JPS63186847A - Aluminum alloy for heat exchanger - Google Patents

Aluminum alloy for heat exchanger

Info

Publication number
JPS63186847A
JPS63186847A JP13175387A JP13175387A JPS63186847A JP S63186847 A JPS63186847 A JP S63186847A JP 13175387 A JP13175387 A JP 13175387A JP 13175387 A JP13175387 A JP 13175387A JP S63186847 A JPS63186847 A JP S63186847A
Authority
JP
Japan
Prior art keywords
alloy
core
plate material
aluminum alloy
radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13175387A
Other languages
Japanese (ja)
Inventor
Zenichi Tanabe
田部 善一
Yoshifusa Shiyouji
美房 正路
Riki Hagiwara
萩原 理樹
Mitsuo Hashiura
橋浦 光夫
Yoshiharu Hasegawa
義治 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd, NipponDenso Co Ltd filed Critical Sumitomo Light Metal Industries Ltd
Publication of JPS63186847A publication Critical patent/JPS63186847A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Prevention Of Electric Corrosion (AREA)

Abstract

PURPOSE:To develop an Al alloy having excellent characteristics as a core for the core plate of a radiator having excellent strength, corrosion resistance and bending workability, by adding specific ratios of alloy elements to Al. CONSTITUTION:The Al alloy contg., by weight, 1.0-1.5% Mn, 0.30-0.60% Cu, 0.10-0.50% Mg, 0.05-0.35% Cr and 0.05-0.35% Zr, or furthermore contg. one or two kinds of 0.05-0.35% Ti and 0.05-0.35% V with impurities of Fe and Si regulated to <=0.5% is melted to produce. Said Al alloy ingot is subjected to a homogenization treatment at 500 deg.C for 8hr and is worked to a plate material. The plate material is used as the core for the core plate of the radiator. The core plate material of the Al alloyed radiator having the excellent strength, bending workability and corrosion resistance, particularly pitting resistance can be thus obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ろう付けにより組立てられるアルミニウム合
金製ラジェータのコアプレート材に用いられるアルミニ
ウム合金の心材並びにラミネート型熱交換器の芯材とし
て用いられる強度、加工性および耐食性に優れた合金に
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to an aluminum alloy core material used for a core plate material of an aluminum alloy radiator assembled by brazing and a core material of a laminate type heat exchanger. Related to alloys with excellent strength, workability, and corrosion resistance.

[従来の技術] アルミニウム合金製のラジェータの製造方法には機械組
立とろう付は組立とがおる。前者の場合のコアプレート
材には亜鉛鉄板が用いられ、後者の場合のコアプレート
材の心材には、6951合金などのM9を比較的多く含
み、強度が比較的高いアルミニウム合金が用いられてい
る。この場合のプレート材の板厚は1.2〜1.4mm
で比較的薄い。
[Prior Art] The manufacturing method of an aluminum alloy radiator includes mechanical assembly and brazing assembly. In the former case, a galvanized iron plate is used as the core plate material, and in the latter case, an aluminum alloy containing relatively high M9 content and relatively high strength, such as 6951 alloy, is used as the core material of the core plate material. . The thickness of the plate material in this case is 1.2 to 1.4 mm.
and relatively thin.

一方最近脚光を浴びているフッ化物フラックスろう付け
の場合にはコアプレートの心材の添加元素としてのMC
Iが材料のろう付は性を低下させるので、MCI量が限
定される。このため3003合金が代って用いられてい
る。
On the other hand, in the case of fluoride flux brazing, which has recently been in the spotlight, MC is used as an additive element in the core material of the core plate.
Brazing of materials with I reduces the properties, thus limiting the amount of MCI. For this reason, 3003 alloy is being used instead.

また、従来からラミネート型熱交換器用のブレージング
シートの芯材には3003合金が用いられている。しか
し、この合金を用いた材料、例えばJIS  BA8P
C13003−4004両面クラツド材では、真空ろう
付の強度がt2kg/mm2に達しないので、軽量化の
ための薄肉化が困難である。
Furthermore, 3003 alloy has conventionally been used as the core material of brazing sheets for laminated heat exchangers. However, materials using this alloy, such as JIS BA8P
With the C13003-4004 double-sided clad material, the vacuum brazing strength does not reach t2 kg/mm2, so it is difficult to reduce the thickness for weight reduction.

