JP2009275680A - Nox emission amount forecasting method, operation method for gasification power generation plant utilizing this method, and gasification power generation plant - Google Patents

Nox emission amount forecasting method, operation method for gasification power generation plant utilizing this method, and gasification power generation plant Download PDF

Info

Publication number
JP2009275680A
JP2009275680A JP2008130514A JP2008130514A JP2009275680A JP 2009275680 A JP2009275680 A JP 2009275680A JP 2008130514 A JP2008130514 A JP 2008130514A JP 2008130514 A JP2008130514 A JP 2008130514A JP 2009275680 A JP2009275680 A JP 2009275680A
Authority
JP
Japan
Prior art keywords
gasification
concentration
nox
gas fuel
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008130514A
Other languages
Japanese (ja)
Other versions
JP4933485B2 (en
Inventor
Takeji Hasegawa
武治 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2008130514A priority Critical patent/JP4933485B2/en
Publication of JP2009275680A publication Critical patent/JP2009275680A/en
Application granted granted Critical
Publication of JP4933485B2 publication Critical patent/JP4933485B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Treating Waste Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To sufficiently reduce an emission amount of NOx from a plant without being influenced by a variation of a concentration of NOx of a combustion emission gas caused by a composition of gasified gas fuel while preventing the excessive feeding of a reducing agent. <P>SOLUTION: The gasification power generation plant is provided with at least: a gasification device 3; a gas purification device 5; a combustion device for generating motive power by burning the gasified gas fuel 4a at a stoichiometric mixing ratio or lower; and a power generator. The plant is provided with a memory device 16 for storing a correlation function of a hydrogen concentration of the gasified gas fuel 4a and a conversion ratio to NOx in a combustion device of a nitrogen compound contained in the gasified gas fuel 4a; a hydrogen concentration measurement device 17 for measuring the hydrogen concentration of the gasified gas fuel; an operation device 11 for calculating the concentration of NOx of the combustion exhaust gas A based on the hydrogen concentration measured by the hydrogen concentration measurement device 17 and the correlation function; a reducing agent feeding means for feeding the reducing agent 10 to the combustion exhaust gas A; and a control means 14 for controlling an amount of the reducing agent 10 fed from the reducing agent feeding means. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、NOx排出量予測方法とこの方法を利用したガス化発電プラントの運転方法及びガス化発電プラントに関する。さらに詳述すると、本発明は、ガス化発電プラントから排出されるNOx排出量を予測して低減するのに好適なガス化発電プラントの運転方法とガス化発電プラントに関する。   The present invention relates to a NOx emission prediction method, a gasification power plant operating method using this method, and a gasification power plant. More specifically, the present invention relates to a gasification power plant operating method and a gasification power plant suitable for predicting and reducing the NOx emission amount discharged from the gasification power plant.

ガス化発電プラントでは、ガス化原料をガス化剤でガス化して得られる生成ガスを、ガス精製装置により精製してガス化ガス燃料とし、これを燃焼装置に供給して燃焼させることにより動力を発生させ、この動力を利用して発電機を運転して発電する。また、これに加えて、燃焼装置からの燃焼排ガスの熱を利用して発生させた蒸気により蒸気タービンを駆動させて発電するガス化複合サイクル発電プラントを構成することにより、プラント全体としての発電効率の向上を図ることも行われている。   In a gasification power plant, the product gas obtained by gasifying a gasification raw material with a gasifying agent is purified by a gas purification device to be gasified gas fuel, which is supplied to the combustion device and burned to drive power. And generate power by operating the generator using this power. In addition to this, by configuring a gasification combined cycle power plant that generates power by driving a steam turbine with steam generated using the heat of combustion exhaust gas from the combustion device, the power generation efficiency of the entire plant Improvements are also being made.

