JPS599004B2 - Fluidized bed combustion control method - Google Patents
Fluidized bed combustion control methodInfo
- Publication number
- JPS599004B2 JPS599004B2 JP52128008A JP12800877A JPS599004B2 JP S599004 B2 JPS599004 B2 JP S599004B2 JP 52128008 A JP52128008 A JP 52128008A JP 12800877 A JP12800877 A JP 12800877A JP S599004 B2 JPS599004 B2 JP S599004B2
- Authority
- JP
- Japan
- Prior art keywords
- fluidized bed
- combustion
- stage
- nox
- produced
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C10/00—Fluidised bed combustion apparatus
- F23C10/005—Fluidised bed combustion apparatus comprising two or more beds
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Fluidized-Bed Combustion And Resonant Combustion (AREA)
Description
【発明の詳細な説明】 本発明は、流動層の燃焼制御方法に関するものである。[Detailed description of the invention] The present invention relates to a fluidized bed combustion control method.
流動層燃焼は、
1 燃焼と同時にドロマイト或いは石灰による炉内脱硫
が可能である。Fluidized bed combustion allows for the following: 1. In-furnace desulfurization using dolomite or lime is possible at the same time as combustion.
2 低温燃焼である為、N0xの生成が少ない。2. Low-temperature combustion produces less NOx.
3 流動層内に浸漬した伝熱面の熱伝達係数が大きい。3. The heat transfer coefficient of the heat transfer surface immersed in the fluidized bed is large.
などの利点があるので、特に重質油、石炭等の燃焼に適
しているとされ、有望視されている。Because of these advantages, it is said to be particularly suitable for burning heavy oil, coal, etc., and is viewed as promising.
さて、硫黄分の多い石炭を燃焼させる場合、排ガス中の
SOxは燃焼と同時に脱硫により殆んどoにすることが
可能であるが、硫黄分の多い石炭は大抵の場合窒素分も
多いので、これを燃焼させると、同時脱硝ができない為
NOxは150〜200ppmに達する。現在、燃焼排
ガスのN0xを低減する技術としては、排煙脱硝装置に
よるものがあり、特に乾式触媒によつて排ガス中のN0
xを還元してN2にするものが有利とされているが、こ
の装置は設備費、運転費が高く、取扱いも複雑である。Now, when burning coal with a high sulfur content, the SOx in the exhaust gas can be reduced to almost zero by desulfurization at the same time as the combustion, but coal with a high sulfur content usually also has a high nitrogen content, so When this is burned, NOx reaches 150 to 200 ppm since simultaneous denitrification is not possible. Currently, there is a technology to reduce NOx in flue gas using flue gas denitrification equipment, and in particular, dry catalysts are used to reduce NOx in flue gas.
It is considered advantageous to reduce x to N2, but this equipment requires high equipment and operating costs and is complicated to handle.
このようなことから燃焼と同時に脱硝できる或いはNO
xの生成量を極端に少なくできる流動層燃焼が要求され
ている。Because of this, it is possible to remove NOx at the same time as combustion, or NO
There is a need for fluidized bed combustion that can extremely reduce the amount of x produced.
一方、石炭のように窒素を多量に含む燃料をNOxの生
成量が少なくなるように燃焼させるには2段燃焼が効果
的であるが、流動層燃焼に2段燃焼を応用すると、NO
xの生成量は減少するが、流動層燃焼の利点である炉内
脱硫が劣化する。On the other hand, two-stage combustion is effective in combusting a fuel containing a large amount of nitrogen such as coal so as to reduce the amount of NOx produced, but when two-stage combustion is applied to fluidized bed combustion, NOx
Although the amount of x produced decreases, in-furnace desulfurization, which is an advantage of fluidized bed combustion, deteriorates.