一方、上記3003合金より強度の大きい熱交換器用材
料としては、例えば3004.3005.6951など
が必るが、これらの合金は加工性、耐食性などの性質に
ついて一長一短があり、熱交換器用材料として目的を充
分達成できなかった。
On the other hand, as a material for heat exchangers that has higher strength than the above-mentioned 3003 alloy, for example, 3004.3005.6951 is required, but these alloys have advantages and disadvantages in terms of properties such as workability and corrosion resistance, and are not suitable for use as heat exchanger materials. could not be fully achieved.

[発明が解決しようとする問題点] 現在、ラジェータの製造に際して、コアプレートとプラ
スチック製タンクとを機械的にかしめて接合するに当た
って、かしめ部を調整することがあり、このとき手直し
等でかしめ作業を繰返している。第1図は、コアプレー
ト1の端部とプラスチック製タンク2の取付は部とがか
しめによって接合されている状態を示すものであって、
かしめ部を修理するときに、かしめられたつめ3を矢印
方向に引き起こし、所定の修理した後回びかしめを行な
う。このとき、比較的強度の高い合金(例えば6951
など)をその心材に用いたコア・プレートでは、つめ3
の曲げ部4に亀裂等が生じて製品として使用できない。
[Problems to be Solved by the Invention] Currently, when manufacturing radiators, when mechanically caulking and joining the core plate and the plastic tank, the caulking part may be adjusted, and at this time, the caulking work is necessary due to rework etc. is repeated. FIG. 1 shows a state in which the end of the core plate 1 and the mounting part of the plastic tank 2 are joined by caulking.
When repairing the caulked part, the caulked pawl 3 is pulled up in the direction of the arrow, and after the prescribed repair is completed, the caulking is performed. At this time, alloys with relatively high strength (for example, 6951
For core plates whose core material is made of
Cracks or the like occur in the bent portion 4 of the product, making it unusable as a product.

一方、心材に比較的曲げ加工性の良好な合金(例えば3
003など)を用いたコア・プレート材では、合金自体
の強度が低くてプレート材の薄肉化ができない(板厚1
.4〜1.8mmになる)ため、ラジェータの軽量化が
得られない。
On the other hand, alloys with relatively good bending properties (for example, 3
003, etc.), the strength of the alloy itself is low and the plate material cannot be made thinner (plate thickness 1
.. 4 to 1.8 mm), making it impossible to reduce the weight of the radiator.

そこで、前記問題点を解決するために、本発明は、30
03合金などの曲げ加工性の良好な合金に比して強度が
高く、かつ耐食性もより良好であり、他方繰返し曲げ加
工性も同等ないしより向上しているアルミニウム合金を
ラジェータ・コアプレート用心材として提供することを
目的とするものである。
Therefore, in order to solve the above problems, the present invention provides 30
Aluminum alloys, which have higher strength and better corrosion resistance than alloys with good bending workability such as 03 alloy, and have the same or better repeated bending workability, are used as core materials for radiator core plates. The purpose is to provide

ざらに、この発明は従来技術の上記問題点を解決し、強
度が大で、かつ、成形加工性および耐食性に優れたアル
ミニウム合金を提供しようとするもので必る。
In general, the present invention is intended to solve the above-mentioned problems of the prior art and to provide an aluminum alloy with high strength, excellent formability and corrosion resistance.

[問題点を解決するための手段] 上記問題点を解決するためにこの発明の構成は、その組
成を下記のように限定した熱交換器用Al合金であり、
およびそれを用いたプレージングシートに関する。
[Means for Solving the Problems] In order to solve the above problems, the structure of the present invention is an Al alloy for heat exchangers whose composition is limited as follows,
and a praising sheet using the same.

