JP2007091787A - Method for operating fluidized bed gasification apparatus and fluidized bed gasification apparatus, coal gasification hybrid power system - Google Patents

Method for operating fluidized bed gasification apparatus and fluidized bed gasification apparatus, coal gasification hybrid power system Download PDF

Info

Publication number
JP2007091787A
JP2007091787A JP2005279567A JP2005279567A JP2007091787A JP 2007091787 A JP2007091787 A JP 2007091787A JP 2005279567 A JP2005279567 A JP 2005279567A JP 2005279567 A JP2005279567 A JP 2005279567A JP 2007091787 A JP2007091787 A JP 2007091787A
Authority
JP
Japan
Prior art keywords
furnace
gasification
gas
fluidized bed
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005279567A
Other languages
Japanese (ja)
Inventor
Katsuya Ito
克哉 伊藤
Yoshihiko Tsuchiyama
佳彦 土山
Mototsugu Yoshikawa
基嗣 吉川
Keiji Usami
圭二 宇佐美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Chubu Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Electric Power Development Co Ltd
Chubu Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd, Chubu Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Electric Power Development Co Ltd
Priority to JP2005279567A priority Critical patent/JP2007091787A/en
Publication of JP2007091787A publication Critical patent/JP2007091787A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluidized bed gasification apparatus in which a gasification furnace and a desulfurization equipment can stably be operated to prevent the formation of coagulated particle, and to provide a coal gasification hybrid power system. <P>SOLUTION: The method for operating the fluidized bed gasification apparatus 6 having an oxidation furnace 4 to which the gasification residues discharged from the gasification furnace 2, a desulfurizing agent discharged from a desulfurization equipment 3, and a gas containing oxygen are supplied to burn the gasification residues with the gas containing oxygen and simultaneously react calcium sulfide in the desulfurizing agent with oxygen into calcium sulfate, is characterized by supplying coal to the oxidation furnace 4 so that an oxidation concentration in a gas at the exit of the oxidation furnace 4 is maintained at a prescribed value during the operation. <P>COPYRIGHT: (C)2007,JPO&amp;INPIT

Description

本発明は、火力発電設備や燃料ガス製造設備等において石炭のガス化に使用される流動床ガス化装置およびこれを備えた石炭ガス化複合発電システムに関するものである。   TECHNICAL FIELD The present invention relates to a fluidized bed gasifier used for coal gasification in a thermal power generation facility, a fuel gas production facility, and the like, and a coal gasification combined power generation system including the same.

従来から石炭火力プラントの発電効率向上のために、石炭ガス化複合発電システムの開発が進められており、たとえば、そのシステムの一例として、ガス化炉、脱硫炉、酸化炉、脱塵装置、ガスタービン、蒸気タービン、脱硝装置などから構成されたシステムが知られている(たとえば、特許文献1参照)。
特開2000−227205号公報(図2)
In order to improve the power generation efficiency of coal-fired power plants, coal gasification combined power generation systems have been developed. For example, gasification furnaces, desulfurization furnaces, oxidation furnaces, dedusting equipment, gas A system including a turbine, a steam turbine, a denitration device, and the like is known (for example, see Patent Document 1).
JP 2000-227205 A (FIG. 2)

しかしながら、このような従来の石炭ガス化複合発電システムでは、起動時に、酸化炉負荷100%に相当する石炭が酸化炉に投入されて酸化炉が起動され、その後、ガス化炉が起動され、このガス化炉内のチャーやサイクロン灰が酸化炉に投入されて、酸化炉の燃料が石炭からチャー等に切り替えられると、酸化炉内への石炭の投入が停止されるようになっている。
酸化炉内への石炭の投入が停止されると、酸化炉へのチャー量やチャーの組成に変化が生じた場合(すなわち、カーボン量が多くなったり少なくなったりした場合)に、この変化に対応して酸化炉内の燃焼ガス(ガス)の酸素濃度(酸素量)が変化するようになり、ガス化炉に一定の酸素濃度を有する燃焼ガスが供給されず、ガス化炉の層温度や生成ガス発熱量が変動し、ガス化炉内で凝集粒子(アグロメレーション粒子)が形成されるようになる。
ガス化炉内や、石炭、流動床を形成するためのガス、石炭を燃焼させる酸素を含む燃焼ガス等を供給する配管内等にこのような凝集粒子が形成されると、それらの供給や装置内での物質流動がうまくいかなくなり、適正な温度調節や流動床形成、燃料の燃焼等が困難になってしまう。
However, in such a conventional coal gasification combined power generation system, at the time of start-up, coal corresponding to an oxidation furnace load of 100% is charged into the oxidation furnace to start the oxidation furnace, and then the gasification furnace is started. When char or cyclone ash in the gasification furnace is input to the oxidation furnace and the fuel in the oxidation furnace is switched from coal to char or the like, the input of coal into the oxidation furnace is stopped.
When the input of coal into the oxidation furnace is stopped, this change occurs when there is a change in the amount of char or char composition in the oxidation furnace (that is, when the amount of carbon increases or decreases). Correspondingly, the oxygen concentration (oxygen amount) of the combustion gas (gas) in the oxidation furnace changes, the combustion gas having a constant oxygen concentration is not supplied to the gasification furnace, the layer temperature of the gasification furnace, The amount of generated gas heat fluctuates, and aggregated particles (agglomerated particles) are formed in the gasification furnace.
When such agglomerated particles are formed in a gasification furnace, in a pipe for supplying coal, a gas for forming a fluidized bed, a combustion gas containing oxygen for burning coal, etc. As a result, the material flow in the inside becomes unsuccessful, and proper temperature control, fluidized bed formation, fuel combustion, etc. become difficult.

