもよい。
The focus state may be determined based on three pieces of information.

第4図で反射光の収束光路中に設置する光検出器の検出
動作を説明する。第4図(イ)はディスク6からの収束
する反射光と光検出器の配置の関係を示すものである。
The detection operation of the photodetector installed in the convergence optical path of reflected light will be explained with reference to FIG. FIG. 4(a) shows the relationship between the converging reflected light from the disk 6 and the arrangement of the photodetectors.

収束光40は合焦点状態、収束光41は対物レンズ5に
対してディスク6が近づいた状態(以下N状態と略す)
、収束光42は対物レンズ5に対してディスク6が遠ざ
かった状態(以下F状態ε略す)である。咎々の収束光
のビームウェスト位置は、収束光40.41.42に対
応1. f点400.410.420の位置になる。
The convergent light 40 is in a focused state, and the convergent light 41 is in a state where the disk 6 approaches the objective lens 5 (hereinafter abbreviated as N state).
, the convergent light 42 is in a state where the disk 6 is far away from the objective lens 5 (hereinafter abbreviated as F state ε). The beam waist position of the convergent light corresponds to the convergent light 40, 41, and 42.1. The position of the f point is 400.410.420.

第1の光検出器11は、収束光40のビームウェスト位
置400に設定し、第2の光検出器12は収束光42の
ビームウェスト位置420の付近に設定する。第4図(
ロ)、(ハ)の曲線45はレーザ光の光強度分布のガウ
ス強度分布を示すもので、グラフの横軸は光ビームの光
軸方向に直交するビーム直径方向の位置d、縦軸は光強
度である。d二〇の中心位置においてピーク強度450
を有する。
The first photodetector 11 is set at a beam waist position 400 of the convergent light 40, and the second photodetector 12 is set near the beam waist position 420 of the convergent light 42. Figure 4 (
Curves 45 (b) and (c) show the Gaussian intensity distribution of the light intensity distribution of the laser beam, where the horizontal axis of the graph is the position d in the beam diameter direction perpendicular to the optical axis direction of the light beam, and the vertical axis is the light intensity distribution of the laser beam. It is strength. Peak intensity 450 at the center position of d20
has.

第4図(ロ)の斜線部46は第1の光検出器11で検出
する光強度領域で、ピーク強度を含み、光強度分布にお
ける一部分の光強度を検出する。
A shaded area 46 in FIG. 4(b) is a light intensity region detected by the first photodetector 11, which includes the peak intensity and detects the light intensity of a portion of the light intensity distribution.

第4図←号の斜線部47は第2の光検出器12で検出す
る光強度領域で、ピーク強度領域を除いた低い強度領域
の光強度を検出する。ここで第2の光検出器12を収束
光42のe−ムウエスト位置420の付近に設置すれば
、収束光42の状態では第2の光検出器12に入射する
光ビームは0で、収束光40及び収束光41の状態で第
2の光検出器12に光ビームが入射されてくる。従って
第2の光検出器12で検出される光強度によりノオーカ
スはずれの方向の検出が可能である。本例は第2の光検
出器12をビームウェスト位置420の付近に設置し、
収束光40及び収束光41を検出する構成を示したが、
この場合に光ビーム検出受光面を小さくして収束光41
だげの光強度を検出してもよく、更にはビームウェスト
位置400と410の中間に第2の光検出器12を設置
する構成にしてもよい。
The shaded area 47 in FIG. 4 is a light intensity region detected by the second photodetector 12, which detects light intensity in a low intensity region excluding the peak intensity region. Here, if the second photodetector 12 is installed near the e-m waist position 420 of the convergent light 42, the light beam incident on the second photodetector 12 is 0 in the state of the convergent light 42, and the convergent light The light beam enters the second photodetector 12 in the state of 40 and convergent light 41 . Therefore, the direction of the no-orccus deviation can be detected based on the light intensity detected by the second photodetector 12. In this example, the second photodetector 12 is installed near the beam waist position 420,
Although the configuration for detecting the convergent light 40 and the convergent light 41 has been shown,
In this case, the light beam detection light receiving surface is made smaller and the convergent light 41
It is also possible to detect a certain light intensity, and furthermore, the second photodetector 12 may be installed between the beam waist positions 400 and 410.