すなわち本発明は、(1) Mn :  1.0〜1.
5%、Cu : 0.30〜0.60%、M C1: 
0.10〜0.50%、C:、 r : 0.05〜0
.35%及びZ r : 0.05〜0.35%を含み
、残りが実質上Alで、あり、不純物中、特にFe及び
Siをそれぞれ0.5%以下としたアルミニウム合金か
らなる熱交換器用アルミニウム合金並びに(2)Mn 
:  1.0〜1.5%、Cu:0.30−0.60%
、M に] : 0.10〜0.50%、Cr:0.0
5〜0.35%及びZ r : 0,05〜0.35%
を含み、更ニT ! : 0.05〜0.35%及ヒV
 : 0.05〜0.35%の1種あるいは2種を含み
、残りが実質上Alであり、不純物中、特にFe及びS
iをそれぞれ0.5%以下としたアルミニウム合金から
なる熱交換器用アルミニウム合金でおる。
That is, the present invention provides (1) Mn: 1.0 to 1.
5%, Cu: 0.30-0.60%, MC1:
0.10-0.50%, C:, r: 0.05-0
.. Aluminum for a heat exchanger made of an aluminum alloy containing 35% and Zr: 0.05 to 0.35%, the remainder being substantially Al, and impurities, especially Fe and Si, each of 0.5% or less Alloy and (2) Mn
: 1.0-1.5%, Cu: 0.30-0.60%
, M]: 0.10 to 0.50%, Cr: 0.0
5-0.35% and Zr: 0.05-0.35%
Including Sarani T! : 0.05-0.35% and HV
: Contains 0.05 to 0.35% of one or two types, the rest is substantially Al, and contains impurities, especially Fe and S.
The aluminum alloy for heat exchangers is made of an aluminum alloy in which i is 0.5% or less.

次に、前掲アルミニウム合金における添加元素の添加の
意義について述べる。
Next, the significance of adding additional elements to the aluminum alloy mentioned above will be described.

Mn、Cu 心材の強度を高める効果がおって、共に添加するMgの
強度向上効果を補強するために添加する。両元素共に上
限値を越えて添加すると、心材の耐食性と繰返し曲げ加
工性が劣化する。
Mn, Cu has the effect of increasing the strength of the core material, and is added to reinforce the strength-improving effect of Mg, which is added together. If both elements are added in excess of their upper limits, the corrosion resistance and repeated bending workability of the core material will deteriorate.

一方共に下限値より少ない添加は上記効果が少ない。On the other hand, if the amount is less than the lower limit, the above effects will be small.

Mg 心材の主な強度向上元素でめり、強化の程度は添加口が
増えるにしたがって大きくなる。しかし0.50%を超
える添加量では、フッ化物フラックスによるろう付けに
対し、ろう付【ブ性が低下するとともに、心材の繰返し
曲げ加工性が劣化する。一方0.10%より低い添加で
は、強化効果が少なく、Mnその他の元素の補強効果は
生かされない。
Mg is the main strength-enhancing element in the core material, and the degree of strengthening increases as the number of additions increases. However, if the amount added exceeds 0.50%, the brazing properties of the fluoride flux decrease, and the repeated bending workability of the core material also deteriorates. On the other hand, if the addition is lower than 0.10%, the reinforcing effect is small and the reinforcing effects of Mn and other elements are not utilized.

Cr、 Zr 繰返し曲げ加工性を損なわずに材料強度を高める効果が
あるので、MQによる強化効果を補強するために添加す
る。しかし両元素共0.35%を超えると、巨大金属間
化合物が生成して、曲げ加工性が低下するほか、板材の
成形が困難となり、かつ耐食性が劣化する。他方0.0
5%より少ない添加では、上記の効果が少ない。
Cr, Zr They have the effect of increasing material strength without impairing repeat bending workability, so they are added to reinforce the reinforcing effect of MQ. However, when both elements exceed 0.35%, giant intermetallic compounds are formed, which deteriorates bending workability, makes it difficult to form a plate material, and deteriorates corrosion resistance. the other 0.0
If the amount is less than 5%, the above effects will be small.

Ti、v 材料の繰返し曲げ加工性を損なわずに、その強度を高め
る効果があるので、MQの添加量を上記範囲内で低くし
てろう付は性と加工性をより良好にする場合に、更に強
度を高める必要があるときに、1種又は2種添加する。
Ti,v has the effect of increasing the strength of the material without impairing its repeated bending workability, so when the amount of MQ added is lowered within the above range to improve brazing properties and workability, When it is necessary to further increase the strength, one or two types are added.