これは炉内脱硫が、502+〔CaCO3+MgO〕力
p2→〔caso2+MgO〕+CO2の化学反応が達
成されるのに、2段燃焼では第1段目の燃焼で酸素を少
なくしてしまう為、上式の反応が生じなくなり、第2段
目の燃焼で酸素を多くしても反応時間が足りなくなる為
である。This is because in-furnace desulfurization achieves the chemical reaction of 502 + [CaCO3 + MgO] force p2 → [caso2 + MgO] + CO2, but in two-stage combustion, oxygen is reduced in the first stage of combustion, so the above equation This is because no reaction occurs, and even if the amount of oxygen is increased in the second stage combustion, the reaction time is insufficient.
従つて燃焼と同時に脱硝を可能に、或いはN0xの生成
が少なくなるように流動層燃焼を行ない、その燃焼と同
時に行なわれる脱硫を劣化させないことが必要である。
そこで本発明者は、これを満足させることのできる技術
手段を開発すべく鋭意攻究の結果、流動層を多段になし
て、第1段の流動層での燃料の部分燃焼によりNOxの
生成を少なくし、それ以降の流動層での可燃ガスの多段
燃焼によりNOxの生成を殆んど無くすとともにHCN
などの有害ガスを殆んど完全に分解し、最終段の流動層
での可燃ガスの完全燃焼によりSO2およびH2Sを脱
硫することのできる流動層の燃焼制御方法を見い出した
ものである。Therefore, it is necessary to perform fluidized bed combustion so that denitrification can be performed simultaneously with combustion, or to reduce the generation of NOx, without degrading the desulfurization that is performed simultaneously with the combustion.
Therefore, as a result of intensive research to develop a technical means that can satisfy this requirement, the inventor of the present invention created a multi-stage fluidized bed, and achieved NOx generation through partial combustion of fuel in the first stage fluidized bed. The subsequent multi-stage combustion of combustible gas in the fluidized bed almost eliminates the production of NOx and reduces HCN.
The present invention has discovered a combustion control method for a fluidized bed that can almost completely decompose harmful gases such as combustible gases and desulfurize SO2 and H2S by completely burning the combustible gas in the final stage fluidized bed.
第1段の流動層での燃料の燃焼における空気比について
第1図によつて説明する。The air ratio in combustion of fuel in the first stage fluidized bed will be explained with reference to FIG.
第1図はS3.5%の残渣油をガス化した場合の平衡状
,態におけるガス組成を空気比に対して示したもので、
これによるとNOxを少なくする為には空気比を下げれ
ば良いことが判る。つまり2段燃焼すれば良いことが判
る。しかしそうすると前述の如く脱硫が劣化する。また
空気比λ〈0.5にするとNOxの発生は完全に無くな
り、SO2も殆んど無くなるが、H2S,COSが多量
に発生する。さらに空気比λ=0.5〜0.7にすると
、NOxの発生は殆んど無いが、SO2,H2S,CO
Sが多量に発出する。またさらに空気比λ=0.7〜0
.75にすると、NOxの発生は殆んど無く、SO2が
多量に発生するもののH2S,COSは殆んど発生しな
くなるものである。そこで、本発明では第1段の流動層
の空気比λ=0.4〜0.7として燃料を部分燃焼し、
NOxを僅かしか生成させず、SO2とH2Sを多量に
生じさせるようにする。また第2段の流動層の空気比と
温度について説明する。Figure 1 shows the gas composition in an equilibrium state versus air ratio when residual oil with S3.5% is gasified.
According to this, it can be seen that in order to reduce NOx, it is sufficient to lower the air ratio. In other words, it turns out that two-stage combustion is sufficient. However, if this is done, desulfurization deteriorates as described above. Further, when the air ratio λ<0.5, NOx generation is completely eliminated and SO2 is almost eliminated, but a large amount of H2S and COS are generated. Furthermore, when the air ratio λ is set to 0.5 to 0.7, almost no NOx is generated, but SO2, H2S, CO
A large amount of S is emitted. Furthermore, air ratio λ=0.7~0
.. When it is set to 75, almost no NOx is generated, and although a large amount of SO2 is generated, H2S and COS are hardly generated. Therefore, in the present invention, the fuel is partially combusted at an air ratio λ of 0.4 to 0.7 in the first stage fluidized bed.
