JPS5990931A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5990931A
JPS5990931A JP57199676A JP19967682A JPS5990931A JP S5990931 A JPS5990931 A JP S5990931A JP 57199676 A JP57199676 A JP 57199676A JP 19967682 A JP19967682 A JP 19967682A JP S5990931 A JPS5990931 A JP S5990931A
Authority
JP
Japan
Prior art keywords
silicon
oxide film
film
etching
polycrystalline silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57199676A
Other languages
Japanese (ja)
Other versions
JPH0414496B2 (en
Inventor
Teruyuki Kasashima
笠島 輝之
Hideo Kawasaki
川崎 英夫
Susumu Sugumoto
直本 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electronics Corp
Priority to JP57199676A priority Critical patent/JPS5990931A/en
Publication of JPS5990931A publication Critical patent/JPS5990931A/en
Publication of JPH0414496B2 publication Critical patent/JPH0414496B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate

Abstract

PURPOSE:To clearly specify the end of etching in each stage and keep the characteristic without etching of the silicon substrate working as the base material. CONSTITUTION:The P-N junction surface of base 2 and emitter 3 is left in such a way as being covered with a silicon oxide film 4, and a polycrystal silicon film or that including oxygen 5 is formed on the entire part by the vapor growth method. The base electrode part of polycrstalline silicon film 5, P-N junction part of base and emitter and the emitter region are etched. For the etching, the KOH aqueous solution or CF4-O2 plasma is used, but since a selection ratio for the etching of silicon oxide film and polycrystalline silicon is large, the silicon oxide film 4 protects the silicon substrate during the etching of the polycrystalline silicon film 5.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は表面不活性層を有する半導体装置の製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of manufacturing a semiconductor device having a surface inactive layer.

(従来例の構成とその問題点) プレーナ型半導体装置においては、PN接合の現われる
シリコン半導体基板表面は、通常、酸化シリコン膜で保
膿される。しかしながら酸化シリコン膜中に存在する正
電荷により、シリコン基板側にその分だけ電子濃度が増
すためN型基板に形成したPN接合に電圧を印加すると
、/リコン基゛板と酸化シリコン膜の界面付近での空乏
層の広がりが基板内部よりも小さくカリ、強電界が界面
に集中して、界面付近での降伏耐圧の低下を起しPN接
合素子の耐圧ひいては信頼性の低下を起す。また外部か
らの電界の影響も受は易い。そこで多結晶シリコン膜あ
るいは酸素を含む多結晶シリコン膜を酸化シリコン膜の
代りに被着し、これによって接合の耐圧を向上させ信頼
性を向上させている。
(Constitution of Conventional Example and its Problems) In a planar semiconductor device, the surface of a silicon semiconductor substrate where a PN junction appears is usually impregnated with a silicon oxide film. However, due to the positive charge existing in the silicon oxide film, the electron concentration increases by that amount on the silicon substrate side. If the depletion layer spreads smaller than inside the substrate, a strong electric field concentrates at the interface, causing a decrease in the breakdown voltage near the interface, resulting in a decrease in the breakdown voltage of the PN junction element, and thus in reliability. It is also susceptible to the influence of external electric fields. Therefore, a polycrystalline silicon film or a polycrystalline silicon film containing oxygen is deposited instead of the silicon oxide film, thereby improving the breakdown voltage of the junction and improving reliability.

しかし、多結晶ンリコン膜あるいは酸素を含む多結晶ン
リコン膜は下地基板の単結晶ンリコ/とエツチング挙動
が似ているので、シリコン基板に接して被着した多結晶
シリコンなどの膜に電極部の開口を形成する時に、シリ
コン基板1でもエツチングしてし1い、PN接合特性な
いしはpN接合素子特性の劣化をもたらす要因にもなっ
ていた。多結晶シリコン膜あるいけ酸素を含む多結晶シ
リコン膜は、ウェットエッチならHF/HNO3の混合
液、KOHの水溶液を用い、また、ドライエッチならC
F4−O2プラズマ中でエツチングできる。しかし、い
ずれの方法でもシリコン基板も#丘とんど同様にエツチ
ングされるのでシリコン基板上の多結晶シリコンなどの
膜のエツチングにおいては、単結晶シリコンに対する保
護膜が必要であるため、構造的にも製造工程上でも、か
なし複雑である。
However, since the etching behavior of polycrystalline silicon films or polycrystalline silicon films containing oxygen is similar to that of the single-crystal silicon film of the base substrate, the opening of the electrode portion is formed in a film such as polycrystalline silicon deposited in contact with the silicon substrate. When forming the silicon substrate 1, the silicon substrate 1 was also etched, which caused deterioration of the PN junction characteristics or the characteristics of the pN junction element. Polycrystalline silicon films and polycrystalline silicon films containing oxygen can be wet etched using a mixed solution of HF/HNO3 or an aqueous solution of KOH, and dry etched using C
Can be etched in F4-O2 plasma. However, with either method, the silicon substrate is also etched in the same way as in most cases, so when etching a film such as polycrystalline silicon on a silicon substrate, a protective film is required for monocrystalline silicon. The manufacturing process is also quite complex.