しかし、共に0.35%を超えて添加すると、耐食性が
劣化し、0.05%より少ないと上記効果は少ない。
However, if both amounts exceed 0.35%, the corrosion resistance will deteriorate, and if it is less than 0.05%, the above effects will be small.

3i、Fe 共に不純物であって、0.5%より多く含有すると、心
材の耐食性が劣化する。
Both 3i and Fe are impurities, and if they are contained in amounts greater than 0.5%, the corrosion resistance of the core material will deteriorate.

以下、本発明の実施例を、比較例と対比して挙げる。Examples of the present invention will be listed below in comparison with comparative examples.

[実施例] 実施例1 表1に本発明によるラジェータのコアプレート用心材に
使用するアルミニウム合金の例を示す。また比較例とし
て同心材に使用するアルミニウム合金を併せて挙げる。
[Examples] Example 1 Table 1 shows examples of aluminum alloys used for the core material of the radiator core plate according to the present invention. In addition, as a comparative example, aluminum alloys used for concentric materials are also listed.

表1 心材合金組成 (wt%) 表1の各例合金の鋳塊片それぞれに対して、500’C
X ahrの均質化処理を行なった後、これを心材とし
て一方の片面にアルミニウム合金ろうとして4343合
金片を、他の片面に犠牲陽極として7072合金片を最
終製品の板で各クラツド率が10%となるように重合し
て、熱間加工と冷間加工を加えて厚さ1.2mmの軟質
板のコアプレート材を製作した。
Table 1 Core alloy composition (wt%) For each ingot piece of each example alloy in Table 1, 50'C
After homogenization treatment of X ahr, this was used as a core material, and a 4343 alloy piece was placed on one side as an aluminum alloy, and a 7072 alloy piece was placed on the other side as a sacrificial anode, and each cladding ratio was 10% in the final product plate. Polymerization was carried out to give the following properties, and a soft core plate material having a thickness of 1.2 mm was manufactured by adding hot working and cold working.

このようにして得た各コアプレート材に対して、そのろ
う面にフッ化物フラックスを塗布して、窒素ガス雰囲気
中にて600℃で5分間加熱を行なった後の各コアプレ
ート材の機械的性質と繰返し曲げ試験による繰返し曲げ
回数とを表2に示す。この表のコアプレート材No、は
表1の合金No、に対応している。
After applying fluoride flux to the solder surface of each core plate material obtained in this way and heating it at 600°C for 5 minutes in a nitrogen gas atmosphere, the mechanical properties of each core plate material were Table 2 shows the properties and the number of repeated bending tests. The core plate material numbers in this table correspond to the alloy numbers in Table 1.

前記繰返し曲げ試験方法は、第2図に示すように、コア
プレート材の試料5の上下を上側治具6、下側治具7で
把持し、交互に90°に曲げ、この曲げを繰返して試料
が破断するまでの曲げ回数を求めるものである。
As shown in FIG. 2, the repeated bending test method involves gripping the top and bottom of the core plate material sample 5 with an upper jig 6 and a lower jig 7, bending it alternately to 90 degrees, and repeating this bending. This method determines the number of times the sample is bent until it breaks.

表2 東 破断までの繰返し曲げ回数 更に、各コアプレート材から作成した逆T字型試験片を
用いて、フッ化物フラックスを塗布して、ろう付は性試
験を行なった際のろう付け性の評価を表3に示す。
Table 2 East Number of repeated bending cycles until breakage Furthermore, using inverted T-shaped test pieces made from each core plate material, fluoride flux was applied and brazing properties were tested. The evaluation is shown in Table 3.

逆T字型ろう付は性試験方法は、第3図に示すように、
4343合金ろう8側の面を上に向けて水平に置いたコ
アプレート材1上に、3003合金板9を直立してその
下辺の一端を載せ、その他端を、プレート材1との間に
2mmφの棒10を介して載せてプレート材1との間に
すき間をつくり、この状態で加熱して、ろう付けを行な
い、ろう付は後のろうのす谷間充填長X乙をはかるもの
でおる。
The inverted T-shaped brazing test method is as shown in Figure 3.
A 3003 alloy plate 9 is placed upright on the core plate material 1 placed horizontally with the surface of the 4343 alloy solder 8 facing upward, and one end of its lower side is placed on it, and the other end is placed between the core plate material 1 and the plate material 1 with a diameter of 2 mm. A gap is created between the rod 10 and the plate material 1, and brazing is performed by heating in this state, and the brazing is performed by measuring the valley filling length X B of the solder.