ところで、ガス化原料をガス化剤でガス化して得られる生成ガスには、窒素化合物(概ねNHである)が含まれており、燃焼装置にて燃焼させると窒素化合物に起因するフュエルNOxが発生する。NOxは大気汚染源となる窒素酸化物であることから、NOx量を十分に低減した上で、ガス化発電プラントから排出する必要がある。 By the way, the product gas obtained by gasifying the gasification raw material with a gasifying agent contains a nitrogen compound (generally NH 3 ), and when it is burned in a combustion apparatus, fuel NOx resulting from the nitrogen compound is generated. appear. Since NOx is a nitrogen oxide that becomes an air pollution source, it is necessary to exhaust the NOx amount from the gasification power plant after sufficiently reducing the amount of NOx.

そこで、生成ガスを水スクラバーを利用した湿式精製により精製してNHを除去し、フュエルNOxの発生要因であるNHが除去されたガス化ガス燃料を燃焼装置に供給する方法が知られている。この場合、燃焼装置(例えばガスタービン燃焼器)では、高温化による高効率化が図られてきたが、その際、作動媒体である空気中の窒素(N2)が酸化して発生するサーマルNOxが生成される。このサーマルNOxは、希薄予混合燃焼に代表される均一燃焼手法により局所高温領域をできるだけ小さくするなどの方法を採用することで、抑制することができる(例えば、非特許文献1)。しかしながら、生成ガスを湿式精製しても、NHは完全に除去できるわけではなく、残留しているNHに起因してフュエルNOxが発生してしまう。 Therefore, a method is known in which the produced gas is purified by wet refining using a water scrubber to remove NH 3, and gasified gas fuel from which NH 3 which is a fuel NOx generation factor is removed is supplied to the combustion apparatus. Yes. In this case, in a combustion apparatus (for example, a gas turbine combustor), high efficiency has been achieved by increasing the temperature, but at that time, thermal NOx generated by oxidation of nitrogen (N 2 ) in the air as a working medium. Is generated. This thermal NOx can be suppressed by adopting a method such as making the local high temperature region as small as possible by a uniform combustion method typified by lean premixed combustion (for example, Non-Patent Document 1). However, even if the product gas is subjected to wet purification, NH 3 cannot be completely removed, and fuel NOx is generated due to the remaining NH 3 .

また、特許文献1では、NHをNに還元する触媒を利用した触媒燃焼法により、燃焼装置での燃焼中にガス化ガス燃料中のNHを減らして、フュエルNOxの発生を抑制する方法が提案されている。しかしながら、この方法には、触媒の寿命等の問題があり、実プラントで採用された例はない。また、NHをNに100%還元できるわけではなく、フュエルNOxの発生を完全に抑えることはできない。 In Patent Document 1, by catalytic catalytic combustion method utilizing the reduction of NH 3 to N 2, to reduce the NH 3 in the gasification gas in the fuel during combustion in the combustion device, suppresses the generation of fuel NOx A method has been proposed. However, this method has problems such as the life of the catalyst, and there is no example adopted in an actual plant. Further, NH 3 cannot be reduced 100% to N 2 , and generation of fuel NOx cannot be completely suppressed.

そこで、従来は、燃焼装置から排出される燃焼排ガスを排煙脱硝設備により触媒脱硝方式で脱硝処理した後に排出するようにしていた。または、NH等の還元剤を燃焼排ガスに供給してNOxを気相において還元脱硝する無触媒脱硝方式で脱硝処理した後に、排煙脱硝設備により触媒脱硝方式で脱硝処理するようにしていた。 Therefore, conventionally, the combustion exhaust gas discharged from the combustion apparatus has been denitrated by a catalyst denitration system using a flue gas denitration facility and then discharged. Alternatively, after a denitration process is performed by a non-catalytic denitration system in which a reducing agent such as NH 3 is supplied to combustion exhaust gas and NOx is reduced and denitrated in the gas phase, the denitration process is performed by a catalyst denitration system using a flue gas denitration facility.