本発明は、上記の事情に鑑みてなされたもので、酸化炉およびガス化炉を安定して運転させることができて、凝集粒子の発生を防止することのできる流動床ガス化装置および石炭ガス化複合発電システムを提供することを目的とする。   The present invention has been made in view of the above circumstances, and a fluidized bed gasifier and coal gas capable of stably operating an oxidation furnace and a gasification furnace and preventing the generation of agglomerated particles. The purpose is to provide a combined power generation system.

本発明は、上記課題を解決するため、以下の手段を採用した。
請求項1に記載の流動床ガス化装置の運転方法は、固体燃料と酸素を含むガスが供給され、前記固体燃料をガス化し燃料ガスを発生させるガス化炉と、前記ガス化炉で発生した燃料ガスおよび炭酸カルシウムを含有する脱硫剤が供給され、燃料ガスと脱硫剤中の炭酸カルシウムの接触反応により燃料ガス中に含まれる硫化水素を硫化カルシウムとして除去する脱硫炉と、前記ガス化炉から排出されたガス化残渣、前記脱硫炉から排出された脱硫剤、および酸素を含むガスとが供給され、酸素を含むガスによりガス化残渣を燃焼させるとともに脱硫剤中の硫化カルシウムを酸素との反応により硫酸カルシウムに転換させる酸化炉と、を具備する流動床ガス化装置の運転方法であって、運転中、前記酸化炉の出口におけるガス中の酸素濃度が所定値(約4%)を維持するように、前記酸化炉に石炭を供給することを特徴とする。
このような流動床ガス化装置の運転方法によれば、運転中、酸化炉の出口における酸素濃度が所定値に保たれるように、酸化炉に石炭が投入されるようになっていて、酸化炉の燃焼ガスの酸素量(組成)が安定化するとともに、酸化炉の下流側に位置するガス化炉に酸素濃度が所定値(約4%)に保たれたガスが供給されるようになり、ガス化炉の運転状態(層温度、生成ガス発熱量)が安定化するとともに、凝集粒子の発生が抑制されることとなる。
The present invention employs the following means in order to solve the above problems.
The fluidized bed gasifier operating method according to claim 1, wherein a gas containing solid fuel and oxygen is supplied, a gasification furnace gasifying the solid fuel to generate a fuel gas, and generated in the gasifier. A desulfurization furnace that is supplied with a desulfurization agent containing fuel gas and calcium carbonate and removes hydrogen sulfide contained in the fuel gas as calcium sulfide by a catalytic reaction between the fuel gas and calcium carbonate in the desulfurization agent; and from the gasification furnace The discharged gasification residue, the desulfurization agent discharged from the desulfurization furnace, and the gas containing oxygen are supplied, and the gasification residue is burned by the gas containing oxygen and the calcium sulfide in the desulfurization agent reacts with oxygen. And an oxidation furnace for converting to calcium sulfate by a fluidized bed gasifier, wherein the oxygen concentration in the gas at the outlet of the oxidation furnace is predetermined during operation. To maintain (about 4%), and supplying coal to the oxidizing furnace.
According to such an operation method of the fluidized bed gasifier, during operation, coal is introduced into the oxidation furnace so that the oxygen concentration at the outlet of the oxidation furnace is maintained at a predetermined value. The oxygen amount (composition) of the combustion gas in the furnace is stabilized, and a gas whose oxygen concentration is maintained at a predetermined value (about 4%) is supplied to the gasification furnace located downstream of the oxidation furnace. In addition, the operation state (layer temperature, generated gas heat generation amount) of the gasifier is stabilized, and the generation of aggregated particles is suppressed.