Only a small amount of NOx is produced, and a large amount of SO2 and H2S are produced. Also, the air ratio and temperature of the second stage fluidized bed will be explained.
本発明者は流動層ではないが多段炉即ち耐火壁で構成さ
れた空間が格子状耐火壁を介して接続され、上流で部分
燃焼した可燃ガスが各空間で新たに空気が供給されて部
分燃焼する炉で、各段の供給空気量を調節し、燃焼量を
調節した処、最終NOx値が極めて低くなることが判つ
た。・N発明ではこの現象を多段流動層に応用し、各段
の空気量と温度を最適にするのであつて、その最適空気
比及び゛温度は、例えば石炭が燃料の場合各段毎に空気
比λ=1.10、層温度t二700〜800゜Cである
。本発明による流動層の燃焼制御方法は、流動層を2段
以上に分け、第1段の流動層で燃料を、NOxが僅かし
か生ぜずSO2とH2Sが生じる空気比λ=0.4〜0
.7で部分燃焼を行なう。Although the present inventor is not a fluidized bed, it is a multi-stage furnace, in which spaces composed of fireproof walls are connected via lattice-like fireproof walls, and the combustible gas partially combusted in the upstream is newly supplied with air in each space and is partially combusted. It was found that by adjusting the amount of air supplied to each stage and adjusting the amount of combustion, the final NOx value was found to be extremely low.・In the N invention, this phenomenon is applied to a multistage fluidized bed to optimize the air amount and temperature in each stage. For example, when coal is used as fuel, the air ratio and temperature in each stage are λ=1.10, layer temperature t2 700-800°C. The fluidized bed combustion control method according to the present invention divides the fluidized bed into two or more stages, and in the first stage fluidized bed, the fuel is transferred to an air ratio λ = 0.4 to 0, where only a small amount of NOx is produced and SO2 and H2S are produced.
.. Partial combustion is performed at step 7.
この部分燃焼によつて可燃ガスとSO2とH2SとHC
Nなどが生じるが、HCNなどは通常燃焼させるとNO
xを生成するので、第1段の流動層の第2段以降の燃焼
又は第2段以降の流動層の燃焼において、NOxが僅か
しか生成しない空気比λ=1.10及び温度t二700
〜800なCで燃焼させて殆んど分解する。この燃焼に
たずさわる流動層の流動媒体は脱硫作用がなくても良い
ものである。然してこれらの流動層で生じた可燃ガスは
最終段の流動層で、空気比を多くして完全燃焼させる。
H2Sは最終段の流動層に入るまでにかなり酸化されて
SO2になつているが、H2Sの形で残つても最終段の
流動層で完全にSO2に変わると共に該SO2が流動媒
体中のドロマイトなどの脱硫材にて脱硫されるものであ
る。以下本発明の一実施例を2段流動層の場合について
第2図を参照して説明する。This partial combustion produces combustible gas, SO2, H2S, and HC.
N, etc. are produced, but when HCN etc. are normally burned, NO is produced.
x, so in the combustion of the first stage fluidized bed in the second and subsequent stages, or the combustion of the second and subsequent stages, the air ratio λ = 1.10 and the temperature t2 700 at which only a small amount of NOx is generated
Most of it decomposes by burning at ~800C. The fluidized medium of the fluidized bed that takes part in this combustion does not need to have a desulfurization effect. However, the combustible gas generated in these fluidized beds is completely combusted in the final stage fluidized bed by increasing the air ratio.