特開2002−66230号公報JP 2002-66230 A 長谷川武治、他、「石炭ガス化中カロリー燃料用ガスタービン燃焼器(第2報 希薄燃焼によるNOx低減強化型燃焼器の高圧燃焼特性)」、日本機械学会論文集B編、69巻、686号、pp.2337-2345、2003.Takeharu Hasegawa, et al., “Gas Turbine Combustor for Calorie Fuel during Coal Gasification (2nd Report, High Pressure Combustion Characteristics of NOx Reduction Enhanced Combustor by Lean Combustion)”, Japan Society of Mechanical Engineers, B, 69, 686 , Pp.2337-2345, 2003.

ガス化ガス燃料の組成等は、ガス化原料の種類、ガス化剤の種類、ガス化剤の酸素含有量、ガス化炉の形式及びガス化炉負荷等により異なる。例えば、表1及び表2に示すように、ガス化ガス燃料の組成は、水素(H)と一酸化炭素(CO)とが大部分を占めているものの、その組成比自体は大きくばらついている。また、発熱量についても、2〜13MJ/Nmの低〜中カロリーの間でばらつきが見られる。 The composition of the gasification gas fuel varies depending on the type of gasification raw material, the type of gasification agent, the oxygen content of the gasification agent, the type of gasification furnace, the gasification furnace load, and the like. For example, as shown in Tables 1 and 2, the composition of the gasified gas fuel is largely composed of hydrogen (H 2 ) and carbon monoxide (CO), but the composition ratio itself varies greatly. Yes. As for the amount of heat generated, the variation is seen between the low to medium calorie 2~13MJ / Nm 3.

Figure 2009275680
Figure 2009275680

Figure 2009275680
Figure 2009275680

ここで、ガス化発電プラントの汎用性を高める上では、化石燃料だけでなく様々なガス化原料を使用可能とすることが要求され、また、大小の様々な規模のプラントが立地条件により必要となる。このことから、ガス化ガス燃料の組成等の変動による燃焼排ガスのNOx濃度の変動は避けられない問題である。   Here, in order to improve the versatility of gasification power plants, it is required to be able to use not only fossil fuels but also various gasification raw materials, and plants of various sizes, large and small, are required depending on the location conditions. Become. For this reason, fluctuations in the NOx concentration of the combustion exhaust gas due to fluctuations in the composition of the gasified gas fuel are unavoidable problems.

しかしながら、従来の排煙脱硝設備を用いた触媒脱硝方式による脱硝処理では、燃焼排ガスのNOx濃度の変動による排煙脱硝設備への負荷変動に対して十分に対応できない。即ち、触媒脱硝方式で脱硝処理を行う場合、燃焼排ガスのNOx濃度に変動が生じると、触媒の処理能力を超えてしまい、規制値を超える濃度のNOxが排出されてしまう虞がある。NH等の還元剤を燃焼排ガスに供給してNOxを気相において還元脱硝する無触媒脱硝方式の脱硝処理を併用したとしても、燃焼排ガスのNOx濃度に変動が生じれば、規制値を超える濃度のNOxが排出されてしまう虞はある。また、無触媒脱硝方式の脱硝処理を併用した場合、燃焼排ガスに供給されるNH等の還元剤の量が燃焼排ガス中のNOx濃度に対して過剰となった結果として、還元剤がガス化発電プラント外に排出されてしまう虞もある。 However, the denitration process by the catalytic denitration method using the conventional flue gas denitration equipment cannot sufficiently cope with the load fluctuation to the flue gas denitration equipment due to the fluctuation of the NOx concentration of the combustion exhaust gas. That is, when the NOx removal treatment is performed by the catalyst removal method, if the NOx concentration in the combustion exhaust gas fluctuates, the treatment capacity of the catalyst may be exceeded, and NOx with a concentration exceeding the regulation value may be discharged. Even if the NOx concentration of NOx is reduced in the gas phase by supplying a reducing agent such as NH 3 to the combustion exhaust gas and the NOx concentration is reduced, the regulation value will be exceeded There is a risk that NOx of concentration will be discharged. In addition, when combined with non-catalytic denitration-type denitration treatment, the amount of reducing agent such as NH 3 supplied to the combustion exhaust gas becomes excessive with respect to the NOx concentration in the combustion exhaust gas, resulting in gasification of the reducing agent. There is also a risk of being discharged outside the power plant.