第5図に本発明のフォーカス制御装置で用いる光検出器
の構成例を示す。第5図(イ)、(ロ)は第1の光検出
器11の構成例である。
FIG. 5 shows an example of the configuration of a photodetector used in the focus control device of the present invention. FIGS. 5(a) and 5(b) show configuration examples of the first photodetector 11. FIG.

ディスク乙の情報記録媒体の情報の再生をトラフキング
制御部8で受光する光強度から得る場合は、フォーカス
制御部10で受光する光強度は小さくてよい。
If the reproduction of information on the information recording medium of disk B is obtained from the light intensity received by the tracking control section 8, the light intensity received by the focus control section 10 may be small.

第5図(イ)は上記の場合の第1の光検出器11の構成
を示したもので、例えば正方形の形状を持つ光ビーム受
光面50に対して、中央部520部分のみを受光面とし
、その周辺部51には斜線で示したマスキングを施す構
成としたもので、中央部52の領域で光ビームのピーク
強度部分を受光すルヨウにし、マスキングを施した部分
で光ビームをカットすればよい。
FIG. 5(a) shows the configuration of the first photodetector 11 in the above case. For example, with respect to the light beam receiving surface 50 having a square shape, only the central portion 520 is used as the light receiving surface. , the peripheral part 51 is masked as indicated by diagonal lines, and the peak intensity part of the light beam is received in the central part 52, and the light beam is cut in the masked part. good.

第5図(ロ)は第1の光検出器11の第2の構成例を示
すもので、フォーカス制御部10に入射する光ビームの
光量損失を少なくして光量を有効に利用するためのもの
で、フォーカス制御信号から各種の情報処理を行なうた
めに有利である。光ビーム受光面50に対して中央部5
2を設げるのは前述の(イ)の場合と同様であるが、中
央部52の両側に幅の狭い遮光帯56及び54を設け、
遮光帯の外側の領域55及び56で光ビームを受光する
FIG. 5(b) shows a second configuration example of the first photodetector 11, which is designed to reduce loss in the amount of light of the light beam incident on the focus control unit 10 and utilize the amount of light effectively. This is advantageous for performing various information processing from the focus control signal. The central portion 5 with respect to the light beam receiving surface 50
2 is provided in the same way as in the case of (a) above, but narrow shading bands 56 and 54 are provided on both sides of the central portion 52,
The light beams are received in regions 55 and 56 outside the light shielding zone.

光ビームの全強度は受光面52.55.56で受光され
た総和強度で得られる。この場合においても、フォーカ
ス状態の判定は中央部52で検出される光強度の大きさ
で行なう。第5図(口lは中央部の受光面5□は単一の
受光面から構成される例を示したが、中央部の受光面5
2を更に多分割化した構成にすることもできる。中央部
の受光面52をn分割した場合に各々の受光セル内にお
いて最も光強度の強い受光セルを決定して、そのときの
強度情報からフォーカス状態の判定を行なってもよい。
The total intensity of the light beam is obtained by the total intensity received by the light receiving surfaces 52, 55, 56. In this case as well, the focus state is determined based on the magnitude of the light intensity detected at the central portion 52. Figure 5 (L is the central light receiving surface 5 □ is a single light receiving surface.
2 can be further divided into multiple parts. When the central light-receiving surface 52 is divided into n parts, the light-receiving cell with the strongest light intensity among each light-receiving cell may be determined, and the focus state may be determined from the intensity information at that time.

この場合は反射光のピーク強度位置が光軸に直交する方
向にズした場合でもズレに影響されないで安定にピーク
強度を含んだ領域の反射光強度の検出が可能である。こ
の場合、多分割化セルの単一の受光セルiで検出された
光強度が小さくなるため、例えば受光セルi、i−1及
びi+1で検出された光強度の和を検出して光強度が大
きい状態でフォーカス状態の判定を行なえばよい。
In this case, even if the peak intensity position of the reflected light shifts in a direction perpendicular to the optical axis, it is possible to stably detect the reflected light intensity in a region including the peak intensity without being affected by the shift. In this case, the light intensity detected by the single light-receiving cell i of the multi-divided cell becomes small, so for example, the light intensity can be determined by detecting the sum of the light intensities detected by the light-receiving cells i, i-1, and i+1. The focus state may be determined in a large state.