H2S is considerably oxidized and becomes SO2 before it enters the fluidized bed in the final stage, but even if it remains in the form of H2S, it is completely converted to SO2 in the fluidized bed in the final stage, and the SO2 is dissolved into dolomite, etc. in the fluidized medium. It is desulfurized using a desulfurizing material. An embodiment of the present invention will be described below with reference to FIG. 2 in the case of a two-stage fluidized bed.
第1段の流動層1の流動媒体は必ずしも脱硫材を含まな
くても良いが、これは分散板2の上で、下方より矢印3
の如く上昇供給せしめられる空気と、矢印4の如く流動
層1内に供給される空気とによつて流動化されている。
石炭などの燃料は矢印5の如く流動層1内に供給される
が、下方より矢印3の如く供給される空気は燃料を完全
燃焼せしめる理論空気量より少なく、例えば60%程度
となしてある。実質的には空気比λ=0.5程度となし
てある。従つて第1段の流動層1の第1段燃焼の部分で
はNOxは極く僅かしか生成せず、不完全燃暁ガス(C
O2及びCO,H2などの混合ガス)とSO2とH2S
とHCNなどが生成する。これらのガスは矢印4の如く
流動層1内に供給される空気により第2段の燃焼が行な
われるが、空気の供給量を適当にすることにより、実質
的には空気比λ=1,10にすることにより、また層温
度t=700〜80『Cとすることにより、HCNなど
通常燃焼で(ハ0xを生成するガスが含まれていても、
NOxの生成量は極めて僅かであり、且つHCNなどは
殆んど分解する。この時H2Sもかなり酸化されてSO
2となる。第1段の流動層1の上に設けられた空間6に
は、なお可燃ガスが現われるが、これは第2段の流動層
7へ供給される。そして流動層7内の流動媒体は、分散
板8上で、下方より供給される可燃ガス及び矢印9の如
く流動層7内に供給される空気によつて流動化している
。流動層7の流動媒体はドロマイトなどの脱硫材と砂か
らなり、第1段の流動層1の上部空間から供給された可
燃ガスは、矢印9の如く供給された空気によつて燃焼す
ると同時に該ガス中のSO2が脱硫されてCasO4と
なる。また前記可燃ガス中のH2Sは第2段の流動層7
中で酸化されてSO2となるから、これも脱硫されてC
asO4となる。第2段の流動層7内の可燃ガスの燃焼
ではHCNなどの有害ガスは完全に分解され、またこの
時生成するNOxは極めて僅かなものとなる。第2段の
流動層7で完全燃焼したガスは、その上部の空間10を
経てサイクロン11へ流入し、ここで除塵されて図示せ
ぬ煙突へ排出される。サイタロン11の下部12に溜つ
たダストは図示せぬ排出装置を通り、第2段の流動層7
へ再供給されるか、系外へ排出される。第1段の流動層
1では流動媒体が消耗または細粒化するので、矢印13
の如く供給され、細粒及び灰は矢印14の如く排出され
る。第2段の流動層7では脱硫材と流動媒体が消費及び
細粒化されるので、矢印15の如く供給され、CacO
4矢印16の如く排出され、灰は矢印17の如く排出さ
れる。尚第1段及び第2段の流動層の周壁18、流動層
1及び7内、空間6及び10内などに伝熱面を設け、冷
却を行なつて流動層の燃焼熱を吸収することができる。The fluidized medium in the first stage fluidized bed 1 does not necessarily have to contain a desulfurizing agent, but it is placed on the dispersion plate 2 from below as indicated by the arrow 3.
It is fluidized by the air that is supplied upward as shown in FIG. 4 and the air that is supplied into the fluidized bed 1 as shown by arrow 4.