(発明の目的ン 本発明は上記の難点を解決するためになされたものであ
り、多結晶シリコンなどの膜に電極部の開口を形成する
時に、下地のシリコン基板をエツチングすることなく、
それによって特性を劣化させることの々い半導体の製造
方法を提供するものである。
(Purpose of the Invention) The present invention has been made to solve the above-mentioned difficulties, and it is possible to form an opening for an electrode part in a film such as polycrystalline silicon without etching the underlying silicon substrate.
The object of the present invention is to provide a method for manufacturing a semiconductor that does not cause deterioration of characteristics.

(発明の構成) 本発明は、接合部を含む基板表面の三領域を被覆して酸
化シリコン膜を形成する工程、前記酸化シリコン膜を選
択的に一方の領域面上に残置させて他部を除去する工程
、前記残置の酸化シリコン膜上を含む全域に多結晶シリ
コンを形成する工程および前記多結晶シリコンと酸化シ
リコン膜との重畳部分に選択的開口を形成する工程をそ
なえた半導体装置の製造方法であり、これによると、第
1段階で多結晶シリコンに選択的開口を設け、ついで、
第2段階で酸化シリコン膜に選択的開口を設けることに
なり、選択的開口を形成する各段階でエツチングの終点
が明確になり、下地のシリコン基板を過度にエツチング
することがなくなり、特性の劣化を防ぐことができる。
(Structure of the Invention) The present invention includes a step of forming a silicon oxide film by covering three areas on the surface of a substrate including a bonding part, and selectively leaving the silicon oxide film on one area and covering the other area. manufacturing a semiconductor device comprising a step of removing the silicon oxide film, a step of forming polycrystalline silicon over the entire area including the remaining silicon oxide film, and a step of forming a selective opening in the overlapped portion of the polycrystalline silicon and the silicon oxide film. According to this method, selective openings are formed in polycrystalline silicon in a first step, and then,
In the second step, selective openings are formed in the silicon oxide film, and the end point of etching becomes clear at each stage of forming selective openings, preventing excessive etching of the underlying silicon substrate and deterioration of characteristics. can be prevented.

以下図面を用いて本発明の詳細な説明する。The present invention will be described in detail below using the drawings.

(実施例の説明) 第1図乃至第6図は本発明をNPNプレーナトランジス
タの製造工程に実施する一例を工程順に示したものであ
る。
(Description of Embodiments) FIGS. 1 to 6 show an example of implementing the present invention in the manufacturing process of an NPN planar transistor in the order of steps.

第1図はN型半導体基板1を熱酸化によって表面にシリ
コノ酸化膜を形成し、この/リコン酸化膜に開口を形成
して、この開口から不純物拡散を行ない、これによって
ベース領域2をP型不純物拡散により形成し、次いで、
この拡散時に形成濾隨た酸化膜をマスクにしてエミッタ
領域3をN型不純物拡散により形成したものである。こ
の拡散時に熱酸化膜4が形成される。
In FIG. 1, a silicon oxide film is formed on the surface of an N-type semiconductor substrate 1 by thermal oxidation, an opening is formed in the silicon oxide film, and impurities are diffused through this opening, thereby converting the base region 2 into a P-type semiconductor substrate. Formed by impurity diffusion, then
The emitter region 3 is formed by diffusing N-type impurities using the oxide film formed during this diffusion as a mask. A thermal oxide film 4 is formed during this diffusion.