第5図(/1は第2の光検出器12の構成例を示すもの
である。光ビーム受光面5oの中央部に幅の狭い遮光帯
57を設けて左右の受光面58及び59で反射光の検出
を行なう。第4図(イ)に示した位置に第2の光検出器
12を設置した場合、例えば、受光面59には光ビーム
が入射され、受光面58には光ビームが入射されない場
合は、収束光40の状態であると判定し、受光面58.
59共に光ビームが入射されている場合は収束光41の
状態であると判定することができるため、フォーカスは
ズレの方向の検出が更に容易となる。
FIG. 5 (/1 shows an example of the configuration of the second photodetector 12. A narrow light-shielding band 57 is provided at the center of the light beam receiving surface 5o, and the light beam is reflected by the left and right light receiving surfaces 58 and 59. Light is detected. When the second photodetector 12 is installed at the position shown in FIG. If the light is not incident, it is determined that the convergent light 40 is present, and the light receiving surface 58.
If the light beams are incident on both the light beams 59 and 59, it can be determined that the light beams 41 are in a convergent state, which makes it easier to detect the direction of focus shift.

第6図で本発明のフォーカス制御装置10によるフォー
カス状態と光検出器11及び12で検出される光強度の
関係を説明する。第6図(イ)は第1の光検出器11で
検出される光強度とフォーカス状態の関係を示すグラフ
で、横軸は対物レンズ5とディスク6の情報記録媒体と
の間の光軸方向の距離りで、2=0は合焦点位置、Z〉
0はディスク6が近づいたときのN状態、z<oはディ
スク6が遠ざかったときのF状態に対応する。グラフの
縦軸は光強度で、Z=Oにおいて最大強度を有し、Z=
Oからはズしてくるに従って強度は低下する。このとき
Z〉0、Zく0に対してほぼ同じ形状で変化する。この
ときの光強度の変化を曲線60で示す。第6図(ロ)の
グラフは第2の光検出器12で検出される光強度とフォ
ーカス状態の関係を示すもので、第4図(−()で示し
た位置に第2の光検出器12を設置した場合、ZくOの
F状態においては第2の光検出器12に入射される光ビ
ームは殆んど存在しないため光強度はほぼ0となり、Z
=0に近づくに従って光強度は増加し、Z>。
The relationship between the focus state by the focus control device 10 of the present invention and the light intensity detected by the photodetectors 11 and 12 will be explained with reference to FIG. FIG. 6(a) is a graph showing the relationship between the light intensity detected by the first photodetector 11 and the focus state, where the horizontal axis is the optical axis direction between the objective lens 5 and the information recording medium of the disk 6. At the distance, 2=0 is the focal point position, Z〉
0 corresponds to the N state when the disk 6 approaches, and z<o corresponds to the F state when the disk 6 moves away. The vertical axis of the graph is the light intensity, with maximum intensity at Z=O, and Z=
The strength decreases as it moves away from O. At this time, it changes in almost the same shape for Z>0 and Zku0. A curve 60 shows the change in light intensity at this time. The graph in FIG. 6 (b) shows the relationship between the light intensity detected by the second photodetector 12 and the focus state. 12 is installed, the light intensity becomes almost 0 because there is almost no light beam incident on the second photodetector 12 in the F state of Z
The light intensity increases as it approaches =0, Z>.

