JPS5993194A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPS5993194A
JPS5993194A JP57204360A JP20436082A JPS5993194A JP S5993194 A JPS5993194 A JP S5993194A JP 57204360 A JP57204360 A JP 57204360A JP 20436082 A JP20436082 A JP 20436082A JP S5993194 A JPS5993194 A JP S5993194A
Authority
JP
Japan
Prior art keywords
core plate
core
clad
heat exchanger
radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57204360A
Other languages
Japanese (ja)
Inventor
Mitsuo Hashiura
橋浦 光夫
Masami Tamura
正美 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP57204360A priority Critical patent/JPS5993194A/en
Publication of JPS5993194A publication Critical patent/JPS5993194A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements
    • F28F9/0224Header boxes formed by sealing end plates into covers
    • F28F9/0226Header boxes formed by sealing end plates into covers with resilient gaskets

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Prevention Of Electric Corrosion (AREA)

Abstract

PURPOSE:To increase the strength of the heat exchanger and to improve the anticorrosive and sealing properties thereof by a method wherein a pure aluminum type alloy is clad on the entire surface of the cooling water side of a core plate and an Al-Si-Mg type brazing material is clad on the atmospheric side of the core plate. CONSTITUTION:A more than 99.5% pure aluminum alloy layer 11 of a thickness of 100mum is clad on a core material as the core plate 5 having the composition shown in the table (not shown) and a layer 12 of the brazing material is clad on the atmospheric side of the core plate. Then the core plate 5, a water pipe 1 and fins 2 are assembled together and brazed integrally by using a vacuum brazing method to thereby form a radiator core A.

Description

【発明の詳細な説明】 本発明は、樹脂タンクとコアプレートとの間をシール部
材を介してかしめ固定した熱交換器に関するもので、例
えば自動車用ラジェータとして用いると有効である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat exchanger in which a resin tank and a core plate are caulked and fixed via a sealing member, and is effective when used as a radiator for an automobile, for example.

この種のアルミニウム熱交換器では、そのコアプレート
とし°ζ、強度1wA食性及びシール性を満足するよう
なアルミニウム合金が要求されている。
In this type of aluminum heat exchanger, the core plate is required to be made of an aluminum alloy having a strength of 1 wA, corrosion resistance, and sealing properties.

そこで本発明者らは、まずコアプレー1・材料として、
耐食性の良いAIV、、Mn系合金について試みた。し
かしながら、この材料では強度向上のため添加するMn
が多くなると、成形性が劣り亀裂が発生したり、割れが
生じたりして、コアープレート材料としては不適当であ
ることが分かった。そのため、次に高強度アルミ合金で
あるAl1−Mg系及びΔβ−Mg−3i系合金の適用
を考案したが、強度向上のための添加成分であるMg、
Siの影響により孔食が発生し、早期に水洩れに至るこ
とが分かった。また、従来から孔食防止法として知られ
ている犠牲防食法を適用するため、コアープレートの冷
却水側全面に80〜120μの低電位層を形成すること
を考案したが、この方法であると低電位層の腐食が速く
、シール性を保つべき箇所にも隙間が生じ短期に水洩れ
することが分か っ ノこ。
Therefore, the present inventors firstly, as core play 1/material,
We tried using AIV, Mn-based alloys that have good corrosion resistance. However, in this material, Mn is added to improve strength.
It was found that when the amount of the material increases, the moldability becomes poor and cracks or cracks occur, making it unsuitable as a core plate material. Therefore, we next devised the application of Al1-Mg series and Δβ-Mg-3i series alloys, which are high-strength aluminum alloys, but Mg, which is an additive component to improve strength,
It was found that pitting corrosion occurs due to the influence of Si, leading to early water leakage. In addition, in order to apply the sacrificial corrosion prevention method, which is conventionally known as a pitting corrosion prevention method, we devised a method of forming a low potential layer of 80 to 120μ on the entire surface of the core plate on the cooling water side. It has been found that the low potential layer corrodes quickly, creating gaps in areas where sealing should be maintained, resulting in water leakage in a short period of time.

J2Jlのように従来の材料では一長一短があり製品晶
りICを満足さ・けるような材料は見い出されなかった
Conventional materials such as J2Jl have both advantages and disadvantages, and no material has been found that can satisfy the requirements for product crystallization ICs.

本発明は」二記点に鑑みて案出されたもので、樹脂製タ
ンク付アルミニウム熱交換器に於て、そのコアプレー1
・の必要特性である高強度、耐食性。
The present invention has been devised in view of two points, and is a core play of an aluminum heat exchanger with a resin tank.
・High strength and corrosion resistance are required characteristics.

