JPH0587315A - Power generation employing poor quality fuel - Google Patents

Power generation employing poor quality fuel

Info

Publication number
JPH0587315A
JPH0587315A JP24915491A JP24915491A JPH0587315A JP H0587315 A JPH0587315 A JP H0587315A JP 24915491 A JP24915491 A JP 24915491A JP 24915491 A JP24915491 A JP 24915491A JP H0587315 A JPH0587315 A JP H0587315A
Authority
JP
Japan
Prior art keywords
gas
fluidized bed
furnace
generated
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP24915491A
Other languages
Japanese (ja)
Inventor
Yuichi Fujioka
祐一 藤岡
Kimiyo Tokuda
君代 徳田
Toshimitsu Ichinose
利光 一ノ瀬
Fumiya Nakajima
文也 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP24915491A priority Critical patent/JPH0587315A/en
Publication of JPH0587315A publication Critical patent/JPH0587315A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Abstract

PURPOSE:To utilize poor quality gas effectively by a method wherein a gas turbine is driven by combustion gas obtained by burning gas from a fluidized bed gasifying furnace, from which injurious constituents are removed, and gas from a fluidized bed oxydizing furnace while a steam turbine is driven by steam generated from the combustion gas respectively to effect power generation. CONSTITUTION:Gas 108, generated by burning poor quality fuel 101 in a fluidized bed gasifying furnace 1, is desulphurized and anmonia as well as cyanogen are decomposed. Unburnt constituents in solid residue are oxidized by oxygen containing gas in a fluidized oxidizing furnace 19, whose temperature is regulated so as to be 600-1000 deg.C by heat exchange between compressed gas 107, whereby gas 115 is obtained. Gas 108, 115 from both of the furnaces 1, 19 are supplied to a combustor 7 together with the compressed air 107, which has effected heat exchange in the fluidized bed oxidizing furnace 19 while gas 108 from the fluidized bed gasifying furnace 1 is burnt perfectly and, thereafter, drives a gas turbine 9 and generates steam 111 for driving a steam turbine 11 to effect power generation. According to this method. poor quality fuel can be utilized effectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、石炭および重質油等の
粗悪燃料の化学エネルギーを電気エネルギーに変換する
発電方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power generation method for converting chemical energy of poor fuel such as coal and heavy oil into electric energy.

【0002】[0002]

【従来の技術】石炭を用いる発電方法の一例を図2によ
って説明する。石炭101と添加剤を含む水103を混
合し、ポンプ2で常圧状態から加圧して加圧流動層ガス
化炉1へ供給する。加圧流動層ガス化炉1のガス化圧力
は、後流のガスタービン9の作動圧力で決定されるが、
通常15〜30ata の間に設定される。加圧流動層ガス
化炉1内では、石炭をガス化して形成されるチャー粒子
が、コンプレッサー8で加圧され同炉1の下方から供給
される空気107bで流動化され、流動層22を形成す
る。流動層22では、石炭101の熱分解、石炭の炭素
とCO2 が反応してCOを発生するガス化反応、コンプ
レッサー8から供給される空気107bと石炭101の
燃焼反応、及び空気107bとCOとの燃焼反応が生じ
る。
2. Description of the Related Art An example of a power generation method using coal will be described with reference to FIG. Coal 101 and water 103 containing an additive are mixed, pressurized from a normal pressure state by a pump 2, and supplied to the pressurized fluidized bed gasification furnace 1. The gasification pressure of the pressurized fluidized bed gasification furnace 1 is determined by the operating pressure of the gas turbine 9 in the wake,
It is usually set between 15 and 30 ata. In the pressurized fluidized bed gasification furnace 1, the char particles formed by gasifying coal are fluidized by the air 107b that is pressurized by the compressor 8 and supplied from below the furnace 1 to form the fluidized bed 22. To do. In the fluidized bed 22, thermal decomposition of coal 101, gasification reaction in which carbon of coal reacts with CO 2 to generate CO, combustion reaction of air 107b supplied from the compressor 8 and coal 101, and air 107b and CO. Combustion reaction occurs.

【0003】加圧流動層ガス化炉1では、その温度が7
00℃〜1000℃に設定されていて、供給された石炭
101中の炭素の40%以上がガスに転換されて可燃性
の発生ガス108となり、この発生ガス108は脱硫炉
3へ送られる。
In the pressurized fluidized bed gasification furnace 1, the temperature is 7
The temperature is set to 00 ° C. to 1000 ° C., and 40% or more of the carbon in the supplied coal 101 is converted into a gas to become a flammable generated gas 108, and the generated gas 108 is sent to the desulfurization furnace 3.

【0004】流動層ガス化炉1からの発生ガス108
は、脱硫炉3に導入され、脱硫剤102およびリサイク
ル脱硫剤106と接触し、発生ガス108中のH2 S,
COSが脱硫剤102および106中の石灰石と反応
し、脱硫剤中にCaSとして固定される。また、前記脱
硫剤は石炭中のV及びNa,K等のアルカリ金属等を吸
着し、それら成分が発生ガスに含まれることを防止す
る。
Gas generated from the fluidized bed gasification furnace 1 108
Is introduced into the desulfurization furnace 3 and comes into contact with the desulfurizing agent 102 and the recycle desulfurizing agent 106, so that H 2 S,
COS reacts with the limestone in the desulfurizing agents 102 and 106 and is fixed in the desulfurizing agent as CaS. Further, the desulfurizing agent adsorbs V and alkali metals such as Na and K in coal, and prevents those components from being included in the generated gas.