請求項2に記載の流動床ガス化装置は、固体燃料と酸素を含むガスが供給され、前記固体燃料をガス化し燃料ガスを発生させるガス化炉と、前記ガス化炉で発生した燃料ガスおよび炭酸カルシウムを含有する脱硫剤が供給され、燃料ガスと脱硫剤中の炭酸カルシウムの接触反応により燃料ガス中に含まれる硫化水素を硫化カルシウムとして除去する脱硫炉と、前記ガス化炉から排出されたガス化残渣、前記脱硫炉から排出された脱硫剤、および酸素を含むガスとが供給され、酸素を含むガスによりガス化残渣を燃焼させるとともに脱硫剤中の硫化カルシウムを酸素との反応により硫酸カルシウムに転換させる酸化炉と、を具備する流動床ガス化装置であって、前記酸化炉の出口に、ガス中の酸素濃度を測定する酸素濃度測定手段が設けられているとともに、前記酸素濃度測定手段で測定された酸素濃度に基づいて、運転中、前記酸化炉に石炭が供給されるように構成されていることを特徴とする。
このような流動床ガス化装置によれば、運転中、酸化炉の出口における酸素濃度が所定値に保たれるように、酸化炉に石炭が投入されるようになっていて、酸化炉の燃焼ガスの酸素量(組成)が安定化するとともに、酸化炉の下流側に位置するガス化炉に酸素濃度が所定値に保たれたガスが供給されるようになり、ガス化炉の運転状態(層温度、生成ガス発熱量)が安定化するとともに、凝集粒子の発生が抑制されることとなる。
The fluidized bed gasifier according to claim 2 is supplied with a gas containing solid fuel and oxygen, gasifies the solid fuel to generate fuel gas, fuel gas generated in the gasifier, and A desulfurization agent containing calcium carbonate was supplied, and the desulfurization furnace for removing hydrogen sulfide contained in the fuel gas as calcium sulfide by the catalytic reaction between the fuel gas and calcium carbonate in the desulfurization agent was discharged from the gasification furnace. A gasification residue, a desulfurization agent discharged from the desulfurization furnace, and a gas containing oxygen are supplied, and the gasification residue is burned by the gas containing oxygen, and calcium sulfide in the desulfurization agent is reacted with oxygen to produce calcium sulfate. A fluidized bed gasifier having an oxygen concentration measuring means for measuring the oxygen concentration in the gas at the outlet of the oxidation furnace. Rutotomoni, based on the measured oxygen concentration in said oxygen concentration measuring means, in operation, coal to the oxidation furnace is characterized in that it is configured to be supplied.
According to such a fluidized bed gasifier, during operation, coal is introduced into the oxidation furnace so that the oxygen concentration at the outlet of the oxidation furnace is maintained at a predetermined value, and combustion in the oxidation furnace As the oxygen amount (composition) of the gas stabilizes, a gas whose oxygen concentration is maintained at a predetermined value is supplied to the gasification furnace located downstream of the oxidation furnace, and the operation state of the gasification furnace ( And the generation of aggregated particles is suppressed.

請求項3に記載の石炭ガス化複合発電システムは、請求項2に記載の流動床ガス化装置を具備してなることを特徴とする。
このような石炭ガス化複合発電システムによれば、凝集粒子の発生を防止することのできる流動床ガス化装置を具備しているので、石炭ガス化複合発電システムが常に良好な状態で運転され、システムの稼働率が向上するとともに、運転コストの低減が図られることとなる。
A combined coal gasification combined power generation system according to a third aspect includes the fluidized bed gasification apparatus according to the second aspect.
According to such a coal gasification combined power generation system, since it has a fluidized bed gasification device that can prevent the generation of agglomerated particles, the coal gasification combined power generation system is always operated in a good state, The operating rate of the system is improved and the operating cost is reduced.

本発明によれば、運転中に、酸化炉の出口における酸素濃度が所定値に保たれるよう、酸化炉に石炭が投入されるようになっているので、酸化炉の燃焼ガスの酸素量(組成)を安定化させることができるとともに、ガス化炉の運転状態(層温度、生成ガス発熱量)を安定化させることができて、凝集粒子の発生を抑制することができる。
また、凝集粒子の発生が抑制されることにより、温度調節や流動床形成、燃料の燃焼等を良好な状態に維持することができる、
さらに、生成した凝集粒子を除去するために、装置を長時間停止する必要がなくなり、装置の稼働率を向上させることができる。
According to the present invention, during operation, coal is introduced into the oxidation furnace so that the oxygen concentration at the outlet of the oxidation furnace is maintained at a predetermined value. (Composition) can be stabilized, and the operating state (layer temperature, generated gas calorific value) of the gasifier can be stabilized, and the generation of aggregated particles can be suppressed.
Further, by suppressing the generation of aggregated particles, temperature control, fluidized bed formation, fuel combustion, etc. can be maintained in a good state.
Furthermore, it is not necessary to stop the apparatus for a long time in order to remove the generated aggregated particles, and the operating rate of the apparatus can be improved.