のN状態では、はぼ一定の強度となる。このときの光強
度の変化を曲線61で示す。時刻【において第1の光検
出器11で検出された光強度が曲線60の点620強度
、第2の光検出器12で検出された光強度が曲線610
点64の強度であれば、F状態であると判定してZ>o
の方向への制御を行ない、時刻t +Jt、で曲線60
の点66に示す強度が検出される。時刻tにおいて第1
の光検出器11で検出された光強度が曲線6oの点65
0強度、第2の光検出器12で検出された光強度が曲線
61の点67の強度であれば、N状態であると判定して
Zく0の方向へ制御を行ない、時刻t −1−Jt、で
曲線60の点66に示す強度が検出される。第6図(/
→は(イ)に示した曲線6oが微分されたことに等しい
差分強度のグラフである。この差分強度は焦点距離方向
の変化に関する強度変化を示すもので、ZくOのF状態
では差分強度は正、Z〈0のN状態では差分強度は負と
すれば、S字型の曲線68で示される。曲線60におい
て、対物レンズ5の移動前後の強度が点62と点66の
場合は、差分強度は曲騨68の点620となり、同じく
強度が点65と点66の場合には、差分強度は曲線68
0点650となる。合焦点位置においては、曲線60の
最大強度600が得られ、この場合の差分強度は曲線6
8におい1点610に示すようにOである。従って合焦
点方向ドフォーカス制御を行なうとき、差分強度がOと
みなせる状態を検出すればフォーカス位置Z?0に制御
ができる。なお差分強度の他に、曲線60及び曲線61
で示される各々の光強度の情報も同時に判定に用いれば
、フォーカス制御がより確実に行なわれる。
In the N state, the intensity is almost constant. A curve 61 shows the change in light intensity at this time. At time [, the light intensity detected by the first photodetector 11 is the intensity at point 620 of the curve 60, and the light intensity detected by the second photodetector 12 is at the point 610 of the curve 60.
If the intensity is at point 64, it is determined that it is in the F state and Z>o
control in the direction of curve 60 at time t+Jt.
The intensity shown at point 66 is detected. At time t, the first
The light intensity detected by the photodetector 11 is at the point 65 of the curve 6o.
If the intensity is 0 and the light intensity detected by the second photodetector 12 is the intensity at point 67 of the curve 61, it is determined that the N state is present and control is performed in the direction of Z 0, and at time t -1 -Jt, the intensity shown at point 66 of curve 60 is detected. Figure 6 (/
→ is a graph of differential intensity, which is equivalent to the differentiation of the curve 6o shown in (a). This difference intensity shows the intensity change with respect to the change in the focal length direction.If we assume that the difference intensity is positive in the F state of ZkuO, and negative in the N state of Z〈0, then an S-shaped curve 68 It is indicated by. In the curve 60, if the intensity before and after the movement of the objective lens 5 is at points 62 and 66, the differential intensity will be at point 620 of the curve 68, and if the intensity is at points 65 and 66, the differential intensity will be at the curve 68
It becomes 0 point 650. At the focused position, the maximum intensity 600 of the curve 60 is obtained, and the differential intensity in this case is the curve 6
8, it is O as shown at one point 610. Therefore, when performing focus direction defocus control, if a state where the differential intensity can be regarded as O is detected, the focus position Z? Can be controlled to 0. In addition to the differential intensity, curve 60 and curve 61
Focus control can be performed more reliably if information on each light intensity shown by is also used for determination at the same time.

本発明のフォーカス制御装R10のフォーカス制御の感
度は第1の光検出器11で検出するピーク強度付近の光
強度に依存する。第4図(ロ)に示!。
The focus control sensitivity of the focus control device R10 of the present invention depends on the light intensity near the peak intensity detected by the first photodetector 11. Shown in Figure 4 (b)! .

た検出する領域46が広いほどフォーカス制御感度は低
下するため、検出領域46は狭いのが望ましい。実験結
果によれば、反射光のビーム直後(ピーク強度の136
5%の強度域となる範囲)V対l−でピーク位置を中心
L1.て〜20%以下の領域の光強度を検出すれば、フ
ォーカス制御の感度が高まる。更に、合焦点位置の検出
精度を高めるには、制御方向に対して得られる差分強度
の正・負の符号が反転する状態を検出1〜、その状態か
ら一定量反転させた状態に制御すればよい。
The wider the detection area 46 is, the lower the focus control sensitivity is, so it is desirable that the detection area 46 be narrow. According to the experimental results, immediately after the reflected light beam (peak intensity of 136
5% intensity range) V vs. l-, center the peak position at L1. If the light intensity is detected in a region of ~20% or less, the sensitivity of focus control increases. Furthermore, in order to improve the detection accuracy of the focal point position, it is possible to detect a state in which the positive and negative signs of the differential intensity obtained with respect to the control direction are reversed from 1 to 1, and control the state to a state in which the sign is reversed by a certain amount from that state. good.