シール1!Jを向]二させることを目的とする。Seal 1! The purpose is to make the J direction] 2.

そのため、本発明ではコアプレートの冷却水側全面にΔ
ρ合金中最も腐食の遅い純アルミ系合金をクラッドして
、シール性を長期に確保できるようにしている。しかも
、このクラツド材が4ti 4ti防食キイとして働く
ように、高強度の心材に電位を貴にする成分であるCu
を添加し、心材の孔食を防止するような構成としている
。すなわち、コアープレー;・の心材としてMg:0.
4〜3.0%、Cu:o、2〜0.8%、S i : 
0.3−0.7%、Cr:0.1〜0.3%、残部A7
!及び避りることのできない不純成分からなる合金を用
い、冷却水側全面に、A/線純度99.5%以上の合金
をクラッドし、大気側にはへρ−31−Mg系ろう材を
クラッドするが、もしくはクラッドしないという構成を
採用している。
Therefore, in the present invention, Δ
The cladding is made of pure aluminum alloy, which corrodes the slowest among the ρ alloys, to ensure long-term sealing performance. Moreover, in order for this cladding material to work as a 4ti 4ti anti-corrosion key, the high-strength core material contains Cu, a component that makes the potential noble.
is added to prevent pitting corrosion of the core material. That is, Mg:0.
4-3.0%, Cu:o, 2-0.8%, Si:
0.3-0.7%, Cr: 0.1-0.3%, balance A7
! The entire cooling water side is clad with an alloy with an A/line purity of 99.5% or more, and a ρ-31-Mg brazing filler metal is used on the atmosphere side. The structure uses either cladding or no cladding.

ここで、心材にCrを添加したのは、応力腐食割れ感受
性を抑制するためのものである。
Here, Cr was added to the core material to suppress stress corrosion cracking susceptibility.

次に本発明の一実施例を図に基づいて説明する。Next, one embodiment of the present invention will be described based on the drawings.

第1図は自動車用ラジェータを示すものであり、■はア
ルミニウム合金(A3003もしくはA3(+04)製
のウメ−ターチューブ、2はコルゲート型に成形された
フィンで、アルミニウム合金(A3003)の表面にろ
う材(A4004)がクラッドされている。5はウォー
タチューブ■の両端部1aに配設されたコアープレート
で同しくアルミニウム合金よりなる。これらの部材(ウ
メ−ターデユープ1.フィン2.コアープレー1・5)
は炉中で一体ろうイ]され、ラジェータコア部へを形成
する。
Figure 1 shows an automobile radiator, where ■ is a meter tube made of aluminum alloy (A3003 or A3 (+04)), and 2 is a corrugated fin, which is attached to the surface of aluminum alloy (A3003). It is clad with brazing filler metal (A4004). 5 is a core plate arranged at both ends 1a of the water tube (2), which is also made of aluminum alloy. These members (meter duplex 1. fin 2. core plate 1. 5)
are soldered together in a furnace to form the radiator core.

また、3は上部タンクで、例えば強化剤としてガラス繊
維を入れたナイロン樹脂の成形品よりなり、エンジンよ
り冷却水を導入する人目バイブ10と一体に成形されて
いる。6は同じく樹脂性の下部タンクで、二1ア部Δで
熱交換した冷却水をエンジンへ送出する出L1パイプ7
、およびドレンバイブ8と一体に成形されている。
Reference numeral 3 designates an upper tank, which is made of, for example, a molded product of nylon resin containing glass fiber as a reinforcing agent, and is integrally molded with a second vibrator 10 that introduces cooling water from the engine. 6 is the lower tank also made of resin, and the output L1 pipe 7 sends the cooling water heat exchanged in the 21A part Δ to the engine.
, and is integrally molded with the drain vibe 8.

そして、この上部、下部タンク3.6とコア部へとの結
合は、第2図に示すように絞め固定としている。即ち、
コアープレート5の端部5aとタンク3 (6)の肩部
3aとの間に、コアープレート5の端部5aに沿っ゛C
1全体が矩形し、断面形状が円形をしたシール部材13
(例えばニトリルゴム製)を介在させ、この介在させた
状態でコアープレー1・端部5aを肩部3aにかしめる
ことにより、水密的に固定するようになっている。
The upper and lower tanks 3.6 are connected to the core by tightening as shown in FIG. 2. That is,
Between the end 5a of the core plate 5 and the shoulder 3a of the tank 3 (6), along the end 5a of the core plate 5,
A sealing member 13 having a rectangular overall shape and a circular cross-sectional shape.
(for example, made of nitrile rubber), and in this interposed state, the core play 1 and the end portion 5a are caulked to the shoulder portion 3a, thereby fixing the core play 1 in a watertight manner.