【0005】脱硫炉3で脱硫後、可燃性の発生ガス10
8aはサイクロン4aに送られ、同サイクロン4aで発
生ガス108aに含まれる石炭チャーと脱硫剤粒子を除
去した後、セラミックスフィルター5aに入る。サイク
ロン4aで回収した脱硫剤等の粒子116は後記する流
動層酸化炉19へ送られる。
After desulfurization in the desulfurization furnace 3, a combustible gas 10 is generated.
8a is sent to the cyclone 4a, the coal char and the desulfurizing agent particles contained in the generated gas 108a are removed by the cyclone 4a, and then enters the ceramics filter 5a. The particles 116 such as the desulfurizing agent recovered by the cyclone 4a are sent to a fluidized bed oxidation furnace 19 described later.

【0006】セラミックスフィルター5aで回収した発
生ガス108a中の脱硫剤等の粒子117は、後記する
流動層酸化炉19へ送られる。
Particles 117 such as a desulfurizing agent in the generated gas 108a collected by the ceramics filter 5a are sent to a fluidized bed oxidation furnace 19 described later.

【0007】前記加圧流動層ガス化炉3内の流動層22
の層高を一定に保つために、石炭チャー粒子112は、
加圧流動層ガス化炉3から後記する流動層酸化炉19へ
送られる。
Fluidized bed 22 in the pressurized fluidized bed gasification furnace 3
In order to maintain a constant bed height of the coal char particles 112,
It is sent from the pressurized fluidized bed gasification furnace 3 to a fluidized bed oxidation furnace 19 described later.

【0008】セラミックスフィルター5aを通過してば
いじん量を非常に低下させた可燃性の発生ガス108b
は、アンモニア分解塔6において、コンプレッサー8で
加圧した空気107eによって一部燃焼し、発生ガス1
08bの温度を900℃〜1200℃程度に上昇し、次
に同アンモニア分解塔6内に配置されたニッケルを含ん
だ触媒中を通過させることにより、発生ガス108b中
のアンモニア(NH 3 )及びHCN等を窒素(N2 )に
分解する。発生ガス108bの温度は同発生ガスに含ま
れるH2 Sおよび触媒の耐久性により決められる。前記
発生ガス108bは、アンモニア分解塔6からコンバス
ター7へ送られ、コンバスター7において、コンプレッ
サー8で加圧した空気107c及び後記する流動層酸化
炉の燃焼ガス115aにより完全燃焼し、燃焼ガス10
9の温度は1250℃〜1500℃となり、ガスタービ
ン9へ導入される。燃焼ガス109はガスタービン9に
エネルギーを与えてこれを回転させ、そのエネルギーは
発電機17により電気に変換される。
If it passes through the ceramics filter 5a
Combustible gas 108b with extremely low dust content
At the compressor 8 in the ammonia decomposition tower 6
Generated gas 1 due to partial combustion by pressurized air 107e
08b temperature is increased to 900 ℃ ~ 1200 ℃,
Containing nickel placed in the ammonia decomposition tower 6
In the generated gas 108b by passing through the catalyst
Ammonia (NH 3) And HCN etc. as nitrogen (N2) To
Disassemble. The temperature of the generated gas 108b is included in the generated gas.
H2It is determined by the durability of S and the catalyst. The above
The generated gas 108b is supplied from the ammonia decomposition tower 6 to the
To the compressor 7 and the compressor 7
Air 107c pressurized by sir 8 and fluidized bed oxidation described below
Complete combustion by the combustion gas 115a of the furnace
The temperature of 9 becomes 1250 ℃ ~ 1500 ℃, gas turbine
9 is introduced. Combustion gas 109 is fed to gas turbine 9
Give it energy and rotate it,
It is converted into electricity by the generator 17.

【0009】ガスタービン9を通過して常圧近くに減圧
された燃焼ガス109aは、排熱回収ボイラ10へ導入
される。排熱回収ボイラ10では、燃焼ガス109aの
顕熱が熱交換器21において水110へ伝達される。水
110は熱交換器21において加熱されて蒸発し、水蒸
気111となる。水蒸気111が受けとったエネルギー
はスチームタービン11に与えられてこれを回転させ、
スチームタービンが発電機18を駆動することによって
最終的に電気に変換される。
The combustion gas 109a, which has passed through the gas turbine 9 and has been depressurized to near normal pressure, is introduced into the exhaust heat recovery boiler 10. In the exhaust heat recovery boiler 10, the sensible heat of the combustion gas 109 a is transferred to the water 110 in the heat exchanger 21. The water 110 is heated in the heat exchanger 21 and evaporated to become steam 111. The energy received by the steam 111 is given to the steam turbine 11 to rotate it,
The steam turbine drives the generator 18 and is ultimately converted into electricity.

【0010】スチームタービン11を出た水蒸気111
は、コンデンサー12より復水され、加圧ポンプ13で
加圧された後、再び熱交換器21へ送られる。
Steam 111 leaving the steam turbine 11
Is condensed by the condenser 12, pressurized by the pressure pump 13, and then sent to the heat exchanger 21 again.