また、更にコアプレート材としての耐食性を確認するた
めに、600℃で5分間加熱した後の各プレート材の4
343合金ろう面側と7072合金面側を別々にシリコ
ンゴムでシールして、それぞれの面について、腐食試験
を行なった。7072合金面に対しては、(ASTMX
1o+1oppm cu >水溶液を用いて、交互に8
0’CX ahr←→至温X16hrのサイクルで1ケ
月浸漬による試験とし、4343合金面に対しては、1
ケ月のCASS試験(JIS D−0201)とした。
In addition, in order to further confirm the corrosion resistance as a core plate material, the
The 343 alloy solder side and the 7072 alloy side were sealed separately with silicone rubber, and a corrosion test was conducted on each side. For the 7072 alloy surface, (ASTMX
1o+1oppm cu > 8 alternately using an aqueous solution
0'CX ahr←→The test was conducted by immersion for 1 month in a cycle of maximum temperature x 16hr, and 1
It was set as the CASS test (JIS D-0201).

これら試験による各面側からの腐食状態を表3に併せて
示ず。表3のコアプレート材No、も表1の合金No、
に対応している。
Table 3 also does not show the state of corrosion from each side as a result of these tests. Core plate material No. in Table 3, alloy No. in Table 1,
It corresponds to

表3 鬼 粒界腐食発生 表1〜表3によって、本発明により、心材に用いるアル
ミニウム合金は適当な強度と耐食性を兼ね備え、かつ繰
返し曲げ加工性に優れていることが明らかでおり、した
がって、本合金は機械的かしめ方法による接合部をもつ
ラジェータのコアプレート用の心材として最適でおる。
Table 3 Intergranular Corrosion Occurrence Tables 1 to 3 clearly show that the aluminum alloy used for the core material according to the present invention has appropriate strength and corrosion resistance, and is excellent in repeated bending workability. The alloy is ideal as a core material for radiator core plates with mechanically swaged joints.

実施例2 表1に示す合金及び比較合金として表4に示すようにN
 o、 19(3004)、N o、 20(3005
)の2種合金を追加した20種の合金の鋳塊について、
540’Cx 3hrの均質加熱(Soaking)後
、コレラ心材としてAA4104合金を皮材として両面
に板厚の各10%の厚さで組合せ、熱間及び冷間圧延に
より厚さ0.5mmtの板を製作した。
Example 2 Alloys shown in Table 1 and N as shown in Table 4 as comparative alloys
o, 19 (3004), No, 20 (3005
) Regarding the ingots of 20 types of alloys with the addition of 2 types of alloys,
After homogeneous heating (soaking) for 540'Cx 3 hours, AA4104 alloy as a cholera core material was combined on both sides with a thickness of 10% of the plate thickness, and a plate with a thickness of 0.5 mmt was obtained by hot and cold rolling. Manufactured.

表 4  追加比較用心材合金組成(wt%)この板材
を2X 10’ Torrの真空中で600°Cに10
分間加熱後、急冷した場合の引張り強さを下記表5に示
す。
Table 4 Additional comparative core material alloy composition (wt%) This plate was heated to 600°C in a vacuum of 2X 10' Torr for 10 days.
Table 5 below shows the tensile strength when rapidly cooled after heating for a minute.

表 5  真空加熱後の引張強さ また、この板材を380 ’Cに1時間軟化処理し、軟
質状態での限界絞り比とエリクセン値を測定した結果を
表6に示す。
Table 5 Tensile Strength after Vacuum Heating This plate material was softened at 380'C for 1 hour, and the critical drawing ratio and Erichsen value in the soft state were measured. Table 6 shows the results.