また、小規模なガス化発電プラントでは、高度なガス精製を採用することは費用対効果から難しい場合が多く、粉塵の除去以外にはガス精製を行わない場合もある。この場合にも、ガス化ガス燃料に含まれる窒素化合物量が多いと、多量のフュエルNOxが発生する場合がある。したがって、触媒脱硝方式で脱硝処理を行うことは、触媒の寿命および費用等の観点から好ましいとは言えない。また、無触媒脱硝方式の脱硝処理についても、燃焼排ガスのNOx濃度の変動等により、還元剤の供給量や脱硝反応自体を制御することが難しいという問題がある。   Further, in a small-scale gasification power plant, it is often difficult to adopt advanced gas purification because of cost effectiveness, and there are cases where gas purification is not performed except for dust removal. Also in this case, if the amount of nitrogen compound contained in the gasified gas fuel is large, a large amount of fuel NOx may be generated. Therefore, it is not preferable to perform the denitration treatment by the catalyst denitration method from the viewpoint of the life and cost of the catalyst. The non-catalytic denitration type denitration process also has a problem that it is difficult to control the supply amount of the reducing agent and the denitration reaction itself due to fluctuations in the NOx concentration of the combustion exhaust gas.

したがって、ガス化ガス燃料の組成等に起因する燃焼排ガスのNOx濃度の変動を予め予測し、この予測結果に応じてNOxを低減することのできる技術の確立が急務である。   Therefore, there is an urgent need to establish a technique that can predict NOx concentration fluctuations in combustion exhaust gas caused by the composition of gasified gas fuel in advance and reduce NOx in accordance with the prediction result.

そこで、本発明は、ガス化ガス燃料の組成等に起因する燃焼排ガスのNOx濃度の変動を事前に予測することのできる方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a method capable of predicting in advance the variation in NOx concentration of combustion exhaust gas caused by the composition of gasified gas fuel.

また、本発明は、ガス化ガス燃料の組成等に起因する燃焼排ガスのNOx濃度の変動に影響されることなく、還元剤の過剰な供給を防ぎながらも、プラントからのNOx排出量を十分に低減することのできるガス化発電プラントの運転方法とガス化発電プラントを提供することを目的とする。   In addition, the present invention does not affect the NOx concentration in the combustion exhaust gas caused by the composition of the gasified gas fuel and the like, while preventing excessive supply of the reducing agent and sufficiently reducing the NOx emissions from the plant. An object of the present invention is to provide a gasification power plant operating method and a gasification power plant that can be reduced.

かかる目的を解決するため、本願発明者等が鋭意研究した結果、燃焼装置においてガス化ガス燃料を量論混合比以下で燃焼させた場合に、ガス化ガス燃料に含まれるNHの燃焼装置でのNOxへの転換率が、ガス化ガス燃料の水素濃度と一義的な関係を有していることを見出した。しかも、この関係が、ガス化ガス燃料の大部分を占めるCOとHのモル比、即ちCOとHの組成ばらつきには影響されないことを知見した。このことから、ガス化ガス燃料の水素濃度とガス化ガス燃料に含まれるNHの燃焼装置でのNOxへの転換率との間に示される相関関係を予め把握することにより、ガス化ガス燃料の水素濃度の測定値から、燃焼装置から排出されるNOxの量を事前に予測できることを知見し、本願発明に至った。 In order to solve such an object, the inventors of the present invention have made extensive studies, and as a result, when the gasification gas fuel is burned at a stoichiometric mixture ratio or less in the combustion apparatus, the combustion apparatus for NH 3 contained in the gasification gas fuel is used. It has been found that the conversion rate of NOx to NOx has a unique relationship with the hydrogen concentration of the gasified gas fuel. Moreover, it has been found that this relationship is not affected by the molar ratio of CO and H 2 occupying most of the gasified gas fuel, that is, the composition variation of CO and H 2 . From this, by grasping in advance the correlation shown between the hydrogen concentration of the gasified gas fuel and the conversion rate of NH 3 contained in the gasified gas fuel into NOx in the combustion device, the gasified gas fuel is obtained. From the measured value of the hydrogen concentration, it was found that the amount of NOx discharged from the combustion device can be predicted in advance, and the present invention has been achieved.