以上述べたフォーカス制御装置10におち・て、フォー
カス状態の判定はマイクロプロ47ザーのソフトウェア
演算で行なう。第7図に前述1〜たフォーカス判定動作
を説明するフローチャート図を示す。フォーカス制御を
開始してフォーカス位置に設定されるまでの動作につい
てのフローである。
In the focus control device 10 described above, the focus state is determined by software calculation by the microprocessor 47. FIG. 7 shows a flowchart for explaining the focus determination operations 1 to 1 described above. This is a flowchart of operations from starting focus control to setting the focus position.

ステップ700は第1の光強度検出で、第1の光検出器
11による光強度の検出を行ない、ステップ702で検
出された第1の光強度をメモリ・−する。ステップ70
4は第2の光強度検出で、第2の光検出器12による光
強度の検出を行なう。
Step 700 is a first light intensity detection, in which the first photodetector 11 detects the light intensity, and in step 702 the detected first light intensity is stored in memory. Step 70
Reference numeral 4 denotes a second light intensity detection, in which the second photodetector 12 detects the light intensity.

ステップ706はフォーカスはずれ方向の検出を行なう
もので、ステップ704で検出された第2の光強度の大
きさからフォーカスはずれがN状態、F状態のいずれで
あるかを判定する。ステップ708でフォーカスはずれ
を補正する方向へ対物レンズ5を移動させる。このとき
の移動量はステップ700で検出された光強度の大きさ
に依存して決定する。ステップ710け第1の光強度検
出、ステップ712は第1の光強度メモリーで、前述の
ステップ700及び702と同様の動作である。
Step 706 is to detect the direction of defocus, and it is determined from the magnitude of the second light intensity detected in step 704 whether the defocus is in the N state or the F state. In step 708, the objective lens 5 is moved in a direction that corrects the defocus. The amount of movement at this time is determined depending on the magnitude of the light intensity detected in step 700. Step 710 is the first light intensity detection, and step 712 is the first light intensity memory, which is the same operation as steps 700 and 702 described above.

ステップ714は差速度検出で、対物レンズの移動前後
の第1の光強度の差の強度を検出する。対物レンズの移
動前の第1の光強度をVn 、移動後の第1の光強度を
VA  とするとき、■^−Va’&検出する。このと
き、フォーカス位置がF状態のときはVA  V@の符
号は正、フォーカス位置がN状態のときはVA−■8の
符号は負ε約束l−ておく。
Step 714 is differential velocity detection, in which the intensity of the difference between the first light intensities before and after the movement of the objective lens is detected. When the first light intensity before the objective lens is moved is Vn, and the first light intensity after the objective lens is moved is VA, then ■^-Va'& is detected. At this time, when the focus position is in the F state, the sign of VA V@ is positive, and when the focus position is in the N state, the sign of VA-■8 is negative ε.

ステップ716は差強度の符号の反転を判定する。Step 716 determines the sign reversal of the difference intensities.

符号反転が起きていないときは、差強度が0となる状態
に達l−てt・ないでまだ前の状態と同じF状態あるい
はN状態にあり、フォーカス制御を続行する必要がある
ため、ステップ718でメモリーの入れ替えを行なう。
When sign reversal has not occurred, the difference intensity has not reached the state where the difference intensity becomes 0, but the state is still in the F state or the N state, which is the same as the previous state, and it is necessary to continue focus control, so step At 718, the memory is replaced.

即ち、対物レンズ移動後IgI検出されていた第1の光
強度のメモリー場所を移動前のメモリー場所に入れ替え
る。このようにし。
That is, after the objective lens is moved, the memory location of the first light intensity where IgI was detected is replaced with the memory location before the movement. Do it like this.

てVaV人の符号が反転するまで対物レンズ5の移動を
行なわせる。符号が反転したら、差強度が0となる状態
に達しで、その状態を飛び越したことになるから、ステ
ップ720で一定量だけ対物レンズを今までの制御方向
とは逆の方向に移動させ℃補正する。この状態がベスト
フォーカス位置であり、フォーカス制御を終了する。
Then, the objective lens 5 is moved until the sign of VaV is reversed. If the sign is reversed, it means that the difference intensity has reached a state of 0 and has skipped over that state, so in step 720, the objective lens is moved by a certain amount in the opposite direction to the previous control direction and the °C correction is performed. do. This state is the best focus position, and focus control ends.