【0011】流動層酸化炉19内においては、前記コン
プレッサー8から導入された空気107aにより流動層
27を流動化させており、前記のように加圧流動層ガス
化炉1から送られた石炭チャー112、脱硫炉3から送
られた脱硫剤120、サイクロン4aおよびセラミック
スフィルタ5aから送られたダスト116,117は、
同流動層27内において、CaSのCaSO4 への酸化
と未燃分の燃焼が行なわれる。
In the fluidized bed oxidation furnace 19, the fluidized bed 27 is fluidized by the air 107a introduced from the compressor 8, and the coal char sent from the pressurized fluidized bed gasification furnace 1 as described above. 112, the desulfurizing agent 120 sent from the desulfurization furnace 3, the dusts 116 and 117 sent from the cyclone 4a and the ceramics filter 5a,
In the fluidized bed 27, CaS is oxidized to CaSO 4 and unburned components are burned.

【0012】CaSをCaSO4 に変化させるために、
流動層酸化炉19内の温度は、600℃〜1000℃、
望ましくは700℃〜1000℃が選定される。流動層
酸化炉19の炉底から抜き出された脱硫剤粒子113
は、ロックホッパー15a,16aを介して分別器20
へ導入され、分別器20でCaCO3 ,CaOの含有率
が高い粗粒子はリサイクル脱硫剤106cとして粉砕器
23へ、その残りの微粉粒子は排出灰106aとして系
外へ排出される。前記粉砕器23で微粉粒子に粉砕され
たリサイクル脱硫剤106cは、脱硫剤の一部として脱
硫炉3へ戻される。また、流動層酸化炉19で発生した
燃焼ガス115はサイクロン4bへ入って灰および脱硫
剤が分離され、分離された灰および脱硫剤118はホッ
パー15bへ送られる。
In order to change CaS to CaSO 4 ,
The temperature in the fluidized bed oxidation furnace 19 is 600 ° C. to 1000 ° C.,
Desirably, 700 ° C to 1000 ° C is selected. Desulfurizing agent particles 113 extracted from the bottom of the fluidized bed oxidation furnace 19
Is separated through the lock hoppers 15a and 16a.
The coarse particles having a high CaCO 3 and CaO content in the separator 20 are discharged to the pulverizer 23 as the recycle desulfurization agent 106c, and the remaining fine powder particles are discharged to the outside of the system as the discharged ash 106a. The recycled desulfurization agent 106c pulverized into fine powder particles by the pulverizer 23 is returned to the desulfurization furnace 3 as a part of the desulfurization agent. Further, the combustion gas 115 generated in the fluidized bed oxidation furnace 19 enters the cyclone 4b to separate the ash and the desulfurizing agent, and the separated ash and the desulfurizing agent 118 is sent to the hopper 15b.

【0013】一方、灰および脱硫剤118を分離した前
記燃焼ガス115は、セラミックスフィルター5bへ導
入され、ここで更に脱硫剤と灰が分離された燃焼ガス1
15aは、前記のようにコンバスター7へ導入される。
また、セラミックスフィルター5bで回収した灰および
脱硫剤119は、ロックホッパ15bへ送られ、灰およ
び脱硫剤118とともにロックホッパ16bを介して排
出灰106bとして系外へ排出される。
On the other hand, the combustion gas 115 from which the ash and the desulfurization agent 118 have been separated is introduced into the ceramics filter 5b, where the combustion gas 1 in which the desulfurization agent and the ash are further separated.
15a is introduced into the combustor 7 as described above.
Further, the ash and the desulfurizing agent 119 collected by the ceramics filter 5b are sent to the lock hopper 15b, and are discharged out of the system as the discharged ash 106b through the lock hopper 16b together with the ash and the desulfurizing agent 118.

【0014】前記排熱回収ボイラ10を通過した燃焼排
ガス109bは、煙突14により大気へ拡散される。こ
の燃焼排ガス109bは、前記ように、加圧流動層ガス
化炉1において脱硫されかつNa,K等のアルカリ金属
とV等が除去されており、またアンモニア分解塔6にお
いてアンモニア(NH3 )、HCN等が窒素に分解さ
れ、これによって燃焼排ガス109b中のNOX の含有
量が少く、清浄化されたガスとして煙突から大気へ排出
される。
The combustion exhaust gas 109b which has passed through the exhaust heat recovery boiler 10 is diffused into the atmosphere by the chimney 14. As described above, the combustion exhaust gas 109b is desulfurized in the pressurized fluidized bed gasification furnace 1 and alkali metals such as Na and K and V are removed, and ammonia (NH 3 ) in the ammonia decomposition tower 6 HCN and the like are decomposed into nitrogen, whereby the NO x content in the combustion exhaust gas 109b is small and the purified gas is discharged from the chimney to the atmosphere.

【0015】なお、前記のコンプレッサー8は、ガスタ
ービン9に直結されて駆動されるようになっていて、空
気103を吸入してこれを圧縮して高圧とし、加圧され
た空気107を、前記したように空気107a,107
bとしてそれぞれ流動層酸化炉19及び加圧流動層ガス
化炉3へ送り、また加圧された空気107c,107d
をアンモニア吸収塔6とコンバスター7へ送るようにな
っている。
The compressor 8 is directly connected to the gas turbine 9 and driven, and sucks the air 103 and compresses the air 103 to a high pressure, and pressurizes the compressed air 107. The air 107a, 107
b, the air 107c and 107d which are respectively sent to the fluidized bed oxidation furnace 19 and the pressurized fluidized bed gasification furnace 3 and pressurized.
Is sent to the ammonia absorption tower 6 and the combustor 7.