以下、本発明による流動床ガス化装置およびこれを備えた石炭ガス化複合発電システムの一実施形態について、図面を参照しながら説明する。
図1に示すように、本実施形態に係る石炭ガス化複合発電システム1は、ガス化炉(「部分ガス化炉」とも呼ばれる)2、脱硫炉3、および酸化炉4からなる流動床ガス化装置6と、生成ガス冷却器7と、第1のサイクロン8と、精密脱塵装置9と、空気圧縮機10と、ガスタービン燃焼器11と、ガスタービン12と、ガスタービン付き発電機12aと、排熱回収ボイラ13と、煙突14と、復水器15と、蒸気タービン16と、蒸気タービン付き発電機16aと、第2のサイクロン17とを主たる要素として構成されたものである。
Hereinafter, an embodiment of a fluidized bed gasifier according to the present invention and a coal gasification combined power generation system including the same will be described with reference to the drawings.
As shown in FIG. 1, the combined coal gasification combined cycle system 1 according to this embodiment includes a fluidized bed gasification composed of a gasification furnace (also referred to as “partial gasification furnace”) 2, a desulfurization furnace 3, and an oxidation furnace 4. A device 6, a product gas cooler 7, a first cyclone 8, a precision dust removal device 9, an air compressor 10, a gas turbine combustor 11, a gas turbine 12, and a generator 12 a with a gas turbine, The exhaust heat recovery boiler 13, the chimney 14, the condenser 15, the steam turbine 16, the steam turbine-equipped generator 16 a, and the second cyclone 17 are configured as main elements.

まず、本実施形態に含まれる主要な構成要素について概説する。
ガス化炉2は、石炭を石炭ガス化ガス(以下、「燃料ガス」という)に転換するためのものであって、このガス化炉2では、石炭と空気および酸化炉4からの燃焼ガスが供給され、石炭のガス化により、COやCHおよびHを可燃成分とする燃料ガスとチャーが生成される。なお、チャーとは石炭をガス化した際に残存する炭素質多孔材(未燃炭素および灰分を含む)のことである。
脱硫炉3は、燃料ガス中の硫黄分を石灰石中にCaSとして固定・脱硫するための炉であって、この脱硫炉3では、石灰石を用いて、ガス化炉2で生成した燃料ガス中に含まれるHSの脱硫が行われる。次式に高温乾式石灰石脱硫の反応式を示す。
1)CaCO→CaO+CO(カルシネーション反応)
2)CaO+HS→CaS+H
また、CaSはそのまま排出すると大気中では吸湿しHSを発生するため、酸化炉4で処理される。
First, the main components included in this embodiment will be outlined.
The gasification furnace 2 is for converting coal into coal gasification gas (hereinafter referred to as “fuel gas”). In the gasification furnace 2, the combustion gas from the coal and air and the oxidation furnace 4 is used. Fuel gas and char containing CO, CH 4, and H 2 as combustible components are generated by gasification of coal. Char is a porous carbonaceous material (including unburned carbon and ash) remaining when coal is gasified.
The desulfurization furnace 3 is a furnace for fixing and desulfurizing sulfur in the fuel gas as CaS in the limestone. In the desulfurization furnace 3, the limestone is used for the fuel gas generated in the gasification furnace 2. The contained H 2 S is desulfurized. The following equation shows the reaction formula for high temperature dry limestone desulfurization.
1) CaCO 3 → CaO + CO 2 (calcination reaction)
2) CaO + H 2 S → CaS + H 2 O
Further, if CaS is discharged as it is, it absorbs moisture in the atmosphere and generates H 2 S, so that it is treated in the oxidation furnace 4.

酸化炉4はチャーを燃焼させるとともに、CaSを酸化させるものであって、酸化炉4では、ガス化炉2から供給されるチャーの燃焼および脱硫炉3から供給されるCaSの酸化(石膏化(CaCO化))が行われる。燃焼ガスはガス化炉2へ供給され、石炭灰および石膏は酸化炉4から排出される。
酸化炉4の出口側配管4aには、酸化炉4から第2のサイクロン17に供給されるガス(燃焼ガス)中の酸素濃度を測定する酸素濃度計(酸素濃度測定手段)18が設けられているとともに、この酸素濃度計18で測定されたデータは、制御器19に出力されるようになっている。
一方、酸化炉4の入口側配管4bには、制御器19からの信号によりその開度が調整される入口バルブ20が設けられている。この入口バルブ20は、酸素濃度計18で測定された酸素濃度が高いときにはその開度が開放されて石炭がより多く供給されるようにし、反対に酸素濃度が低いときにはその開度が絞られて石炭があまり供給されないようにして、酸素濃度が所定値(約4%)に保たれるよう(一定に保たれるよう)になっている。
酸化炉4へは、酸化炉負荷の20%〜40%に相当する石炭が投入されるようになっている。
The oxidation furnace 4 burns char and oxidizes CaS. In the oxidation furnace 4, combustion of char supplied from the gasification furnace 2 and oxidation of CaS supplied from the desulfurization furnace 3 (gypsumization ( CaCO 4 )) is performed. Combustion gas is supplied to the gasification furnace 2, and coal ash and gypsum are discharged from the oxidation furnace 4.
The outlet side pipe 4 a of the oxidation furnace 4 is provided with an oxygen concentration meter (oxygen concentration measuring means) 18 for measuring the oxygen concentration in the gas (combustion gas) supplied from the oxidation furnace 4 to the second cyclone 17. At the same time, the data measured by the oxygen concentration meter 18 is output to the controller 19.
On the other hand, the inlet side pipe 4 b of the oxidation furnace 4 is provided with an inlet valve 20 whose opening degree is adjusted by a signal from the controller 19. When the oxygen concentration measured by the oximeter 18 is high, the opening of the inlet valve 20 is opened so that more coal is supplied. Conversely, when the oxygen concentration is low, the opening is reduced. The oxygen concentration is kept at a predetermined value (about 4%) so that coal is not supplied much (so as to be kept constant).
Coal corresponding to 20% to 40% of the oxidation furnace load is input to the oxidation furnace 4.