〔発明の効果〕〔Effect of the invention〕

以−Lの説明で明らかな如く、本発明によれば反射光の
収束光路中にフォーカス制御をするために設ける検出器
を高い位置調整精度を要するこに−なく設置することが
可能で、光ヘッドの小型化、低コスト化が実現できる。
As is clear from the explanation below, according to the present invention, it is possible to install a detector for focus control in the convergence optical path of reflected light without requiring high position adjustment accuracy, and It is possible to make the head smaller and lower costs.

又、本発明では反射光の光ビームのパターン変化と共に
光強度の短期間内での時間的な差動検出を行なうため、
レーザ光の強度変化等に伴う外乱の影響を受げにくい安
定1゜た高精度のフォーカス制御が実現できる。更に、
2つの光検出器により広い範囲をカバーしているので、
フォーカス制御のダイナミックレンジも広くとれる。な
お本発明のフォーカス制御装置は光デイスク装置の他に
、光計測分野でも適用可能である。
Furthermore, in the present invention, temporal differential detection of the light intensity within a short period of time is performed as well as pattern changes of the light beam of reflected light.
It is possible to achieve stable, high-precision focus control of 1°, which is less susceptible to disturbances caused by changes in the intensity of the laser beam. Furthermore,
Two photodetectors cover a wide area, so
The dynamic range of focus control is also wide. Note that the focus control device of the present invention can be applied not only to optical disk devices but also to the field of optical measurement.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のフォーカス制御方法を用いた光デイス
ク装置の構成例を示す説明図、第2図はフォーカス制御
に従来のナイフェツジ法を用いた場合の光デイスク装置
の構成例を示す光路図、第3図は従来例のナイフェツジ
法の動作を説明する光路図、第4図(イ)〜(/1は本
発明によるフォーカス制御装置における光検出器の配置
と光ビームの検出動作を示す説明図、第5図(イ)〜←
号は本発明によるフォーカス制御装置の光検出器の構成
例を示す説明図、第6図(イ)〜(/1は本発明による
フォーカス制御装置のフォーカス状態と、光検出器で検
出された光強度の関係を示す説明図、第7図は本発明の
フォーカス制御を行なうときの動作を説明するフローチ
ャート図である。 1・・・・・・半導体レーザ、 4・・・・・・コリメータレンズ、 5・・・・・・対物レンズ、 6・・・・・・ディスク、 7・・・・・・ハーフプリズム、 11・・・・・・第1の光検出器、 12・・・・・・第2の光検出器、 16・・・・・・光強度記憶部、 14・・・・・・対物レンズ駆動制御部、15・・・・
・・差速度検出部、 16・・・・・・フォーカス状態判定部。 第5図 第6図 F状態 N法息 笛7図
FIG. 1 is an explanatory diagram showing an example of the configuration of an optical disk device using the focus control method of the present invention, and FIG. 2 is an optical path diagram showing an example of the configuration of the optical disk device when the conventional Knifezi method is used for focus control. , FIG. 3 is an optical path diagram explaining the operation of the conventional knife method, and FIGS. Figure, Figure 5 (a)~←
No. 6 is an explanatory diagram showing an example of the configuration of a photodetector of a focus control device according to the present invention, and FIGS. An explanatory diagram showing the relationship between the intensities, and FIG. 7 is a flowchart diagram explaining the operation when performing focus control of the present invention. 1... Semiconductor laser, 4... Collimator lens, 5...Objective lens, 6...Disc, 7...Half prism, 11...First photodetector, 12... Second photodetector, 16... Light intensity storage unit, 14... Objective lens drive control unit, 15...
. . . Differential speed detection section, 16 . . . Focus state determination section. Figure 5 Figure 6 F state N method breath flute Figure 7

Claims (1)