【0016】[0016]

【発明が解決しようとする課題】前記図2に示す発電方
法においては、流動層酸化炉19から発生する燃焼ガス
115の量が多く、流動層酸化炉19、セラミックスフ
ィルター5b、サイクロン4bが大きくなるという欠点
があった。
In the power generation method shown in FIG. 2, the amount of the combustion gas 115 generated from the fluidized bed oxidation furnace 19 is large, and the fluidized bed oxidation furnace 19, the ceramic filter 5b and the cyclone 4b are large. There was a drawback.

【0017】本発明は、以上の問題点を解決することが
できる粗悪燃料を用いる発電方法を提供しようとするも
のである。
The present invention is intended to provide a power generation method using poor fuel which can solve the above problems.

【0018】[0018]

【課題を解決するための手段】本発明の粗悪燃料を用い
る発電方法は、流動層ガス化炉へ粗悪燃料を供給し、同
流動層ガス化炉で粗悪燃料中の炭素の40%以上をガス
に転換した後、前記流動層ガス化炉で発生したガスを石
灰石により脱硫し、その後ニッケルを含んだ触媒と接触
させて同発生ガス中のアンモニア、シアンを分解し、前
記流動層ガス化炉で生成された固形残渣分を酸素含有ガ
スが供給される流動層酸化炉に移送して、同流動層酸化
炉内において前記固形残渣分と酸素含有ガスとを圧縮空
気と熱交換させて600℃〜1000℃の範囲に温度調
整を行いながら前記固形残渣分を酸化してガスを発生
し、前記脱硫及びアンモニア、シアンの分解が行われた
前記流動層ガス化炉の発生ガスと前記流動層酸化炉の発
生ガスと流動層酸化炉で熱交換を行った前記圧縮空気と
をコンバスターにおいて燃焼して燃焼ガスとし、同燃焼
ガスでガスタービンを、同ガスタービンを出た前記燃焼
ガスによって発生した蒸気でスチームタービンをそれぞ
れ駆動し、前記ガスタービンと前記スチームタービンと
で発電機を回転して発電を行なうことを特徴とする。
In the power generation method using bad fuel of the present invention, the bad fuel is supplied to a fluidized bed gasifier, and at least 40% of carbon in the bad fuel is gasted in the fluidized bed gasifier. After converting to, the gas generated in the fluidized bed gasification furnace is desulfurized with limestone, and then contacted with a catalyst containing nickel to decompose ammonia and cyan in the generated gas, and in the fluidized bed gasification furnace. The produced solid residue is transferred to a fluidized bed oxidation furnace to which an oxygen-containing gas is supplied, and the solid residue and the oxygen-containing gas are heat-exchanged with compressed air in the fluidized bed oxidation furnace to obtain a temperature of 600 ° C. The solid residue is oxidized while controlling the temperature in the range of 1000 ° C. to generate a gas, and the gas generated in the fluidized bed gasification furnace and the fluidized bed oxidation furnace in which the desulfurization and the decomposition of ammonia and cyan are performed. Gas Generation and Fluidized Bed Oxidation With the compressed air that has undergone heat exchange in a combustor as a combustion gas, the combustion gas is used to drive a gas turbine, and the steam generated by the combustion gas that has exited the gas turbine is used to drive a steam turbine, The gas turbine and the steam turbine rotate a generator to generate electricity.

【0019】[0019]

【作用】本発明では、流動層ガス化炉で粗悪燃料を燃焼
させて、粗悪燃料中に含まれる炭素の40%以上が高い
転換率でガスに変換される。この発生した発生ガスは、
石灰石によって脱硫され、ニッケルを含んだ触媒によっ
て含有するアンモニア、シアンが分解される。一方前記
流動層ガス化炉で生成された固定残渣は、圧縮空気と熱
交換することによって600℃〜1000℃の範囲に温
度調整された流動層酸化炉において酸素含有ガスによっ
て未燃分が酸化されて発生ガスとなる。
In the present invention, the bad fuel is burned in the fluidized bed gasification furnace, and 40% or more of carbon contained in the bad fuel is converted into gas at a high conversion rate. This generated gas is
It is desulfurized by limestone, and the ammonia and cyan contained therein are decomposed by the catalyst containing nickel. On the other hand, the fixed residue produced in the fluidized bed gasification furnace is subjected to heat exchange with compressed air to oxidize unburned components by the oxygen-containing gas in the fluidized bed oxidation furnace whose temperature is adjusted to the range of 600 ° C to 1000 ° C. Generated gas.

【0020】脱硫されアンモニア、シアンが分解された
前記の流動層ガス化炉の発生ガスと、前記流動層酸化炉
の発生ガスは、流動層酸化炉で熱交換を行った圧縮空気
と共にコンバスターに供給されて、前記の流動層ガス化
炉の発生ガスは完全燃焼した上、ガスタービンを駆動す
ると共にスチームタービンを駆動する蒸気を発生して、
発電が行われる。
The gas generated in the fluidized bed gasification furnace, which is desulfurized and decomposed into ammonia and cyan, and the gas generated in the fluidized bed oxidation furnace, are converted into a combustor together with compressed air which has been heat-exchanged in the fluidized bed oxidation furnace. When supplied, the generated gas of the fluidized bed gasification furnace is completely combusted, and also generates steam that drives the gas turbine and the steam turbine,
Power is generated.