Fuel such as coal is supplied into the fluidized bed 1 as shown by arrow 5, but the amount of air supplied from below as shown by arrow 3 is smaller than the theoretical air amount for complete combustion of the fuel, for example, about 60%. Substantially, the air ratio λ is approximately 0.5. Therefore, in the first stage combustion part of the first stage fluidized bed 1, very little NOx is produced, and incomplete combustion gas (C
mixed gas such as O2 and CO, H2) and SO2 and H2S
and HCN etc. are generated. These gases are subjected to second-stage combustion by air supplied into the fluidized bed 1 as shown by arrow 4, but by adjusting the amount of air supplied, the air ratio λ = 1,10 By setting the layer temperature to t = 700 to 80°C, even if gases such as HCN that generate 0x are included in normal combustion,
The amount of NOx produced is extremely small, and most of HCN and the like are decomposed. At this time, H2S is also considerably oxidized and SO
It becomes 2. In the space 6 provided above the fluidized bed 1 of the first stage, combustible gas still appears, which is fed to the fluidized bed 7 of the second stage. The fluidized medium in the fluidized bed 7 is fluidized on the distribution plate 8 by the combustible gas supplied from below and the air supplied into the fluidized bed 7 as shown by arrow 9. The fluidized medium of the fluidized bed 7 is composed of a desulfurizing material such as dolomite and sand, and the combustible gas supplied from the upper space of the first stage fluidized bed 1 is combusted by the supplied air as shown by the arrow 9, and at the same time the combustible gas is SO2 in the gas is desulfurized and becomes CasO4. Furthermore, H2S in the combustible gas is removed from the fluidized bed 7 in the second stage.
It is oxidized inside and becomes SO2, which is also desulfurized and becomes C.
It becomes asO4. In the combustion of the combustible gas in the second stage fluidized bed 7, harmful gases such as HCN are completely decomposed, and the amount of NOx produced at this time is extremely small. The gas completely combusted in the second stage fluidized bed 7 flows into the cyclone 11 through the upper space 10, where it is removed from dust and discharged to a chimney (not shown). The dust accumulated in the lower part 12 of the Cytalon 11 passes through a discharge device (not shown) and is transferred to the second stage fluidized bed 7.
or discharged from the system. In the first stage fluidized bed 1, the fluidized medium is consumed or becomes fine, so the arrow 13
The fine particles and ash are discharged as shown by arrow 14. In the second stage fluidized bed 7, the desulfurization material and the fluidized medium are consumed and refined, so they are supplied as shown by the arrow 15, and the CacO
4 is discharged as shown by arrow 16, and ash is discharged as shown by arrow 17. Incidentally, it is possible to provide heat transfer surfaces on the peripheral wall 18 of the first and second stage fluidized beds, within the fluidized beds 1 and 7, within the spaces 6 and 10, etc., to perform cooling and absorb the combustion heat of the fluidized bed. can.
上記実施例は2段流動層において、第1段の流動層1で
2段燃焼を行なわせた場合であるが、第1段の流動層1
(土部の空間6を含めて)で2段以上の多段燃焼とする
ことも、第1段の流動層1を多段とすることも、さらに
第2段の流動層7(上部の空間10を含めて)で多段燃
焼することも可能である。The above example is a two-stage fluidized bed in which two-stage combustion is performed in the first stage fluidized bed 1.
It is possible to carry out multistage combustion of two or more stages (including the space 6 of the soil part), to make the first stage fluidized bed 1 multistage, and also to make the second stage fluidized bed 7 (including the upper space 10). It is also possible to perform multistage combustion.