次に、本実施形態に係る石炭ガス化複合発電システムの作用を説明する。
まず、ガス化炉2に石炭と酸化ガス(空気)を供給すると、ガス化炉2において、石炭が酸化ガス中の酸素と、酸化炉4からの燃焼ガスによりガス化される。これによって、石炭が燃料ガスとチャーとに転換される。生成したチャーは酸化炉4に送られる。次いで、燃料ガスは、脱硫炉3に送られる。脱硫炉3においては、石灰石が供給されて石灰石の流動床が形成され、燃料ガスは、その流動床の流動化ガスの役割を果たす。ここで、燃料ガス中の硫黄分(HS及びCOS)が石灰石中にCaSとして固定され脱硫が行われる。残存する脱硫剤であるCaSを含む石灰石は、酸化炉4に送られる。石灰石の抜き出し量は、図示しない脱硫剤移送装置により調整することができる。
Next, an operation of the coal gasification combined power generation system according to the present embodiment will be described.
First, when coal and oxidizing gas (air) are supplied to the gasification furnace 2, the coal is gasified with oxygen in the oxidation gas and combustion gas from the oxidation furnace 4 in the gasification furnace 2. As a result, coal is converted into fuel gas and char. The generated char is sent to the oxidation furnace 4. Next, the fuel gas is sent to the desulfurization furnace 3. In the desulfurization furnace 3, limestone is supplied to form a fluidized bed of limestone, and the fuel gas serves as a fluidized gas for the fluidized bed. Here, the sulfur content (H 2 S and COS) in the fuel gas is fixed as CaS in the limestone, and desulfurization is performed. The remaining limestone containing CaS, which is a desulfurizing agent, is sent to the oxidation furnace 4. The amount of limestone extracted can be adjusted by a desulfurization agent transfer device (not shown).

脱硫後の燃料ガスは、生成ガス冷却器7で冷却された後、第1のサイクロン8に送られる。第1のサイクロン8では、CaS及び残存するチャーが分離されて酸化炉4に送られる。酸化炉4では、主として石灰石(脱硫剤)により流動床が形成される。この流動床にはチャーと石灰石等が供給される。流動床は、炉底から供給される空気と水蒸気とによって流動化される。流動床内では、チャーは燃焼反応によって速やかにガスと灰分に転換されるのに対して、石灰石中のCaSはゆっくりとCaSOに転換されるので、流動床の流動化粒子は石灰石が主体となる。酸化炉4には熱交換器4cが設置されており、流動床の熱を吸収することにより、流動床の温度が適正な温度(850℃〜1050℃)に維持される。この温度範囲では、CaSをCaSOとする反応が生じるとともに、副反応で生じたSOをCaOと反応させてCaSOとする反応が進行し、しかも灰や脱硫剤が軟化することがない。 The desulfurized fuel gas is cooled by the product gas cooler 7 and then sent to the first cyclone 8. In the first cyclone 8, CaS and remaining char are separated and sent to the oxidation furnace 4. In the oxidation furnace 4, a fluidized bed is formed mainly by limestone (desulfurizing agent). Char and limestone are supplied to the fluidized bed. The fluidized bed is fluidized by air and water vapor supplied from the furnace bottom. The fluidized bed, whereas the char is converted to promptly gas and ash by the combustion reaction, since CaS in limestone is converted slowly to CaSO 4, fluidizing particles of the fluidized bed and the principal limestone Become. A heat exchanger 4c is installed in the oxidation furnace 4, and the temperature of the fluidized bed is maintained at an appropriate temperature (850 ° C. to 1050 ° C.) by absorbing the heat of the fluidized bed. In this temperature range, the reaction of converting CaS to CaSO 4 occurs, the reaction of SO 2 generated by the side reaction to react with CaO to generate CaSO 4 , and the ash and desulfurization agent do not soften.