【0021】ガスタービンに供給されるガスは、以上の
通り脱硫され、含有するアンモニア、シアンが分解さ
れ、かつ、コンバスターで完全燃焼を行っているため
に、十分浄化された状態となっていて、ガスタービン及
びその後流側の機器等への悪影響が防止され、また、系
外に排出されるガスも清浄化されている。
The gas supplied to the gas turbine is desulfurized as described above, the contained ammonia and cyanide are decomposed, and the gas is completely burned by the combustor, so that it is in a sufficiently purified state. The adverse effects on the gas turbine and the equipment on the downstream side are prevented, and the gas discharged to the outside of the system is also cleaned.

【0022】特に、本発明では、流動層酸化炉において
は、圧縮空気によって熱交換が行われ、これによって、
流動層ガス化炉の固形残渣と酸素含有ガスの温度を必要
な600℃〜1000℃に保持しているために、流動層
酸化炉には燃焼に必要とする酸素含有ガスを供給すれば
十分であり、同流動層酸化炉の燃焼ガスの発生量が減少
し、これに伴って、同流動層酸化炉及びこれに付設され
るセラミックスフィルタ、サイクロン等が小型化され
る。
In particular, in the present invention, in the fluidized bed oxidation furnace, heat exchange is performed by compressed air, whereby
Since the temperatures of the solid residue and the oxygen-containing gas in the fluidized bed gasification furnace are maintained at the required 600 ° C to 1000 ° C, it is sufficient to supply the oxygen-containing gas required for combustion to the fluidized bed oxidation furnace. Therefore, the amount of combustion gas generated in the fluidized bed oxidation furnace is reduced, and accordingly, the fluidized bed oxidation furnace and the ceramic filters, cyclones, and the like attached thereto are downsized.

【0023】また、流動層ガス化炉で熱交換を行って昇
温した圧縮空気は、コンバスターに供給されて燃焼を行
うことによって、その熱が回収され、熱効率が向上す
る。
Further, the compressed air, which has been heated in the fluidized bed gasification furnace to raise its temperature, is supplied to the combustor and burned, whereby the heat is recovered and the thermal efficiency is improved.

【0024】[0024]

【実施例】本発明一実施例を、図1によって説明する。
本実施例は、図2に示す従来の石炭を用いる発電方法に
おいて、コンプレッサー8からコンバスター7とアンモ
ニア分解塔6へ供給される圧縮空気107dを、流動層
酸化炉19内に設置された熱交換器28内を流すように
し、熱交換器28を出た圧縮空気のうちの一部107e
がアンモニア分解塔6へ供給され、残部107cがコン
バスター7へ供給されるようにした。この圧縮空気10
7dの流量は、熱交換器28の入口側と出口側の圧縮空
気の流路間に設けられた流調弁29によって制御され、
同流調弁29の開度により、熱交換28を通過させずに
圧縮空気をショートパスしてアンモニア分解塔6へ供給
する圧縮空気107eとコンバスター7へ供給する圧縮
空気107cとする量を調整できるようになっている。
熱交換器28の伝熱管は内部熱伝達率を向上させるため
にライフル管またはリボン管を使用する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIG.
In this embodiment, in the conventional power generation method using coal shown in FIG. 2, compressed air 107d supplied from the compressor 8 to the combustor 7 and the ammonia decomposition tower 6 is heat-exchanged in a fluidized bed oxidation furnace 19. Part of the compressed air leaving the heat exchanger 28 107e
Was supplied to the ammonia decomposition tower 6, and the balance 107c was supplied to the combustor 7. This compressed air 10
The flow rate of 7d is controlled by a flow control valve 29 provided between the inlet side and the outlet side of the compressed air in the heat exchanger 28,
The amount of compressed air 107e to be supplied to the ammonia decomposition tower 6 and compressed air 107c to be supplied to the combustor 7 by short-passing the compressed air without passing through the heat exchange 28 is adjusted by adjusting the opening degree of the same flow regulating valve 29. You can do it.
The heat transfer tube of the heat exchanger 28 uses a rifle tube or a ribbon tube to improve the internal heat transfer coefficient.

【0025】本実施例の他の部分の機器等の構成と作
用、効果等は、前記図2に示す発電方法と異なるところ
がないので、図1において対応する機器等については図
2におけると同一の符号を付して、その説明を省略す
る。
Since the configuration, operation, effects, etc. of the other parts of the device of this embodiment are the same as those of the power generation method shown in FIG. 2, the corresponding devices in FIG. 1 are the same as those in FIG. The reference numerals are given and the description thereof is omitted.