要するに最終段の流動層以前の流動層で、HCNなど通
常燃焼によつてはNOxを生成する可能性のあるガスを
多段燃焼によつてNOxが極めて僅かしか発生させず、
しかもHCNなどの有害ガスを殆んど完全に分解し、ま
た未燃分を完全に燃焼する空気比と燃焼温度に調節すれ
ば良いのであり、また最終段の流動層では燃焼と同時に
十分な空気比を与えてH2SをSO2に変え、SO2を
脱硫するとともにHCNなどの有害ガスを完全に分解す
れば良いのである。以上詳記した通り本発明による流動
層の燃焼制御方法によれば、多段に分けた流動層の内の
第1段の流動層において燃料を部分燃焼することにより
NOxの生成を少なくすることができ、それ以降の流動
層で可燃ガスを多段燃焼することによりNOxの生成を
殆んど無くすとともにHCNなどを殆んど完全に分解し
且つ可燃ガス中のH2SをSO2に変えることができ、
最終段の流流層において可燃ガスを完全燃焼することに
より可燃ガス中に残つていたHCNなどの有害ガスを完
全に分解し且つ脱硫材にて残余のH2S,SO2を完全
に脱硫できるので、従来のように設備費、運転費が高く
、取扱いも複雑な乾式触媒による脱硝装置は不要となつ
て、プラントの簡素化が可能になると共に脱硫に効果的
な流動層を有効に利用し得られ、、その実利的効果多大
なるものがある。In short, in the fluidized bed before the final stage fluidized bed, gases such as HCN that may generate NOx in normal combustion are subjected to multi-stage combustion to generate very little NOx.
Furthermore, it is only necessary to adjust the air ratio and combustion temperature to almost completely decompose harmful gases such as HCN and completely burn unburned components, and in the final stage fluidized bed, sufficient air is provided at the same time as combustion. All that is required is to change H2S to SO2 by giving a certain ratio, desulfurize SO2, and completely decompose harmful gases such as HCN. As described in detail above, according to the fluidized bed combustion control method according to the present invention, the generation of NOx can be reduced by partially burning fuel in the first stage of the fluidized bed divided into multiple stages. By performing multistage combustion of combustible gas in the subsequent fluidized bed, it is possible to almost eliminate the generation of NOx, almost completely decompose HCN, etc., and convert H2S in the combustible gas to SO2,
By completely burning the combustible gas in the fluidized bed at the final stage, harmful gases such as HCN remaining in the combustible gas can be completely decomposed, and the remaining H2S and SO2 can be completely desulfurized using the desulfurization material. This eliminates the need for conventional dry catalyst denitrification equipment, which has high equipment and operating costs and is complicated to handle, making it possible to simplify the plant and make effective use of a fluidized bed, which is effective for desulfurization. ,,its practical effects are enormous.
第1図はS3.5%の残渣油をガス化した場合の平衡状
態におけるガス組成を空気比に対して示したグラフ、第
2図は本発明による流動層の燃焼制御方法を説明する為
の流動層の断面図である。
1・・・・・・第1段の流動層、2・・・・・・分散板
、6・・・・・・空間、7・・・・・・第2段の流動層
、8・・・・・・分散板、10・・・・・・空間、11
・・・・・・サイクロン、12・・・・・・サイクロン
の下部、18・・・・・・流動層の周壁。Figure 1 is a graph showing the gas composition in an equilibrium state versus air ratio when residual oil with S3.5% is gasified, and Figure 2 is a graph for explaining the fluidized bed combustion control method according to the present invention. FIG. 2 is a cross-sectional view of a fluidized bed. DESCRIPTION OF SYMBOLS 1...First stage fluidized bed, 2...Dispersion plate, 6...Space, 7...Second stage fluidized bed, 8... ... Dispersion plate, 10 ... Space, 11
... Cyclone, 12 ... Lower part of cyclone, 18 ... Peripheral wall of fluidized bed.
Claims (1)
xが僅かしか生ぜずSO_2とH_2Sが生じる空気比
λ=0.4〜0.7で部分燃焼し、この部分燃焼で生じ
た可燃ガスを第1段の流動層以降の流動層でNOxが僅
かしか生成しない空気比λ=1.10及び温度t=70
0〜800℃で多段燃焼し、最終段の流動層で前段の流
動層から供給された可燃ガスを完全燃焼すると同時に脱
硫材にてH_2SとSO_2を除去することを特徴とす
る流動層の燃焼制御方法。1 The fluidized bed is divided into multiple stages, and the fuel is converted to NO in the first stage fluidized bed.