酸化炉4から排出される燃焼ガスは、第2のサイクロン17を経てガス化炉2に送られる。第2のサイクロン17では、燃焼ガスから石膏及び灰分が除去される。一方、燃料ガスは、生成ガス冷却器7及び第1のサイクロン8を経て精密脱塵装置(「セラミックフィルタ」とも呼ばれる)9に送られ、この精密脱塵装置9で脱塵(除塵)される。そして、このガスは、ガスタービン12のガスタービン燃焼器11に送られる。ガスタービン燃焼器11は、空気圧縮機10からの空気で燃料ガスを燃焼させ、膨張側のタービンを回転させるとともにガスタービン付き発電機12aを回転させて発電を行う。タービンを回転させた後の排ガスは、排熱回収ボイラ13へ送られて排熱回収が行われた後、煙突14から大気中に放出される。   The combustion gas discharged from the oxidation furnace 4 is sent to the gasification furnace 2 through the second cyclone 17. In the second cyclone 17, gypsum and ash are removed from the combustion gas. On the other hand, the fuel gas passes through the product gas cooler 7 and the first cyclone 8 and is sent to a precision dust removing device (also called “ceramic filter”) 9, and dust is removed (dust removed) by the precision dust removing device 9. . This gas is then sent to the gas turbine combustor 11 of the gas turbine 12. The gas turbine combustor 11 generates power by burning fuel gas with air from the air compressor 10, rotating an expansion-side turbine and rotating a generator 12 a with a gas turbine. The exhaust gas after rotating the turbine is sent to the exhaust heat recovery boiler 13 for exhaust heat recovery, and then discharged from the chimney 14 into the atmosphere.

排熱回収ボイラ13では排熱回収により蒸気が発生する。排熱回収ボイラ13で発生した蒸気の一部は、図1において破線矢印で示すように、生成ガス冷却器7→酸化炉4の熱交換器4c→蒸気タービン16→復水器15→排熱回収ボイラ13の経路を循環するようになっている。また、蒸気が蒸気タービン16を通過する際には、上述したガスタービン12と同様、タービンを回転させるとともに蒸気タービン付き発電機16aを回転させて発電を行うようになっている。   In the exhaust heat recovery boiler 13, steam is generated by exhaust heat recovery. A part of the steam generated in the exhaust heat recovery boiler 13 is generated gas cooler 7 → heat exchanger 4c of the oxidation furnace 4 → steam turbine 16 → condenser 15 → exhaust heat, as indicated by broken line arrows in FIG. The route of the recovery boiler 13 is circulated. Further, when the steam passes through the steam turbine 16, as in the gas turbine 12, the turbine is rotated and the generator 16a with the steam turbine is rotated to generate power.

このように、本実施形態では、運転中に、酸化炉4の出口における酸素濃度が所定値に保たれるよう、酸化炉4に石炭が連続して投入されるようになっているので、酸化炉4の燃焼ガスの酸素量(組成)を安定化させることができるとともに、ガス化炉2の運転状態(層温度、生成ガス発熱量)を安定化させることができて、凝集粒子の発生を抑制することができる。
また、凝集粒子の発生が抑制されることにより、温度調節や流動床形成、燃料の燃焼等を良好な状態に維持することができる、
さらに、生成した凝集粒子を除去するために、装置を長時間停止する必要がなくなり、装置の稼働率を向上させることができる。
Thus, in the present embodiment, during operation, coal is continuously fed into the oxidation furnace 4 so that the oxygen concentration at the outlet of the oxidation furnace 4 is maintained at a predetermined value. The amount of oxygen (composition) of the combustion gas in the furnace 4 can be stabilized, and the operation state (layer temperature, generated gas heat generation) of the gasification furnace 2 can be stabilized, thereby generating aggregated particles. Can be suppressed.
Further, by suppressing the generation of aggregated particles, temperature control, fluidized bed formation, fuel combustion, etc. can be maintained in a good state.
Furthermore, it is not necessary to stop the apparatus for a long time in order to remove the generated aggregated particles, and the operating rate of the apparatus can be improved.

なお、本実施形態ではガス化炉4の出口に酸素濃度計18が設けられたものについて説明してきたが、本発明はこれに限定されるものではなく、この酸素濃度計18の代わりに(あるいは酸素濃度計18とともに)、出口側配管4aに、酸化炉4から第2のサイクロン17に供給される燃焼ガスの温度を測定するガス温度計(温度測定手段)を設けるようにすることもできる。
この場合には、燃焼ガスの温度が所定値(約4%)に保たれるよう(一定に保たれるよう)に、制御器19により入口バルブ20が調整されて、酸化炉4に石炭が投入されるようになっている。すなわち、燃焼ガスの温度が所定値よりも高い場合には、入口バルブ20が絞られて投入される石炭の量が減少させられ、逆に燃焼ガスの温度が所定値よりも低い場合には、入口バルブ20が開放されて投入される石炭の量が増加させられて、燃焼ガスの温度が一定に保たれるようになっている。
このように構成しても、酸素濃度計18を設けた場合と同じ作用効果を得ることができる。
In the present embodiment, the oxygen concentration meter 18 provided at the outlet of the gasification furnace 4 has been described. However, the present invention is not limited to this, and instead of the oxygen concentration meter 18 (or A gas thermometer (temperature measuring means) for measuring the temperature of the combustion gas supplied from the oxidation furnace 4 to the second cyclone 17 may be provided in the outlet side pipe 4a together with the oxygen concentration meter 18.
In this case, the inlet valve 20 is adjusted by the controller 19 so that the temperature of the combustion gas is kept at a predetermined value (about 4%) (so as to be kept constant), and coal is supplied to the oxidation furnace 4. It comes to be thrown in. That is, when the temperature of the combustion gas is higher than a predetermined value, the amount of coal to be input is reduced by restricting the inlet valve 20, and conversely, when the temperature of the combustion gas is lower than the predetermined value, The inlet valve 20 is opened to increase the amount of coal that is input, so that the temperature of the combustion gas is kept constant.
Even if comprised in this way, the same effect as the case where the oxygen concentration meter 18 is provided can be obtained.