【0026】本実施例においては、流動層酸化炉19に
おいては、圧縮空気107dが供給される熱交換器28
で熱交換が行われて、同炉19内へ供給される加圧流動
層ガス化炉1の石炭チャー粒子112、脱硫炉3から供
給される脱硫剤120、サイクロン4aとセラミックフ
ィルタ5aから供給されるダスト116,117及び圧
縮空気107aの温度は600℃〜1000℃の範囲に
温度が調整された状態で、流動層27内で未燃分の燃焼
が行われると共にCaSのCaSO4 への酸化が行われ
る。
In the present embodiment, in the fluidized bed oxidation furnace 19, the heat exchanger 28 to which compressed air 107d is supplied.
Is heat-exchanged, and the coal char particles 112 of the pressurized fluidized bed gasification furnace 1 supplied into the furnace 19, the desulfurization agent 120 supplied from the desulfurization furnace 3, the cyclone 4a and the ceramic filter 5a are supplied. With the temperature of the dusts 116 and 117 and the compressed air 107a adjusted in the range of 600 ° C. to 1000 ° C., unburned components are burned in the fluidized bed 27 and CaS is oxidized to CaSO 4 . Done.

【0027】流動層酸化炉19で発生した燃焼ガスは、
サイクロン4b、セラミックスフィルター5bで浄化さ
れてコンバスター7へ供給されるが、前記のように流動
層酸化炉19では、圧縮空気107dが供給される熱交
換器によって、炉内温度が必要とする600℃〜100
0℃の範囲に調整されているために、流動層酸化炉19
に供給される圧縮空気107aの量は、同炉19におけ
る未燃分の燃焼とCaSのCaSO4 への酸化のために
必要とする量で十分である。従って、同炉19で発生す
る燃焼ガス115の量が減少し、同炉19及びその後流
側のサイクロン4b、セラミックスフィルター5bを小
型にすることができる。
The combustion gas generated in the fluidized bed oxidation furnace 19 is
It is purified by the cyclone 4b and the ceramics filter 5b and supplied to the combustor 7. As described above, in the fluidized bed oxidation furnace 19, the temperature inside the furnace is required to be 600 due to the heat exchanger to which the compressed air 107d is supplied. ℃ ~ 100
Since it is adjusted to the range of 0 ° C, the fluidized bed oxidation furnace 19
The amount of compressed air 107a supplied to the furnace is sufficient to burn the unburned components in the furnace 19 and oxidize CaS to CaSO 4 . Therefore, the amount of combustion gas 115 generated in the furnace 19 is reduced, and the furnace 19 and the cyclone 4b and the ceramics filter 5b on the downstream side can be downsized.

【0028】また、流動層酸化炉19の熱交換器28で
熱交換を行って昇温した圧縮空気107c,107e
は、それぞれコンバスター7及びアンモニア分解塔6へ
供給されて、熱が回収され、熱効率を高めることができ
る。
Further, the compressed air 107c and 107e heated by heat exchange in the heat exchanger 28 of the fluidized bed oxidation furnace 19 are heated.
Are supplied to the combustor 7 and the ammonia decomposing tower 6, respectively, and heat is recovered, so that the thermal efficiency can be improved.

【0029】図2に示す従来の発電方法では、流動層酸
化炉19を900℃で運用した場合は石炭1Kgあたりの
燃焼ガス115の発生量は12.6Kgであった。それに
対して、本実施例におけるように、熱交換器28を設置
し、圧縮空気107dを熱交換器入口温度400℃から
出口温度600℃まで熱交換させると、燃焼ガス115
の発生量は8.6Kgまで減少させることができた。した
がってセラミックスフィルター5bの大きさを68%ま
で小型化することが可能になった。
In the conventional power generation method shown in FIG. 2, when the fluidized bed oxidation furnace 19 was operated at 900 ° C., the amount of combustion gas 115 generated per 1 kg of coal was 12.6 kg. On the other hand, as in the present embodiment, when the heat exchanger 28 is installed and the compressed air 107d is heat-exchanged from the heat exchanger inlet temperature 400 ° C. to the outlet temperature 600 ° C., the combustion gas 115
It was possible to reduce the generation amount of urine to 8.6 kg. Therefore, the size of the ceramics filter 5b can be reduced to 68%.

【0030】また、それに付随して次のような効果も生
じた。従来は部分負荷にする場合は、流動層酸化炉19
のガス流速を負荷に応じて低下させていた。しかし、本
実施例では、100%負荷時の圧縮空気107dの石炭
に対する流量割合に対して、部分負荷においては圧縮空
気107dの石炭に対する流量割合を減少させることに
より、圧縮空気107aの石炭に対する流量割合を増加
し、流動層酸化炉19のガス流速の低下を従来より小さ
な割合に抑えることが可能になった。これにより部分負
荷においても、流動層酸化炉19の安定な運転が可能に
なった。
In addition, the following effects were also produced. Conventionally, in case of partial load, fluidized bed oxidation furnace 19
The gas flow rate of No. 1 was decreased according to the load. However, in the present embodiment, the flow rate ratio of the compressed air 107a to the coal is reduced by reducing the flow rate ratio of the compressed air 107d to the coal at the partial load as compared with the flow rate ratio of the compressed air 107d to the coal at 100% load. It has become possible to suppress the decrease in the gas flow velocity of the fluidized bed oxidation furnace 19 to a smaller rate than in the past. This enables stable operation of the fluidized bed oxidation furnace 19 even under partial load.