【特許請求の範囲】[Claims] レーザ光源から放射されるレーザ光を対物レンズで集光
して情報記録媒体に照射せしめ、該情報記録媒体からの
反射光を集光して光検出器で受光し、該光検出器による
出力信号に基づいて前記対物レンズの焦点位置が常に前
記情報記録媒体上になるようにするフォーカス制御装置
において、前記情報記録媒体からの反射光の収束光路中
に第1の光検出器を設けて、前記反射光の光軸方向と直
交する面で見た光強度分布の強度最大部を含む一部分の
反射光を検出し、該検出出力を光強度記憶部に記憶せし
め、前記第1の光検出器とは異なる位置に第2の光検出
器を設け、前記第1の光検出器で検出する領域よりも低
い強度領域の反射光の強度を検出せしめ、前記第1の光
検出器と前記第2の光検出器の出力信号に基づいて前記
対物レンズを制御するとともに前記対物レンズの移動前
後における前記光強度記憶部で記憶された光強度の差強
度が0とみなせる状態に制御してフォーカス制御を行な
うことを特徴とするフォーカス制御方法。
Laser light emitted from a laser light source is focused by an objective lens and irradiated onto an information recording medium, and the reflected light from the information recording medium is collected and received by a photodetector, and an output signal from the photodetector is generated. In the focus control device, the focus position of the objective lens is always set on the information recording medium based on detecting a portion of the reflected light including the maximum intensity part of the light intensity distribution viewed in a plane orthogonal to the optical axis direction of the reflected light, storing the detection output in a light intensity storage section, and storing the detected output in the first photodetector. A second photodetector is provided at a different position to detect the intensity of the reflected light in a lower intensity area than the area detected by the first photodetector, and the first photodetector and the second photodetector The objective lens is controlled based on the output signal of the photodetector, and the focus control is performed by controlling the difference intensity between the light intensities stored in the light intensity storage unit before and after the movement of the objective lens to be considered to be zero. A focus control method characterized by:
JP22037689A 1989-08-29 1989-08-29 Focus control method Pending JPH0384737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22037689A JPH0384737A (en) 1989-08-29 1989-08-29 Focus control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22037689A JPH0384737A (en) 1989-08-29 1989-08-29 Focus control method

Publications (1)

Publication Number Publication Date
JPH0384737A true JPH0384737A (en) 1991-04-10

Family

ID=16750156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22037689A Pending JPH0384737A (en) 1989-08-29 1989-08-29 Focus control method

Country Status (1)

Country Link
JP (1) JPH0384737A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996018337A1 (en) * 1994-12-13 1996-06-20 Alcon Laboratories, Inc. Focusing method for a corneal topographer
US6215741B1 (en) 1997-04-14 2001-04-10 Nec Corporation Optical recording device having a defect detection system
JP2008310107A (en) * 2007-06-15 2008-12-25 Sunx Ltd Focusing device and machining device equipped with the same
JP2010142846A (en) * 2008-12-19 2010-07-01 Panasonic Electric Works Co Ltd Three-dimensional scanning type laser beam machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996018337A1 (en) * 1994-12-13 1996-06-20 Alcon Laboratories, Inc. Focusing method for a corneal topographer
US6215741B1 (en) 1997-04-14 2001-04-10 Nec Corporation Optical recording device having a defect detection system
JP2008310107A (en) * 2007-06-15 2008-12-25 Sunx Ltd Focusing device and machining device equipped with the same
JP2010142846A (en) * 2008-12-19 2010-07-01 Panasonic Electric Works Co Ltd Three-dimensional scanning type laser beam machine

Similar Documents

Publication Publication Date Title
JPH0443329B2 (en)
JPH0384737A (en) Focus control method
US6992953B2 (en) Tracking servo apparatus of optical information recording and reproducing apparatus
JPH04353633A (en) Error signal generator for optical disk apparatus
JPS62200541A (en) Light emitting quantity controller
JPH0534732B2 (en)
JP2552660B2 (en) Focus error detector
JPS6012693B2 (en) Automatic focusing device in optical information reproducing device
KR960000270B1 (en) Optical pick-up apparatus
JPS5942646A (en) Radial skew correcting device of disk device
JPH0743835B2 (en) Focus error detector
JPS62256235A (en) Optical information processor
JPS6029947A (en) Information recording and reproducing device
JP3114301B2 (en) Optical pickup device
JPS62124641A (en) Optical magnetic information recording and reproducing device
JPH0413229A (en) Optical information recording and reproducing device
JPH02192040A (en) Optical pickup device
JPS62143235A (en) Out-of-focus detector for optical information recording and reproducing device
KR20010068557A (en) Optical pickup apparatus
JPH0329123A (en) Optical head device
JPH0384744A (en) Focus error detector
JPH04351721A (en) Optical pickup device
JPS63173231A (en) Optical head device
JPH01276435A (en) Method and device for detecting focus error in optical head
JPS61222038A (en) Disc device