本発明による流動床ガス化装置の一実施形態を具備した石炭ガス化複合発電システムの概略構成図である。It is a schematic block diagram of the coal gasification combined cycle system provided with one embodiment of the fluidized bed gasifier by the present invention.

符号の説明Explanation of symbols

1 石炭ガス化複合発電システム
2 ガス化炉
3 脱硫炉
4 酸化炉
6 流動床ガス化装置
18 酸素濃度計(酸素濃度測定手段)
DESCRIPTION OF SYMBOLS 1 Coal gasification combined cycle system 2 Gasification furnace 3 Desulfurization furnace 4 Oxidation furnace 6 Fluidized bed gasifier 18 Oxygen meter (oxygen concentration measuring means)

Claims (3)

固体燃料と酸素を含むガスが供給され、前記固体燃料をガス化し燃料ガスを発生させるガス化炉と、
前記ガス化炉で発生した燃料ガスおよび炭酸カルシウムを含有する脱硫剤が供給され、燃料ガスと脱硫剤中の炭酸カルシウムの接触反応により燃料ガス中に含まれる硫化水素を硫化カルシウムとして除去する脱硫炉と、
前記ガス化炉から排出されたガス化残渣、前記脱硫炉から排出された脱硫剤、および酸素を含むガスとが供給され、酸素を含むガスによりガス化残渣を燃焼させるとともに脱硫剤中の硫化カルシウムを酸素との反応により硫酸カルシウムに転換させる酸化炉と、を具備する流動床ガス化装置の運転方法であって、
運転中、前記酸化炉の出口におけるガス中の酸素濃度が所定値を維持するように、前記酸化炉に石炭を供給することを特徴とする流動床ガス化装置の運転方法。
A gasification furnace that is supplied with a gas containing solid fuel and oxygen, gasifies the solid fuel, and generates fuel gas;
A desulfurization furnace which is supplied with a desulfurization agent containing fuel gas and calcium carbonate generated in the gasification furnace and removes hydrogen sulfide contained in the fuel gas as calcium sulfide by a contact reaction between the fuel gas and calcium carbonate in the desulfurization agent. When,
A gasification residue discharged from the gasification furnace, a desulfurization agent discharged from the desulfurization furnace, and a gas containing oxygen are supplied, and the gasification residue is combusted by the gas containing oxygen and calcium sulfide in the desulfurization agent An oxidation furnace that converts calcium sulfate to calcium sulfate by reaction with oxygen, and a method for operating a fluidized bed gasifier,
A method for operating a fluidized bed gasifier, wherein coal is supplied to the oxidation furnace so that the oxygen concentration in the gas at the outlet of the oxidation furnace maintains a predetermined value during operation.
固体燃料と酸素を含むガスが供給され、前記固体燃料をガス化し燃料ガスを発生させるガス化炉と、
前記ガス化炉で発生した燃料ガスおよび炭酸カルシウムを含有する脱硫剤が供給され、燃料ガスと脱硫剤中の炭酸カルシウムの接触反応により燃料ガス中に含まれる硫化水素を硫化カルシウムとして除去する脱硫炉と、
前記ガス化炉から排出されたガス化残渣、前記脱硫炉から排出された脱硫剤、および酸素を含むガスとが供給され、酸素を含むガスによりガス化残渣を燃焼させるとともに脱硫剤中の硫化カルシウムを酸素との反応により硫酸カルシウムに転換させる酸化炉と、を具備する流動床ガス化装置であって、
前記酸化炉の出口に、ガス中の酸素濃度を測定する酸素濃度測定手段が設けられているとともに、前記酸素濃度測定手段で測定された酸素濃度に基づいて、運転中、前記酸化炉に石炭が供給されるように構成されていることを特徴とする流動床ガス化装置。
A gasification furnace that is supplied with a gas containing solid fuel and oxygen, gasifies the solid fuel, and generates fuel gas;
A desulfurization furnace which is supplied with a desulfurization agent containing fuel gas and calcium carbonate generated in the gasification furnace and removes hydrogen sulfide contained in the fuel gas as calcium sulfide by a contact reaction between the fuel gas and calcium carbonate in the desulfurization agent. When,
A gasification residue discharged from the gasification furnace, a desulfurization agent discharged from the desulfurization furnace, and a gas containing oxygen are supplied, and the gasification residue is combusted by the gas containing oxygen and calcium sulfide in the desulfurization agent A fluidized bed gasifier comprising: an oxidation furnace that converts calcium sulfate to calcium sulfate by reaction with oxygen,
An oxygen concentration measuring means for measuring the oxygen concentration in the gas is provided at the outlet of the oxidation furnace, and coal is placed in the oxidation furnace during operation based on the oxygen concentration measured by the oxygen concentration measuring means. A fluidized bed gasifier characterized by being configured to be supplied.
請求項2に記載の流動床ガス化装置を具備してなることを特徴とする石炭ガス化複合発電システム。   A coal gasification combined power generation system comprising the fluidized bed gasification apparatus according to claim 2.
JP2005279567A 2005-09-27 2005-09-27 Method for operating fluidized bed gasification apparatus and fluidized bed gasification apparatus, coal gasification hybrid power system Pending JP2007091787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005279567A JP2007091787A (en) 2005-09-27 2005-09-27 Method for operating fluidized bed gasification apparatus and fluidized bed gasification apparatus, coal gasification hybrid power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005279567A JP2007091787A (en) 2005-09-27 2005-09-27 Method for operating fluidized bed gasification apparatus and fluidized bed gasification apparatus, coal gasification hybrid power system