次に、コアプレート5の材質について詳述する。Next, the material of the core plate 5 will be explained in detail.

■、第1実施例 コアプレート5として表1に示した組成よりなる心材に
9 !1.5%以上の純アルミ合金層11を10 (1
trの厚さでクラッドし、また大気側にはろう祠(へ1
−1−3i−系)層12をクラッドしたものを用いる。
(2) The core plate 5 of the first embodiment has a core material having the composition shown in Table 1.9! 10 (1
It is clad with a thickness of tr, and there is a wax shrine on the atmosphere side.
-1-3i- type) layer 12 is used.

そして、このコアープレート5とウメ−ターデユープl
及びフィン2を組立てて真空ろう付法により一体ろう付
を行ない、ラジェータコア八を形成する。なお、この真
空ろう付の手段としては、各部品をラジェータコアに組
立て治具により保持し、その状態で温度610°C,真
空度5X]0−5気圧の真空炉に入れζ、10分間加熱
する。しかる後、このようにして作成したラジェータコ
ア八を前述した如く樹脂タンク3,6ヘシ一ル部材13
を介して、コアープレート5の端部5aで一体かしめ付
けることにより、樹脂タンク付ラジェータを完成させる
And this core plate 5 and Umeter duplex l
Then, the fins 2 are assembled and integrally brazed by vacuum brazing to form the radiator core 8. As a means of vacuum brazing, each part is held in the radiator core with an assembly jig, and in that state, it is placed in a vacuum furnace at a temperature of 610°C and a vacuum degree of 5X] 0-5 atm and heated for 10 minutes. do. Thereafter, the radiator core 8 thus produced was attached to the resin tanks 3, 6 and the seal member 13 as described above.
By integrally caulking the end portion 5a of the core plate 5 through the radiator, the radiator with a resin tank is completed.

なお、本実施例の場合、表1の合金No、 8〜13は
融点が低く、ろう付が不可能であったので本例には適用
しなかった。
In the case of this example, alloys Nos. 8 to 13 in Table 1 had low melting points and could not be brazed, so they were not applied to this example.

2、第2実施例 この実施例コア八を真空ろう付法を用いずに拡管やかし
め等の機械的結合法により組立てて、樹脂タンク3.6
へシール材13を介して、かしめ固定し、ラジェータを
完成させるソルダレス型アルミラジェータのコアーブレ
ー(・に適用したちのである。この場合は、非真空ろう
付方法であるので、コアープレー1・の心材としては表
1の合金中の8〜13を適用し、冷却水側全面には第1
実施例の場合と同様に99.5%以上の純アルミ合金層
11を100μクラツドし、大気側にはろう材をクラッ
ドしていない。
2. Second Embodiment The core 8 of this embodiment was assembled by mechanical joining methods such as tube expansion and caulking without using vacuum brazing, and a resin tank 3.6 was assembled.
This is applied to the core bra of a solderless aluminum radiator, which is caulked and fixed via the sealing material 13 to complete the radiator.In this case, since it is a non-vacuum brazing method, it is used as the core material of the core play 1. For this, alloys 8 to 13 in Table 1 are applied, and No. 1 is applied to the entire surface on the cooling water side.
As in the case of the embodiment, a 99.5% or more pure aluminum alloy layer 11 is clad with a thickness of 100 μm, and the atmosphere side is not clad with a brazing filler metal.