表 6  成形性試験結果 電 限界絞り比 L、D、R−D/d ただし、d:ポンチ径 D:絞り得る鏝大ブランク径、 上記第3表の純粋深絞りの試験をした円筒の寸法は添付
図面第4図に示したとおりであり、張出し絞りの試験を
した円筒の寸法は第5図に示したとありである。
Table 6 Formability test results Electrical limit drawing ratio L, D, R-D/d However, d: Punch diameter D: Large trowel blank diameter that can be drawn The dimensions of the cylinder tested for pure deep drawing in Table 3 above are The dimensions of the cylinder on which the overhang diaphragm test was carried out are as shown in FIG. 5.

さらに、上記真空加熱した板材の1か月間の腐食試験結
果を下記の表7に示す。
Furthermore, the results of a one-month corrosion test of the vacuum-heated plate are shown in Table 7 below.

ただし、腐食試験条件は下記のとおりでめった。However, the corrosion test conditions were as follows.

CASS試験:JIS  H−8681乾湿交互浸漬試
験:NaCl  3%含有、温度40℃、pH3(酢酸
で調整)の水溶液に30分浸漬後、乾燥雰囲気に50’
Cで30分おき、再び前記NaCl水溶液に浸漬する操
作を繰り返す。
CASS test: JIS H-8681 Alternate wet and dry immersion test: After immersing in an aqueous solution containing 3% NaCl, temperature 40°C, pH 3 (adjusted with acetic acid) for 30 minutes, immersion in a dry atmosphere for 50 minutes.
C for 30 minutes, and then repeat the immersion in the NaCl aqueous solution.

表 7  腐食黒結果 [発明の効果] 実施例No、1から判るように本発明によるラジェータ
のコアプレート用心材は、萌掲のアルミニウム合金から
なることによって、従来の3003合金からなる心材に
比して強度がより高く、かつ耐食性もより良好でおり、
他方繰返し曲げ性も同等ないしより向上している。した
がって、ラジェータのコアプレートの補修その他におい
て、本発明心材を使用したコアプレートは、繰返しかし
め作業が実施でき、またコアプレートの薄肉化にも対応
可能でおる。ざらに、実施例N0.2から明らかな如く
この発明の合金は、従来芯材として用いられていたAl
合金に比較して、強度は同等でおるが成形加工性および
耐食性が向上しており、特に耐孔食性は極めて優れてい
ることが明らかである。
Table 7 Corrosion black results [Effects of the invention] As can be seen from Example No. 1, the core material for the core plate of the radiator according to the present invention is made of Moegi's aluminum alloy, so it has a better performance than the conventional core material made of 3003 alloy. It has higher strength and better corrosion resistance.
On the other hand, the repeated bendability is also the same or even better. Therefore, in the repair of the core plate of a radiator, etc., the core plate using the core material of the present invention can be repeatedly caulked, and can also be adapted to thinning of the core plate. Roughly speaking, as is clear from Example No.
Compared to alloys, the strength is the same, but the formability and corrosion resistance are improved, and it is clear that the pitting corrosion resistance is particularly excellent.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はラジェータのプラスチック製タンクのかしめ部
を示す縦断面図、第2図はコアプレート材の繰返し曲げ
試験方法を説明するための図、第3図は逆T字型ろう付
は性試験方法を説明するための図、その(a)はろう付
は前の、(b)はろう付は後の状態をそれぞれ横方向に
見た概念図でおる。 また第4図は純粋深絞りの試験をした円筒の寸法の説明
図、第5図は、張出しの試験をした円筒の寸法の説明図
でおる。 1・・・コアプレート材、 2・・・プラスチック製タンク、3・・・つめ、4・・
・曲げ部、5・・・試料、6・・・上側治具、7・・・
下側治具、8・・・ろう面、9・・・3003合金板。 特許出願人 住友軽金属工業株式会社 日本電装株式会社 代理人 弁理士 小 松 秀 岳 代理人 弁理士 旭     宏 オ1図
Figure 1 is a longitudinal cross-sectional view showing the caulking part of the plastic tank of the radiator, Figure 2 is a diagram to explain the repeated bending test method for the core plate material, and Figure 3 is the inverted T-shaped brazing test. Diagrams for explaining the method; (a) is a conceptual diagram of the state before brazing, and (b) is a conceptual diagram of the state after brazing, viewed in the horizontal direction. FIG. 4 is an explanatory diagram of the dimensions of the cylinder subjected to the pure deep drawing test, and FIG. 5 is an explanatory diagram of the dimensions of the cylinder subjected to the overhang test. 1... Core plate material, 2... Plastic tank, 3... Pawl, 4...
・Bending part, 5... Sample, 6... Upper jig, 7...
Lower jig, 8... brazing surface, 9... 3003 alloy plate. Patent applicant Sumitomo Light Metal Industries Co., Ltd. Nippondenso Co., Ltd. Agent Patent attorney Hide Komatsu Agent Patent attorney Hiroo Asahi Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)Mn:1.0〜1.5%、Cu:0.30〜0.
60%、Mg:0.10〜0.50%、Cr:0.05
〜0.35%及びZr:0.05〜0.35%を含み、
残りが実質上Alであり、不純物中、特にFe及びSi
をそれぞれ0.5%以下としたアルミニウム合金からな
る熱交換器用アルミニウム合金。
(1) Mn: 1.0-1.5%, Cu: 0.30-0.
60%, Mg: 0.10-0.50%, Cr: 0.05
~0.35% and Zr: 0.05~0.35%,
The remainder is substantially Al, with impurities, especially Fe and Si.
An aluminum alloy for heat exchangers consisting of an aluminum alloy containing 0.5% or less of each.
(2)Mn:1.0〜1.5%、Cu:0.30〜0.
60%、Mg:0.10〜0.50%、Cr:0.05
〜0.35%及びZr:0.05〜0.35%を含み、
更にTi:0.05〜0.35%及びV:0.05〜0
.35%の1種あるいは2種を含み、残りが実質上Al
であり、不純物中、特にFe及びSiをそれぞれ0.5
%以下としたアルミニウム合金からなる熱交換器用アル
ミニウム合金。
(2) Mn: 1.0-1.5%, Cu: 0.30-0.
60%, Mg: 0.10-0.50%, Cr: 0.05
~0.35% and Zr: 0.05~0.35%,
Furthermore, Ti: 0.05-0.35% and V: 0.05-0
.. Contains 35% of one or two types, and the rest is substantially Al
Among the impurities, especially Fe and Si are each 0.5
% or less aluminum alloy for heat exchangers.
JP13175387A 1986-09-02 1987-05-29 Aluminum alloy for heat exchanger Pending JPS63186847A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP20516686 1986-09-02
JP61-205166 1986-09-02