かかる知見に基づく請求項1記載のNOx排出量予測方法は、ガス化原料をガス化剤によりガス化して生成ガスを得るガス化装置と、生成ガスを精製してガス化ガス燃料を得るガス精製装置と、ガス化ガス燃料を量論混合比以下で燃焼させて動力を発生させる燃焼装置と、動力を利用して発電する発電機とを少なくとも備えるガス化発電プラントにおいて、ガス化ガス燃料の水素濃度とガス化ガス燃料に含まれる窒素化合物の燃焼装置でのNOxへの転換率との関係を示す相関関数を予め求めておき、ガス化ガス燃料の水素濃度を測定して水素濃度測定値を取得し、水素濃度測定値と相関関数とに基づいて燃焼装置から排出される燃焼排ガスのNOx濃度を予測するようにしている。   The NOx emission prediction method according to claim 1 based on such knowledge includes a gasification device that gasifies a gasification raw material with a gasifying agent to obtain a product gas, and a gas purification that purifies the product gas to obtain a gasified gas fuel. In a gasification power plant comprising at least an apparatus, a combustion apparatus that generates power by burning gasified gas fuel at a stoichiometric mixture ratio or less, and a generator that generates power using power, hydrogen of gasified gas fuel A correlation function indicating the relationship between the concentration and the conversion rate of nitrogen compounds contained in gasified gas fuel to NOx in the combustion device is obtained in advance, and the hydrogen concentration measurement value is obtained by measuring the hydrogen concentration of the gasified gas fuel. The NOx concentration of the flue gas exhausted from the combustion apparatus is predicted based on the acquired hydrogen concentration measurement value and the correlation function.

したがって、請求項1記載のNOx排出量予測方法によると、ガス化ガス燃料の水素濃度の測定値から、ガス化ガス燃料の水素濃度とガス化ガス燃料に含まれる窒素化合物の燃焼装置でのNOxへの転換率との相関について予め求められた相関関数に基づいて、燃焼排ガスのNOx濃度を予測することができる。   Therefore, according to the NOx emission prediction method according to claim 1, from the measured value of the hydrogen concentration of the gasified gas fuel, the NOx in the combustion apparatus of the nitrogen compound contained in the gasified gas fuel and the hydrogen concentration of the gasified gas fuel is obtained. The NOx concentration of the combustion exhaust gas can be predicted based on a correlation function obtained in advance with respect to the correlation with the conversion rate.

尚、本明細書におけるガス化ガス燃料に含まれる窒素化合物とは、燃焼装置で燃焼させた際に、フュエルNOxの発生源となる窒素化合物を意味している。通常、窒素化合物はほとんどがNHであるが、場合によってはHCN等のNH以外のものも含んでおり、これらを含めた全窒素化合物のフュエルNOxへの転換率を意味している。 In addition, the nitrogen compound contained in the gasification gas fuel in this specification means the nitrogen compound which becomes a generation source of fuel NOx when burned by the combustion device. Usually, most of the nitrogen compounds are NH 3 , but in some cases, other than NH 3 such as HCN is included, which means the conversion rate of all nitrogen compounds including these to fuel NOx.