Publications (1)

Publication Number Publication Date
JP2007091787A true JP2007091787A (en) 2007-04-12

Family

ID=37977870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005279567A Pending JP2007091787A (en) 2005-09-27 2005-09-27 Method for operating fluidized bed gasification apparatus and fluidized bed gasification apparatus, coal gasification hybrid power system

Country Status (1)

Country Link
JP (1) JP2007091787A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012522121A (en) * 2009-03-31 2012-09-20 アルストム テクノロジー リミテッド A method for treating high temperature solids that can be selectively operated based on the primary purpose

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07208704A (en) * 1994-01-13 1995-08-11 Mitsubishi Heavy Ind Ltd Power-plant by gasification of coal
JPH07332612A (en) * 1994-06-13 1995-12-22 Mitsubishi Heavy Ind Ltd Apparatus for oxidizing cas and its operating method
JP2000121007A (en) * 1998-10-13 2000-04-28 Mitsubishi Heavy Ind Ltd Oxidizing furnace for coal gasification combined cycle power generation system
JP2000227205A (en) * 1999-02-05 2000-08-15 Mitsubishi Heavy Ind Ltd Simultaneous denitration desulfurization system and coal gasification combined power generation system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07208704A (en) * 1994-01-13 1995-08-11 Mitsubishi Heavy Ind Ltd Power-plant by gasification of coal
JPH07332612A (en) * 1994-06-13 1995-12-22 Mitsubishi Heavy Ind Ltd Apparatus for oxidizing cas and its operating method
JP2000121007A (en) * 1998-10-13 2000-04-28 Mitsubishi Heavy Ind Ltd Oxidizing furnace for coal gasification combined cycle power generation system
JP2000227205A (en) * 1999-02-05 2000-08-15 Mitsubishi Heavy Ind Ltd Simultaneous denitration desulfurization system and coal gasification combined power generation system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012522121A (en) * 2009-03-31 2012-09-20 アルストム テクノロジー リミテッド A method for treating high temperature solids that can be selectively operated based on the primary purpose

Similar Documents

Publication Publication Date Title
JP5445027B2 (en) Gas treatment method and apparatus for circulating fluidized bed gasification facility
JP2009262047A (en) Method for utilizing waste material containing sludge in coal boiler for power generation
JP4645953B2 (en) Fluidized bed gasifier and coal gasification combined cycle system
JP2007091787A (en) Method for operating fluidized bed gasification apparatus and fluidized bed gasification apparatus, coal gasification hybrid power system
JP2011220543A (en) Boiler facility
JP7466412B2 (en) Cement manufacturing method and cement manufacturing system
JP2007091785A (en) Fluidized bed gasification apparatus and coal gasification hybrid power system
JP2006010227A (en) Coal gasification combined power generating installation
JP2007107472A (en) Coal gasification combined power generation facilities and coal gasification power generation method
JP4933496B2 (en) NOx emission prediction method, operation method of gasification power plant using this method, and gasification power plant
JP3776603B2 (en) Oxidation furnace for coal gasification combined cycle system
JP2986901B2 (en) Working fluid supply method and combustion equipment
JP5979672B2 (en) Thermal power plant operation method
JP3233628B2 (en) Gasification power plant
JP4519338B2 (en) Method for treating ammonia-containing gas and coal gasification combined power plant
JP6556639B2 (en) Gasification system and operation method of gasification system
JP3700073B2 (en) Method and apparatus for burning hydrogen sulfide-containing gas
JP2006189199A (en) Premixed combustion method of fuel of high sulfur content and fuel of high chlorine content
JP2686356B2 (en) Gasification combustion method
JP3649456B2 (en) Coal gasification power generation method
Singh et al. COAL GASIFICATION TO GENERATE POWER WITH GREEN HOUSE GAS EMISSIONS
JPH0754666A (en) Coal gasifying power generating device
JP2009275680A (en) Nox emission amount forecasting method, operation method for gasification power generation plant utilizing this method, and gasification power generation plant
JP2726741B2 (en) Power generation method using bad fuel
JP2019178230A (en) Gasification furnace system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101109

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20101117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101117