Partial combustion occurs at an air ratio λ = 0.4 to 0.7, where only a small amount of x is produced and SO_2 and H_2S are produced, and the combustible gas produced by this partial combustion is transferred to the fluidized bed after the first stage fluidized bed to produce only a small amount of NOx. Air ratio λ = 1.10 and temperature t = 70 that only generates
Fluidized bed combustion control characterized by multi-stage combustion at 0 to 800°C, complete combustion of combustible gas supplied from the previous fluidized bed in the final stage fluidized bed, and at the same time removing H_2S and SO_2 with a desulfurization material. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP52128008A JPS599004B2 (en) | 1977-10-25 | 1977-10-25 | Fluidized bed combustion control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP52128008A JPS599004B2 (en) | 1977-10-25 | 1977-10-25 | Fluidized bed combustion control method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5461332A JPS5461332A (en) | 1979-05-17 |
JPS599004B2 true JPS599004B2 (en) | 1984-02-28 |
Family
ID=14974182
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP52128008A Expired JPS599004B2 (en) | 1977-10-25 | 1977-10-25 | Fluidized bed combustion control method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS599004B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110762541A (en) * | 2019-10-23 | 2020-02-07 | 马鞍山钢铁股份有限公司 | Waste desulfurizer utilization treatment device and treatment method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5239834A (en) * | 1975-09-25 | 1977-03-28 | Mitsubishi Heavy Ind Ltd | Fluid bed combustion device |
-
1977
- 1977-10-25 JP JP52128008A patent/JPS599004B2/en not_active Expired
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5239834A (en) * | 1975-09-25 | 1977-03-28 | Mitsubishi Heavy Ind Ltd | Fluid bed combustion device |
Also Published As
Publication number | Publication date |
---|---|
JPS5461332A (en) | 1979-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH05504825A (en) | Combustion method | |
JPH069975A (en) | Method for decreasing amount of product generated during burning nitrogen-containing fuel | |
CN108970328A (en) | A kind of device and technique handling chemical industry high-sulfur waste gas recovery sulphur | |
JPS5821163B2 (en) | Fluidized bed combustion control method | |
JPS599004B2 (en) | Fluidized bed combustion control method | |
US4878442A (en) | Nox control for high nitric oxide concentration flows through combustion-driven reduction | |
JP3059995B2 (en) | Fluidized bed combustion method for simultaneous reduction of nitrous oxide and nitrogen oxides | |
JPS5913643B2 (en) | Fluidized bed combustion control method | |
JPS6251645B2 (en) | ||
JPS62209193A (en) | Method for simultaneously performing production of coke and power generation | |
JPH0587315A (en) | Power generation employing poor quality fuel | |
JPS58190606A (en) | Desulfurization using three-stage combustion | |
JPH10185159A (en) | Combustion method and device for simultaneously effecting decomposition of ammonia and complete combustion of hydrogen sulfide | |
JP2001201008A (en) | Circulating fluidized bed boiler system and its operating method | |
JPS6146392Y2 (en) | ||
JPH0159489B2 (en) | ||
CN1073507A (en) | A kind of pulverized-coal fired boiler desulfurizing combustion that is used for | |
JPS6319762B2 (en) | ||
JP3233628B2 (en) | Gasification power plant | |
FI81970B (en) | Method and installation for removal of sulfur from flue gases from a power plant using solid fuel | |
JPS5669213A (en) | Method for preventing ignition of semicoke or carbonaceous adsorbent | |
JPS5821162B2 (en) | Fluid combustion method | |
JPH03293015A (en) | Method and device for treating waste gas from fluidized-bed combustion boiler | |
JP2007091787A (en) | Method for operating fluidized bed gasification apparatus and fluidized bed gasification apparatus, coal gasification hybrid power system | |
JPH07218495A (en) | Analysis of non-combustion component of discharge ash containing limestone |