この第1.第2実施例の製法で形成したラジェータを表
2のような方法でれ・1価したところ、表3のよ・)な
結果が得られた。この評価結果より明らかなように、C
uについて0.2%以下としたのでは犠牲防食として充
分に責な電位が得られない、逆にCuを0.8%以上添
加しても電位は変わらず、かえって心ヰ4自月の耐食性
が劣るようになる。まゾこ、 Mg、Si  はMg1
.4  %、 S  i  :  0. 3  %以下
では強度が不足であり、逆にMg:30%、Si:0.
9%以上であると応力腐食割れ感受性がCrでは抑制で
きなくなり、またそれ自Iの耐食性が悪くなる。また純
アルミ合金のクラツド率は50 p以下であると犠牲防
食効果が得られず、逆に120μ以」二ではコアープレ
ー1・とじての強度が不足する。
This first. When the radiator formed by the manufacturing method of the second embodiment was subjected to monovalent testing using the method shown in Table 2, the results shown in Table 3 were obtained. As is clear from this evaluation result, C
If Cu is less than 0.2%, a sufficient potential for sacrificial corrosion protection cannot be obtained.On the other hand, even if Cu is added in an amount of 0.8% or more, the potential does not change, and the corrosion resistance of the core becomes inferior. Masoko, Mg, Si is Mg1
.. 4%, Si: 0. If it is less than 3%, the strength is insufficient; conversely, if Mg: 30% and Si: 0.
If it is 9% or more, stress corrosion cracking susceptibility cannot be suppressed by Cr, and the corrosion resistance of Cr itself deteriorates. Further, if the cladding ratio of pure aluminum alloy is less than 50 μm, no sacrificial corrosion protection effect can be obtained, and conversely, if the cladding ratio is more than 120 μm, the core play 1/closing strength will be insufficient.

そして、表3に示すように本発明用合金の心材に純アル
ミ合金をクラッドしたコアープレートの孔食深さは、す
べてクラッド層内であり、またシール性についても水中
で1.5kg/−の圧力により検査しても漏れは生じな
く、実用上問題ないことが判明した。
As shown in Table 3, the depth of pitting of the core plate in which the core material of the alloy of the present invention is clad with pure aluminum alloy is within the cladding layer, and the sealing performance is 1.5 kg/- in water. No leakage occurred even when tested under pressure, and it was found that there was no problem in practical use.

尚、上述した実施例では、自動車用ラジェータについて
説明したが、本発明熱交換器は、自動車用ラジェータに
限定されるものではなく、例えば自動車用暖房装置に用
いるヒーターコア等の、液と空気との間で熱交換を行な
うものとしC広く使用できることはいうまでもない。
In the above-mentioned embodiments, a radiator for an automobile was explained, but the heat exchanger of the present invention is not limited to an radiator for an automobile. It goes without saying that C can be widely used since heat exchange is performed between the two.

以上説明したように本発明熱交換器は、コアープレー1
・5の高強度アルミ合金にCLIを添加し、その冷却水
側全面に純アルミ合金を50〜60μ形成するようにし
たため、樹脂製タンク3,6とコアープレート5との間
のシール性を常に良好な状態に維持できるとともに、コ
アープレート5の耐食性を大幅に向上させることができ
るという儀表1.心材の化学成分 表2.コアープレート材のδ平価方法 表3.評価結果 れた効果を有する。
As explained above, the heat exchanger of the present invention has a core play of 1
・Since CLI is added to the high strength aluminum alloy No. 5 and 50 to 60 μm of pure aluminum alloy is formed on the entire surface of the cooling water side, the sealing performance between the resin tanks 3 and 6 and the core plate 5 is always maintained. Table 1 shows that the core plate 5 can be maintained in good condition and the corrosion resistance of the core plate 5 can be greatly improved. Chemical composition table of heartwood 2. δ-average method for core plate material Table 3. It has the effects shown in the evaluation results.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明熱交換器の一例を示す正面図、第2図は
第1図図示熱交換器の要部を示す断面斜視図である。 ■・・・デユープ、3.6・・・タンク、5・・・コア
ープレート、11・・・純アルミ合金層、12・・・ろ
う材層。 代理人弁理士 岡 部   隆
FIG. 1 is a front view showing an example of the heat exchanger of the present invention, and FIG. 2 is a cross-sectional perspective view showing the main parts of the heat exchanger shown in FIG. ■... Duplex, 3.6... Tank, 5... Core plate, 11... Pure aluminum alloy layer, 12... Brazing metal layer. Representative Patent Attorney Takashi Okabe

Claims (1)