第2図は、コレクタ・ベース接合部及びコレクタ・ベー
ス接合に逆バイアス電圧を印加したときに空乏層が到達
する半導体表面のベース領域部2及びフレフタ領域部1
上の酸化シリコン膜4を除去して同所に開口を形成した
ものである。ベース2とエミッタ3のPN接合面を酸化
シリコン膜4で被うように同酸化シリコン膜4を残置し
たことにより、PN接合の1−バイアス時にリーク電流
によるhFEの低下を防ぐことができる。
FIG. 2 shows a base region 2 and a flutter region 1 on the semiconductor surface where the depletion layer reaches when a reverse bias voltage is applied to the collector-base junction and the collector-base junction.
The upper silicon oxide film 4 is removed and an opening is formed at the same location. By leaving the silicon oxide film 4 to cover the PN junction surface between the base 2 and emitter 3, it is possible to prevent hFE from decreasing due to leakage current when the PN junction is 1-biased.

第3図は多結晶ンリコン脱酸いは酸素を含んだ多結晶シ
リコン膜5を気相成長法によって全面に形成したもので
ある。コレクタ・ベース接合部及びコレクタ・ベース接
合に逆バイアスを印加したときに空乏層が到達する半導
体表面には、直接多 ′結晶シリコン脱酸いは酸素を含
んだ多結晶シリコン膜5を破着することにより、PN接
合の電気状態を定め、耐圧及び信頼性の向上を図ってい
る。
In FIG. 3, a polycrystalline silicon film 5 containing deoxidized polycrystalline silicon or oxygen is formed over the entire surface by vapor phase growth. The semiconductor surface where the depletion layer reaches when a reverse bias is applied to the collector-base junction and the collector-base junction is directly deoxidized with polycrystalline silicon or a polycrystalline silicon film 5 containing oxygen is ruptured. By this, the electrical state of the PN junction is determined, and the withstand voltage and reliability are improved.

第4図は、ベースとエミッタ電極部の開口を形成するた
めに、多結晶シリコン膜或いは酸素を含んだ多結晶シリ
コンM5のベース電極部、ベースとエミッタのPN接合
部、およびエミッタ領域部をエツチングしたものである
。この場合、シリコン酸化膜4の領域より10/1m程
度狭い領域の多結晶シリコン膜或いは酸素を含んだ多結
晶シリコンM5をエツチングする場合は、マスク合わせ
の精度によってエツチングする領域がシリコノ酸化膜4
の領域より移動して、多結晶シリコン膜あるいは酸素を
含んた多結晶シリコン膜5が直接シリコン基板に被着さ
れている領域をエツチングし、さらにシリコン基板をエ
ツチングしてしまい順方向特性が劣化することになるの
で、このようなことのないように注意することが望まれ
る。多結晶シリフン膜或いは酸素を含んだ多結晶シリコ
ン膜5のエツチングには、KoH水溶液あるいはCF、
−Q2プラズマを用いるが、シリコン酸化膜と多結晶シ
リコン或いは酸素を含んだ多結晶シリコン膜のエツチン
グの選択比が大きl/−1ftcめ、シリコン酸化膜4
が多結晶シリコン膜或いは酸素を含んだ多結晶シリコン
膜5をエツチングする時に、シリコン基板を保護する役
割を果たしている。
Figure 4 shows the etching of the base electrode part, the PN junction between the base and emitter, and the emitter region of a polycrystalline silicon film or polycrystalline silicon M5 containing oxygen to form openings for the base and emitter electrode parts. This is what I did. In this case, when etching the polycrystalline silicon film or polycrystalline silicon M5 containing oxygen in an area about 10/1 m narrower than the area of the silicon oxide film 4, the area to be etched depends on the precision of mask alignment.
The polycrystalline silicon film or the oxygen-containing polycrystalline silicon film 5 moves from the region and etches the region where the polycrystalline silicon film 5 containing oxygen is directly adhered to the silicon substrate, further etching the silicon substrate and deteriorating the forward characteristics. Therefore, it is advisable to be careful to prevent this from happening. For etching the polycrystalline silicon film or polycrystalline silicon film 5 containing oxygen, a KoH aqueous solution or CF,
-Q2 plasma is used, but the etching selectivity of silicon oxide film and polycrystalline silicon or polycrystalline silicon film containing oxygen is large l/-1 ftc, so silicon oxide film 4
plays a role of protecting the silicon substrate when etching the polycrystalline silicon film or the polycrystalline silicon film 5 containing oxygen.