【0031】[0031]

【発明の効果】本発明は、以上説明したように、粗悪燃
料をガス化する流動層ガス化炉で生成された固形残渣分
が移送される流動層酸化炉において、圧縮空気との熱交
換によってその温度を600℃〜1000℃に調整する
ことによって、同流動層酸化炉での発生ガスの量を減少
させ、これに伴って、同流動層酸化炉及びこれに付設さ
れるサイクロン、セラミックスフィルター等を小型化す
ることができる。
INDUSTRIAL APPLICABILITY As described above, according to the present invention, the solid residue produced in the fluidized bed gasification furnace for gasifying poor fuel is transferred to the fluidized bed oxidation furnace by heat exchange with compressed air. By adjusting the temperature to 600 ° C. to 1000 ° C., the amount of gas generated in the fluidized bed oxidation furnace is reduced, and along with this, the fluidized bed oxidation furnace and cyclones attached to the same, ceramic filters, etc. Can be miniaturized.

【0032】また、前記流動層酸化炉で熱交換を行って
昇温した圧縮空気は前記流動層ガス化炉の発生ガスと流
動層酸化炉の燃焼ガスと共にコンバスターへ供給され、
その熱が回収され熱効率を高めることができる。
The compressed air, which has been heated by performing heat exchange in the fluidized bed oxidation furnace, is supplied to the combustor together with the gas generated in the fluidized bed gasification furnace and the combustion gas in the fluidized bed oxidation furnace.
The heat is recovered and the thermal efficiency can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の系統図である。FIG. 1 is a system diagram of an embodiment of the present invention.

【図2】粗悪燃料として石炭を用いる従来の発電方法の
一例の系統図である。
FIG. 2 is a system diagram of an example of a conventional power generation method using coal as poor fuel.

【符号の説明】[Explanation of symbols]

1 加圧流動層ガス化炉 2 ポンプ 3 脱硫炉 4,4a,4b サイクロン 5,5a,5b セラミックスフィルター 6 アンモニア分解塔 7 コンバスター 8 コンプレッサー 9 ガスタービン 10 排熱回収ボイラ 11 スチームタービン 12 コンデンサー 13 加圧ポンプ 14 煙突 15a,15b,15c,15d,16a,16b,1
6c,16d ホッパー 17,18 発電機 19 流動層酸化炉 20 分別器 21 熱交換器 22 流動層 23 粉砕器 24 熱交換器 25 ガス化炉 26 脱硫装置 27 流動層 28 熱交換器 29 流調弁 101 燃料 102 脱硫剤 103 水 105 排出灰 106 微粉脱硫剤 106a,106b 排出灰 106c 粗粉脱硫剤 107,107a,107b,107c,107d,1
07e 加圧空気 108,108a,108b 発生ガス 109,109a,109b 燃焼ガス 111 水蒸気 112 石炭チャー 115,115a 流動層酸化炉燃焼ガス 116,117 ダスト 120 脱硫剤
1 Pressurized fluidized bed gasifier 2 Pump 3 Desulfurization furnace 4, 4a, 4b Cyclone 5, 5a, 5b Ceramics filter 6 Ammonia decomposition tower 7 Combustor 8 Compressor 9 Gas turbine 10 Exhaust heat recovery boiler 11 Steam turbine 12 Condenser 13 Addition Pressure pump 14 Chimneys 15a, 15b, 15c, 15d, 16a, 16b, 1
6c, 16d Hopper 17, 18 Generator 19 Fluidized bed oxidation furnace 20 Separator 21 Heat exchanger 22 Fluidized bed 23 Crusher 24 Heat exchanger 25 Gasification furnace 26 Desulfurization device 27 Fluidized bed 28 Heat exchanger 29 Flow control valve 101 Fuel 102 Desulfurizing agent 103 Water 105 Exhaust ash 106 Fine powder desulfurizing agent 106a, 106b Exhaust ash 106c Coarse powder desulfurizing agent 107, 107a, 107b, 107c, 107d, 1
07e Pressurized air 108,108a, 108b Generation gas 109,109a, 109b Combustion gas 111 Steam 112 Coal char 115,115a Fluidized bed oxidation furnace combustion gas 116,117 Dust 120 Desulfurizing agent