【特許請求の範囲】[Claims] 樹脂製タンクと、この樹脂製タンクにシール部材を介し
て水蜜的にかしめ固定したコアープレートと、このコア
ープレー1・に端部が結合したデユープとを備えた熱交
換器において、前記コアプレートの心材としてMg:0
.4〜3.0%、cu:0、2〜0.8%、Si:0.
3〜0.7%、Cr:0.3%以下、残部へi及び避け
ることのできない不純物からなる合金を用い、冷却水側
全面に八lの純度が99.5%以上の合金を50〜12
011クラツトし、かつ、人気側にはA7!−31−M
g系ろう材をクラッド、あるいはクラッドしないことを
特徴とした熱交換器。
In a heat exchanger comprising a resin tank, a core plate fixed to the resin tank through a sealing member by caulking, and a duplex whose end portion is connected to the core plate 1, the core plate of the core plate is As Mg: 0
.. 4-3.0%, cu: 0, 2-0.8%, Si: 0.
Using an alloy consisting of 3 to 0.7%, Cr: 0.3% or less, and unavoidable impurities to the rest, an alloy with a purity of 99.5% or more is applied to the entire surface of the cooling water side. 12
011 Krattsu and A7 on the popular side! -31-M
A heat exchanger characterized by being clad with G-based brazing filler metal or not being clad.
JP57204360A 1982-11-19 1982-11-19 Heat exchanger Pending JPS5993194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57204360A JPS5993194A (en) 1982-11-19 1982-11-19 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57204360A JPS5993194A (en) 1982-11-19 1982-11-19 Heat exchanger

Publications (1)

Publication Number Publication Date
JPS5993194A true JPS5993194A (en) 1984-05-29

Family

ID=16489216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57204360A Pending JPS5993194A (en) 1982-11-19 1982-11-19 Heat exchanger

Country Status (1)

Country Link
JP (1) JPS5993194A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6318743U (en) * 1986-07-22 1988-02-06
US4727001A (en) * 1985-10-01 1988-02-23 Kabushiki Kaisha Kobe Seiko Sho Aluminum brazing sheet
FR2931227A1 (en) * 2008-05-16 2009-11-20 Peugeot Citroen Automobiles Sa Supercharged air cooling exchanger for internal combustion engine, has air case with wall formed of thermoplastic material reinforced by glass fibers, where inner surface of wall guides supercharged air and is coated with metallic material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4727001A (en) * 1985-10-01 1988-02-23 Kabushiki Kaisha Kobe Seiko Sho Aluminum brazing sheet
JPS6318743U (en) * 1986-07-22 1988-02-06
FR2931227A1 (en) * 2008-05-16 2009-11-20 Peugeot Citroen Automobiles Sa Supercharged air cooling exchanger for internal combustion engine, has air case with wall formed of thermoplastic material reinforced by glass fibers, where inner surface of wall guides supercharged air and is coated with metallic material

Similar Documents

Publication Publication Date Title
JP4832354B2 (en) Aluminum alloy clad material for high strength, high melting point heat exchanger excellent in durability, its manufacturing method, and aluminum alloy heat exchanger
US6257483B1 (en) Nickel-based brazing material, method of brazing with the brazing material, process for producing EGR cooler with the brazing material, and EGR cooler
JP2008303405A (en) Aluminum alloy material for header plate of heat exchanger, and soldering body for heat exchanger
DE60200818D1 (en) Manufacturing process for a heat exchanger
JP2842665B2 (en) Aluminum heat exchanger
JPS5993194A (en) Heat exchanger
JP4874074B2 (en) Aluminum alloy clad material for heat exchanger
JPH04263033A (en) Aluminum clad material for heat exchanger
JPH1180870A (en) Aluminum alloy clad material for heat exchanger excellent in strength and corrosion resistance
JP2842668B2 (en) High strength and high corrosion resistance A1 alloy clad material for A1 heat exchanger
JP3876180B2 (en) Aluminum alloy three-layer clad material
JPH09176767A (en) Al brazing sheet for vacuum brazing
JP4596618B2 (en) High corrosion resistance aluminum alloy composite for heat exchanger and anticorrosion aluminum alloy for heat exchanger
JPS5811499B2 (en) Aluminum alloy for core material of brazing sheets
JP3243188B2 (en) Aluminum alloy clad material for heat exchangers with excellent alkali corrosion resistance
JP2753634B2 (en) Aluminum alloy composite sheet for tube material
JPS5971998A (en) Aluminum heat exchanger
JPH0250934A (en) Brazing sheet made of aluminum for heat exchanger member
JPS6328704B2 (en)
JPH05125477A (en) Aluminum alloy clad material for fin
JP3751429B2 (en) Brazing material for joining aluminum alloy and clad material using the same
JPS61199572A (en) Al alloy cladding material for 'alcan nocolok (r)' brazing
JPS63186847A (en) Aluminum alloy for heat exchanger
JP3819080B2 (en) Heat exchanger with excellent corrosion resistance
JP3538507B2 (en) Aluminum alloy clad material for heat exchanger with excellent alkali corrosion resistance