第5図はベースとエミッタの電極部の開口を形成したも
のである。多結晶シリコン膜或いは酸素を含んだ多結晶
シリコン膜5の端部にシリコン酸化膜4との重力る領域
ができる。
FIG. 5 shows the formation of openings for the base and emitter electrode portions. At the end of the polycrystalline silicon film or the oxygen-containing polycrystalline silicon film 5, a region is formed where the silicon oxide film 4 is in contact with gravity.

第6図はベース電極6及びエミッタ電極7が被着形成さ
れたものである。
In FIG. 6, a base electrode 6 and an emitter electrode 7 are formed.

第7図は、シリコン(81)、酸素を含む多結晶シリコ
ン(5iQ1.33)ならびに気相蒸着法(CVD )
によって形成された酸化シリコン膜(Si02)か、そ
れぞれ、CF4−O2プラズマ、HF/HNO3系水溶
液、KOH水溶液によってエツチングされたときのエツ
チング速度を示し、aはCF4−0プラズマによる場合
、bはHF/)INO3系による場合、CはKOH5%
80℃水溶液による場合の特性を示す。1だ*印は90
0℃のdryN2中で20分間熱処理を行った試料であ
る。
Figure 7 shows silicon (81), polycrystalline silicon containing oxygen (5iQ1.33), and vapor phase deposition (CVD).
Indicates the etching rate when the silicon oxide film (Si02) formed by etching is etched by CF4-O2 plasma, HF/HNO3-based aqueous solution, and KOH aqueous solution, respectively, where a is for CF4-0 plasma and b is for HF. /) When using INO3 system, C is KOH5%
The characteristics when using an 80°C aqueous solution are shown. It's 1.* mark is 90
This is a sample that was heat-treated for 20 minutes in dry N2 at 0°C.

寿お、本実施例では、NPN)ランンスタに本発明を適
用したが、PNPトランジスタ、ダイオードに本発明を
適用しても同様の効果を有することは明らかである。
In this embodiment, the present invention was applied to an NPN transistor, but it is clear that the same effect can be obtained even if the present invention is applied to a PNP transistor or a diode.

(発明の効果) 以上説明したように、本発明はPN接合面を有する半導
体装置において、シリコン基板面上の酸化シリコン膜を
選択エツチングし、選択された領域に接続する電極部を
含む領域上の酸化シリコン膜を残置し、全面に多結晶シ
リコン或いは酸素を含む多結晶シリコンなどの半絶縁性
膜を破着し、前記残置したシリコン酸化膜上の半絶縁性
膜を少なくとも両膜の重畳端部を残して除去することに
よって、シリコン基板をエツチングすることは完全に防
止され、従って、このようなエツチング速度による特性
の劣化は起らないという利点を有するものである。
(Effects of the Invention) As explained above, in a semiconductor device having a PN junction surface, the present invention selectively etches a silicon oxide film on a silicon substrate surface, and etches a region including an electrode portion connected to the selected region. A silicon oxide film is left, a semi-insulating film such as polycrystalline silicon or oxygen-containing polycrystalline silicon is bonded to the entire surface, and the semi-insulating film on the remaining silicon oxide film is bonded to at least the overlapping edge of both films. By removing the silicon substrate while leaving behind, etching of the silicon substrate is completely prevented, and therefore, there is an advantage that deterioration of characteristics due to such etching speed does not occur.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第6図は本発明の一実施例を工程順に示した
断面図、第7図はSL 5iOo、:+3+ cvDs
Io2に対するcp4−O2プラズマ、HF/)INO
,系及びKOH水溶液によるエツチング速度を示す図で
ある。 】 ・・・・・・・・N型半導体基板、 2・・・・・
・・P型不純物を拡散したベース領域、 3・・・・・
・・・・N型不純物を拡散したエミッタ領域、 4 ・
・・・・・・・熱酸化膜、5 ・・・・・ 多結晶シリ
コン膜あるいは酸素を含んだ多結晶シリコン膜、 6・
・・・・・・・・ベース電極、7・・・・・・・・・エ
ミッタ電極。 −1・ 第1図 4 第2図 第5図 へ 第6図 第7図 (λ/mint =14−
FIGS. 1 to 6 are cross-sectional views showing an embodiment of the present invention in the order of steps, and FIG. 7 is SL 5iOo, :+3+ cvDs.
cp4-O2 plasma for Io2, HF/)INO
, a diagram showing the etching rate by a KOH aqueous solution and a KOH aqueous solution. ] ・・・・・・N-type semiconductor substrate, 2・・・・・・
...Base region with P-type impurity diffused, 3...
...Emitter region with N-type impurity diffused, 4.
・・・・・・Thermal oxide film, 5 ・・・・・・ Polycrystalline silicon film or polycrystalline silicon film containing oxygen, 6.
...Base electrode, 7...Emitter electrode. -1. Figure 1 4 Figure 2 Figure 5 Figure 6 Figure 7 (λ/mint = 14-