次に、請求項2記載のNOx排出量予測方法は、ガス化原料をガス化剤によりガス化して生成ガスを得るガス化装置と、生成ガスを精製してガス化ガス燃料を得るガス精製装置と、ガス化ガス燃料を量論混合比以下で燃焼させて動力を発生させる燃焼装置と、動力を利用して発電する発電機とを少なくとも備えるガス化発電プラントにおいて、ガス化ガス燃料の水素濃度とガス化ガス燃料に含まれる窒素化合物の燃焼装置でのNOxへの転換率との関係を示す相関関数をガス化ガス燃料の窒素化合物濃度条件毎に予め求めておき、ガス化ガス燃料の水素濃度を測定して水素濃度測定値を取得し、ガス化ガス燃料の窒素化合物濃度を測定して窒素化合物濃度測定値を取得し、窒素化合物濃度測定値に適合する窒素化合物濃度条件の相関関数を選択し、水素濃度測定値と選択された相関関数とに基づいて燃焼装置から排出される燃焼排ガスのNOx濃度を予測するようにしている。   Next, the NOx emission amount prediction method according to claim 2 is a gasification device that gasifies a gasification raw material with a gasifying agent to obtain a product gas, and a gas purification device that purifies the product gas to obtain a gasification gas fuel. A hydrogen concentration of the gasified gas fuel in a gasification power plant comprising: a combustion apparatus that generates power by burning gasified gas fuel at a stoichiometric mixture ratio or less; and a generator that generates power using the power. Is obtained in advance for each nitrogen compound concentration condition of the gasified gas fuel, and a correlation function indicating the relationship between the nitrogen compound contained in the gasified gas fuel and the NOx conversion rate in the combustion apparatus is determined. Measure the concentration to obtain the hydrogen concentration measurement value, measure the nitrogen compound concentration of the gasification gas fuel to obtain the nitrogen compound concentration measurement value, and obtain the correlation function of the nitrogen compound concentration condition that matches the nitrogen compound concentration measurement value Selection And, so that predicting the NOx concentration in the combustion exhaust gas discharged from the combustion device on the basis of the correlation function and the selected concentration of hydrogen measurements.

したがって、請求項2記載のNOx排出量予測方法によると、ガス化ガス燃料の窒素化合物濃度が変動した場合でも、ガス化ガス燃料の水素濃度の測定値から、ガス化ガス燃料の水素濃度とガス化ガス燃料に含まれる窒素化合物の燃焼装置でのNOxへの転換率との相関について予め求められた相関関数に基づいて、燃焼排ガスのNOx濃度を予測することができる。   Therefore, according to the NOx emission prediction method of claim 2, even if the nitrogen compound concentration of the gasification gas fuel fluctuates, the hydrogen concentration and gas of the gasification gas fuel are determined from the measured value of the hydrogen concentration of the gasification gas fuel. The NOx concentration of the combustion exhaust gas can be predicted based on a correlation function obtained in advance with respect to the correlation with the conversion rate of nitrogen compounds contained in the conversion gas fuel into NOx in the combustion apparatus.

次に、請求項3記載のガス化発電プラントの運転方法は、ガス化原料をガス化剤によりガス化して生成ガスを得るガス化装置と、生成ガスを精製してガス化ガス燃料を得るガス精製装置と、ガス化ガス燃料を量論混合比以下で燃焼させて動力を発生させる燃焼装置と、動力を利用して発電する発電機とを少なくとも備えるガス化発電プラントにおいて、ガス化ガス燃料の水素濃度とガス化ガス燃料に含まれる窒素化合物の燃焼装置でのNOxへの転換率との関係を示す相関関数を予め求めておき、ガス化ガス燃料の水素濃度を測定して水素濃度測定値を取得し、水素濃度測定値と相関関数とに基づいて燃焼装置から排出される燃焼排ガスのNOx濃度予測値を得て、NOx濃度予測値に応じて燃焼排ガスへの還元剤の供給量を制御するようにしている。   Next, the operation method of the gasification power plant according to claim 3 is a gasification apparatus that gasifies a gasification raw material with a gasifying agent to obtain a product gas, and a gas that purifies the gas to obtain a gasification gas fuel. In a gasification power plant comprising at least a refining device, a combustion device that generates power by burning gasified gas fuel at a stoichiometric mixture ratio or less, and a generator that generates power using power, A correlation function indicating the relationship between the hydrogen concentration and the conversion rate of nitrogen compounds contained in the gasified gas fuel to NOx in the combustion device is obtained in advance, and the hydrogen concentration of the gasified gas fuel is measured to measure the hydrogen concentration. To obtain a predicted NOx concentration value of the flue gas discharged from the combustion device based on the measured hydrogen concentration value and the correlation function, and control the amount of reducing agent supplied to the flue gas according to the predicted NOx concentration value Like To have.