Publications (1)

Publication Number Publication Date
JPS63186847A true JPS63186847A (en) 1988-08-02

Family

ID=16502515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13175387A Pending JPS63186847A (en) 1986-09-02 1987-05-29 Aluminum alloy for heat exchanger

Country Status (1)

Country Link
JP (1) JPS63186847A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0250934A (en) * 1988-08-12 1990-02-20 Furukawa Alum Co Ltd Brazing sheet made of aluminum for heat exchanger member
NL1004415C2 (en) * 1996-11-04 1998-05-08 Hoogovens Alu Walzprod Gmbh Non heat-treatable aluminum alloy as core alloy for brazing sheet.
EP1158063A1 (en) * 2000-05-22 2001-11-28 Norsk Hydro A/S Corrosion resistant aluminium alloy
JP2008050657A (en) * 2006-08-24 2008-03-06 Furukawa Sky Kk Aluminum piping material for automobile heat exchanger
EP3095885A4 (en) * 2014-01-16 2017-08-16 UACJ Corporation Aluminum alloy material, method for producing same, aluminum alloy clad material, and method for producing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5595094A (en) * 1979-01-16 1980-07-18 Sumitomo Light Metal Ind Ltd Core of heat-exchanger made of aluminum alloy
JPS55107748A (en) * 1979-02-12 1980-08-19 Sumitomo Light Metal Ind Ltd Core material of al brazing sheet and manufacture of brazing sheet
JPS5616646A (en) * 1979-07-23 1981-02-17 Sumitomo Light Metal Ind Ltd Aluminum alloy clad for heat exchanger
JPS60248859A (en) * 1984-05-25 1985-12-09 Sumitomo Light Metal Ind Ltd Fin material of plate fin type heat exchanger for ultra-high pressure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5595094A (en) * 1979-01-16 1980-07-18 Sumitomo Light Metal Ind Ltd Core of heat-exchanger made of aluminum alloy
JPS55107748A (en) * 1979-02-12 1980-08-19 Sumitomo Light Metal Ind Ltd Core material of al brazing sheet and manufacture of brazing sheet
JPS5616646A (en) * 1979-07-23 1981-02-17 Sumitomo Light Metal Ind Ltd Aluminum alloy clad for heat exchanger
JPS60248859A (en) * 1984-05-25 1985-12-09 Sumitomo Light Metal Ind Ltd Fin material of plate fin type heat exchanger for ultra-high pressure