Claims (1)

【特許請求の範囲】[Claims] 接合部を含む基板表面の三領域を被覆して酸化シリコン
膜を形成する工程、前記酸化シリコン膜を選択的に一方
の領域面上に残置させて他部を除去する工程、前記残置
の酸化シリコン膜上を含む全域に多結晶シリコンを形成
する工程および前記多結晶シリコンと酸化ンリコン膜と
の重畳部分に選択的開口を形成する工程をそなえた半導
体装置の製造方法。
a step of forming a silicon oxide film by covering three regions of the substrate surface including the bonding portion; a step of selectively leaving the silicon oxide film on one region and removing the other region; and a step of removing the remaining silicon oxide film. A method for manufacturing a semiconductor device, comprising the steps of forming polycrystalline silicon over the entire area including the top of the film, and forming a selective opening in an overlapping portion of the polycrystalline silicon and silicon oxide film.
JP57199676A 1982-11-16 1982-11-16 Manufacture of semiconductor device Granted JPS5990931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57199676A JPS5990931A (en) 1982-11-16 1982-11-16 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57199676A JPS5990931A (en) 1982-11-16 1982-11-16 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5990931A true JPS5990931A (en) 1984-05-25
JPH0414496B2 JPH0414496B2 (en) 1992-03-13

Family

ID=16411759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57199676A Granted JPS5990931A (en) 1982-11-16 1982-11-16 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5990931A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS532552A (en) * 1976-06-28 1978-01-11 Akzo Nv Polyamide* polyolefin* polyacrylate or epoxy compositions having flame resistance and selffextinguishment in some cases and process for manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS532552A (en) * 1976-06-28 1978-01-11 Akzo Nv Polyamide* polyolefin* polyacrylate or epoxy compositions having flame resistance and selffextinguishment in some cases and process for manufacture

Also Published As

Publication number Publication date
JPH0414496B2 (en) 1992-03-13

Similar Documents

Publication Publication Date Title
JPS5691478A (en) Manufacture of punch-through type diode
GB1515179A (en) Semiconductor devices
US3772577A (en) Guard ring mesa construction for low and high voltage npn and pnp transistors and diodes and method of making same
KR940002768B1 (en) High voltage semiconductor device and manufacturing procedure
JPH06267966A (en) Semiconductor device
CA1179786A (en) Lateral transistor structure having self-aligned base and base contact and method of fabrication
GB1310412A (en) Semiconductor devices
JPS54155778A (en) Semiconductor device and its manufacture
US4060827A (en) Semiconductor device and a method of making the same
JPS6097659A (en) Semiconductor integrated circuit
JP2989113B2 (en) Semiconductor device and manufacturing method thereof
JPS5990931A (en) Manufacture of semiconductor device
JPS57134956A (en) Manufacture of semiconductor integrated circuit
JPS632143B2 (en)
KR19990069331A (en) Edge termination structure of semiconductor device with improved breakdown characteristics and its manufacturing method
US3476618A (en) Semiconductor device
JPS62112379A (en) Semiconductor device
US3298082A (en) Method of making semiconductors and diffusion thereof
JPS61172369A (en) Manufacture of semiconductor device
JPS59100563A (en) Manufacture of mesa type semiconductor device
JPH05243502A (en) Integrated circuit
JPH02111024A (en) Manufacture of semiconductor device
JPS6387740A (en) Semiconductor device
JPH09172190A (en) Zener diode
JPS5852830A (en) High withstand voltage semiconductor device and manufacture thereof