また、請求項6記載のガス化発電プラントは、ガス化原料をガス化剤によりガス化して生成ガスを得るガス化装置と、生成ガスを精製してガス化ガス燃料を得るガス精製装置と、ガス化ガス燃料を量論混合比以下で燃焼させて動力を発生させる燃焼装置と、動力を利用して発電する発電機とを少なくとも備えるガス化発電プラントにおいて、ガス化ガス燃料の水素濃度とガス化ガス燃料に含まれる窒素化合物の燃焼装置でのNOxへの転換率との相関について予め求められた相関関数を記憶する記憶装置と、ガス化ガス燃料の水素濃度を測定して水素濃度測定値を得る水素濃度測定装置と、水素濃度測定値と相関関数とに基づいて燃焼排ガスのNOx濃度計算値を得る演算装置と、燃焼排ガスに還元剤を供給する還元剤供給手段と、NOx濃度計算値に基づいて還元剤供給手段から供給される還元剤の量を制御する制御手段とを備えるものである。   The gasification power plant according to claim 6 is a gasification device that gasifies a gasification raw material with a gasifying agent to obtain a product gas, a gas purification device that purifies the product gas to obtain a gasification gas fuel, In a gasification power plant comprising at least a combustion device that generates power by burning gasified gas fuel at a stoichiometric mixture ratio or less, and a hydrogen concentration and gas of the gasified gas fuel A storage device for storing a correlation function obtained in advance for correlation with the conversion rate of nitrogen compounds contained in gasified gas fuel to NOx in the combustion device, and a hydrogen concentration measurement value by measuring the hydrogen concentration of the gasified gas fuel A hydrogen concentration measuring device for obtaining a NOx concentration calculated value of the combustion exhaust gas based on the hydrogen concentration measurement value and the correlation function, a reducing agent supply means for supplying a reducing agent to the combustion exhaust gas, a NOx concentration Based on the calculated value in which a control means for controlling the amount of reducing agent supplied from the reducing agent supply means.

したがって、請求項3記載のガス化発電プラントの運転方法及び請求項6記載のガス化発電プラントによると、ガス化ガス燃料の水素濃度の測定値から、ガス化ガス燃料の水素濃度とガス化ガス燃料に含まれる窒素化合物の燃焼装置でのNOxへの転換率との相関について予め求められた相関関数に基づいて、燃焼排ガスのNOx濃度を予測することができる。よって、この予測値に応じて最適な量の還元剤を供給することで、燃焼排ガスのNOx濃度を低減することができる。   Therefore, according to the operation method of the gasification power plant according to claim 3 and the gasification power plant according to claim 6, the hydrogen concentration of the gasification gas fuel and the gasification gas are obtained from the measured value of the hydrogen concentration of the gasification gas fuel. The NOx concentration of the combustion exhaust gas can be predicted based on a correlation function obtained in advance with respect to the correlation with the conversion rate of nitrogen compounds contained in the fuel into NOx in the combustion apparatus. Therefore, the NOx concentration of the combustion exhaust gas can be reduced by supplying an optimal amount of the reducing agent according to the predicted value.