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0250934A (en) * 1988-08-12 1990-02-20 Furukawa Alum Co Ltd Brazing sheet made of aluminum for heat exchanger member
NL1004415C2 (en) * 1996-11-04 1998-05-08 Hoogovens Alu Walzprod Gmbh Non heat-treatable aluminum alloy as core alloy for brazing sheet.
WO1998020178A1 (en) * 1996-11-04 1998-05-14 Hoogovens Aluminium Walzprodukte Gmbh Aluminium alloy for use as core material in brazing sheet
US6294272B2 (en) 1996-11-04 2001-09-25 Corus Aluminium Walzprodukte Gmbh Aluminium alloy for use as core material in brazing sheet
EP1158063A1 (en) * 2000-05-22 2001-11-28 Norsk Hydro A/S Corrosion resistant aluminium alloy
WO2001090430A1 (en) * 2000-05-22 2001-11-29 Norsk Hydro Technology B.V. Corrosion resistant aluminium alloy
JP2008050657A (en) * 2006-08-24 2008-03-06 Furukawa Sky Kk Aluminum piping material for automobile heat exchanger
EP3095885A4 (en) * 2014-01-16 2017-08-16 UACJ Corporation Aluminum alloy material, method for producing same, aluminum alloy clad material, and method for producing same
US11136652B2 (en) 2014-01-16 2021-10-05 Uacj Corporation Aluminum alloy material and method for producing the same, and aluminum alloy clad material and method for producing the same

Similar Documents

Publication Publication Date Title
JP4996255B2 (en) Brazing method for strip made of aluminum alloy
JP3847077B2 (en) Aluminum alloy fin material for heat exchangers with excellent formability and brazing
JP2000202680A (en) Aluminum alloy clad material for heat exchanger excellent in brazability and corrosion resistance
JPS63186847A (en) Aluminum alloy for heat exchanger
JP3360026B2 (en) Brazing method of aluminum alloy brazing sheet for heat exchanger
JP5084490B2 (en) Aluminum alloy clad material
JPH1180870A (en) Aluminum alloy clad material for heat exchanger excellent in strength and corrosion resistance
JPH05125472A (en) Aluminum clad fin material
JPH0250934A (en) Brazing sheet made of aluminum for heat exchanger member
JPH0436434A (en) High strength and high corrosion resistant al alloy clad material for al heat exchanger
JPH0436433A (en) High strength and high corrosion resistant al alloy clad material for al heat exchanger
JP3243188B2 (en) Aluminum alloy clad material for heat exchangers with excellent alkali corrosion resistance
JP2001026850A (en) Production of tube material for heat exchanger excellent in tube formability
JPH06212331A (en) Aluminum alloy brazing sheet having high strength and high corrosion resistance
JPH02129333A (en) Aluminum brazing sheet for heat exchanger
JP2753634B2 (en) Aluminum alloy composite sheet for tube material
JP2842667B2 (en) High strength and high corrosion resistance A1 alloy clad material for A1 heat exchanger
JP2693181B2 (en) Aluminum brazing sheet
JP3538507B2 (en) Aluminum alloy clad material for heat exchanger with excellent alkali corrosion resistance
JPS6389641A (en) Radiator core plant material
JP2933382B2 (en) High strength and high corrosion resistance aluminum alloy clad material for heat exchanger
JP2779172B2 (en) Aluminum brazing sheet for heat exchanger components
JP3751429B2 (en) Brazing material for joining aluminum alloy and clad material using the same
JPH05171324A (en) Aluminum alloy clad fin material
JPH1072635A (en) Aluminum alloy clad material for heat exchanger, excellent in alkaline corrosion resistance