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中島 文也 東京都千代田区丸の内二丁目5番1号 三 菱重工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Fumiya Nakajima Inventor, Fumiya Nakajima 2-5-1, Marunouchi, Chiyoda-ku, Tokyo Sanryo Heavy Industries Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 流動層ガス化炉へ粗悪燃料を供給し、同
流動層ガス化炉で粗悪燃料中の炭素の40%以上をガス
に転換した後、前記流動層ガス化炉で発生したガスを石
灰石により脱硫し、その後ニッケルを含んだ触媒と接触
させて同発生ガス中のアンモニア、シアンを分解し、前
記流動層ガス化炉で生成された固形残渣分を酸素含有ガ
スが供給される流動層酸化炉に移送して、同流動層酸化
炉内において前記固形残渣分と酸素含有ガスとを圧縮空
気と熱交換させて600℃〜1000℃の範囲に温度調
整を行いながら前記固形残渣分を酸化してガスを発生
し、前記脱硫及びアンモニア、シアンの分解が行われた
前記流動層ガス化炉の発生ガスと前記流動層酸化炉の発
生ガスと流動層酸化炉で熱交換を行った前記圧縮空気と
をコンバスターにおいて燃焼して燃焼ガスとし、同燃焼
ガスでガスタービンを、同ガスタービンを出た前記燃焼
ガスによって発生した蒸気でスチームタービンをそれぞ
れ駆動し、前記ガスタービンと前記スチームタービンと
で発電機を回転して発電を行なうことを特徴とする粗悪
燃料を用いる発電方法。
1. A gas generated in the fluidized bed gasification furnace after supplying poor fuel to the fluidized bed gasification furnace and converting 40% or more of carbon in the bad fuel into gas in the fluidized bed gasification furnace. Is desulfurized with limestone, and then it is contacted with a catalyst containing nickel to decompose ammonia and cyan in the generated gas, and the solid residue produced in the fluidized bed gasification furnace is supplied with oxygen-containing gas. The solid residue is transferred to a bed oxidation furnace, and the solid residue and the oxygen-containing gas are heat-exchanged with compressed air in the fluidized bed oxidation furnace to adjust the temperature in the range of 600 ° C to 1000 ° C to remove the solid residue. Oxidation to generate gas, the desulfurization and decomposition of ammonia and cyanide, the gas generated in the fluidized bed gasification furnace, the gas generated in the fluidized bed oxidation furnace, and the heat exchange performed in the fluidized bed oxidation furnace Combustor with compressed air To generate combustion gas, drive the gas turbine with the combustion gas, drive the steam turbine with the steam generated by the combustion gas exiting the gas turbine, and rotate the generator with the gas turbine and the steam turbine. A power generation method using poor fuel, which is characterized by performing the power generation by
JP24915491A 1991-09-27 1991-09-27 Power generation employing poor quality fuel Withdrawn JPH0587315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24915491A JPH0587315A (en) 1991-09-27 1991-09-27 Power generation employing poor quality fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24915491A JPH0587315A (en) 1991-09-27 1991-09-27 Power generation employing poor quality fuel

Publications (1)

Publication Number Publication Date
JPH0587315A true JPH0587315A (en) 1993-04-06

Family

ID=17188711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24915491A Withdrawn JPH0587315A (en) 1991-09-27 1991-09-27 Power generation employing poor quality fuel

Country Status (1)

Country Link
JP (1) JPH0587315A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08510815A (en) * 1993-10-08 1996-11-12 エイ.アフルストロム コーポレイション Gas and steam combined cycle pressurized fluidized bed power plant and its establishment and operation method
US6247301B1 (en) 1995-12-11 2001-06-19 Abb Carbon Ab Gasifier and a power plant
JP2007091786A (en) * 2005-09-27 2007-04-12 Chubu Electric Power Co Inc Fluidized bed gasification apparatus and coal gasification hybrid power system
JP2008163257A (en) * 2006-12-28 2008-07-17 Sekitan Energy Center Fluidized-bed gasifier, method for operating the same, and coal gasification hybrid power generating system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08510815A (en) * 1993-10-08 1996-11-12 エイ.アフルストロム コーポレイション Gas and steam combined cycle pressurized fluidized bed power plant and its establishment and operation method
US6247301B1 (en) 1995-12-11 2001-06-19 Abb Carbon Ab Gasifier and a power plant
JP2007091786A (en) * 2005-09-27 2007-04-12 Chubu Electric Power Co Inc Fluidized bed gasification apparatus and coal gasification hybrid power system
JP4645953B2 (en) * 2005-09-27 2011-03-09 三菱重工業株式会社 Fluidized bed gasifier and coal gasification combined cycle system
JP2008163257A (en) * 2006-12-28 2008-07-17 Sekitan Energy Center Fluidized-bed gasifier, method for operating the same, and coal gasification hybrid power generating system

Similar Documents

Publication Publication Date Title
US4602573A (en) Integrated process for gasifying and combusting a carbonaceous fuel
US6997118B2 (en) Pulse gasification and hot gas cleanup apparatus and process
JP3924150B2 (en) Gas combustion treatment method and apparatus
AU548115B2 (en) Combustion method and apparatus therefor
EP0650018A2 (en) Desulfurization of carbonaceous fuels
US5224338A (en) Gasifying combustion method and gasifying power generation method
US5163374A (en) Combustion process
JPH0587315A (en) Power generation employing poor quality fuel
JPH0593513A (en) Burning equipment
JP4215921B2 (en) Circulating fluidized bed boiler system and operating method thereof
JP2006010227A (en) Coal gasification combined power generating installation
JPS62209193A (en) Method for simultaneously performing production of coke and power generation
JP2726741B2 (en) Power generation method using bad fuel
JP4519338B2 (en) Method for treating ammonia-containing gas and coal gasification combined power plant
JP2986901B2 (en) Working fluid supply method and combustion equipment
JP3233628B2 (en) Gasification power plant
JP2007091787A (en) Method for operating fluidized bed gasification apparatus and fluidized bed gasification apparatus, coal gasification hybrid power system
JP2755835B2 (en) Gasification combustion method
JP2686356B2 (en) Gasification combustion method
JP2007091785A (en) Fluidized bed gasification apparatus and coal gasification hybrid power system
WO1992019912A1 (en) Method for operating a combustion process
KR20200039499A (en) Integrated gasification process for syngas power generation with checmical looping combustion method
JPS599004B2 (en) Fluidized bed combustion control method
JPS5913643B2 (en) Fluidized bed combustion control method
JPH05222951A (en) Coal burning combined cycle power generation system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981203