次に、請求項4記載のガス化発電プラントの運転方法は、ガス化原料をガス化剤によりガス化して生成ガスを得るガス化装置と、生成ガスを精製してガス化ガス燃料を得るガス精製装置と、ガス化ガス燃料を量論混合比以下で燃焼させて動力を発生させる燃焼装置と、動力を利用して発電する発電機とを少なくとも備えるガス化発電プラントにおいて、ガス化ガス燃料の水素濃度とガス化ガス燃料に含まれる窒素化合物の燃焼装置でのNOxへの転換率との関係を示す相関関数をガス化ガス燃料の窒素化合物濃度条件毎に予め求めておき、ガス化ガス燃料の水素濃度を測定して水素濃度測定値を取得し、ガス化ガス燃料の窒素化合物濃度を測定して窒素化合物濃度測定値を取得し、窒素化合物濃度測定値に適合する窒素化合物濃度条件の相関関数を選択し、水素濃度測定値と選択された相関関数とに基づいて燃焼装置から排出される燃焼排ガスのNOx濃度予測値を得て、NOx濃度予測値に応じて燃焼排ガスへの還元剤の供給量を制御するようにしている。   Next, the operation method of the gasification power plant according to claim 4 is a gasification apparatus that gasifies a gasification raw material with a gasifying agent to obtain a product gas, and a gas that purifies the product gas to obtain a gasification gas fuel. In a gasification power plant comprising at least a refining device, a combustion device that generates power by burning gasified gas fuel at a stoichiometric mixture ratio or less, and a generator that generates power using power, A correlation function indicating the relationship between the hydrogen concentration and the conversion rate of nitrogen compounds contained in the gasified gas fuel into NOx in the combustion device is obtained in advance for each nitrogen compound concentration condition of the gasified gas fuel. Measure the hydrogen concentration of the gas to obtain the hydrogen concentration measurement value, measure the nitrogen compound concentration of the gasification gas fuel to obtain the nitrogen compound concentration measurement value, and correlate the nitrogen compound concentration conditions that match the nitrogen compound concentration measurement value The number is selected, the NOx concentration predicted value of the flue gas discharged from the combustion device is obtained based on the measured hydrogen concentration value and the selected correlation function, and the reducing agent to the flue gas is determined according to the NOx concentration predicted value. The supply amount is controlled.

また、請求項8記載のガス化発電プラントは、ガス化原料をガス化剤によりガス化して生成ガスを得るガス化装置と、生成ガスを精製してガス化ガス燃料を得るガス精製装置と、ガス化ガス燃料を量論混合比以下で燃焼させて動力を発生させる燃焼装置と、動力を利用して発電する発電機とを少なくとも備えるガス化発電プラントにおいて、ガス化ガス燃料の水素濃度とガス化ガス燃料に含まれる窒素化合物の燃焼装置でのNOxへの転換率との相関についてガス化ガス燃料の窒素化合物濃度毎に予め求められた複数の相関関数を記憶する記憶装置と、ガス化ガス燃料の水素濃度を測定して水素濃度測定値を得る水素濃度測定装置と、ガス化ガス燃料の窒素化合物濃度を測定して窒素化合物濃度測定値を得る窒素化合物濃度測定装置と、窒素化合物濃度測定値に適合する窒素化合物濃度条件の相関関数を選択すると共に、水素濃度測定値と選択された相関関数とに基づいて燃焼排ガスのNOx濃度計算値を得る演算装置と、燃焼排ガスに還元剤を供給する還元剤供給手段と、NOx濃度計算値に基づいて還元剤供給手段から供給される還元剤の量を制御する制御手段とを備えるものである。   The gasification power plant according to claim 8 is a gasification device that gasifies a gasification raw material with a gasifying agent to obtain a product gas, a gas purification device that purifies the product gas to obtain a gasification gas fuel, In a gasification power plant comprising at least a combustion device that generates power by burning gasified gas fuel at a stoichiometric mixture ratio or less, and a hydrogen concentration and gas of the gasified gas fuel A storage device for storing a plurality of correlation functions obtained in advance for each nitrogen compound concentration of the gasification gas fuel for correlation with the conversion rate of nitrogen compounds contained in the gasification gas fuel into NOx in the combustion apparatus; A hydrogen concentration measuring device for measuring hydrogen concentration of fuel to obtain a measured value of hydrogen concentration, a nitrogen concentration measuring device for measuring nitrogen compound concentration of gasified gas fuel to obtain a measured value of nitrogen compound concentration, and nitrogen A calculation device that selects a correlation function of the nitrogen compound concentration condition that matches the compound concentration measurement value, obtains a NOx concentration calculation value of the combustion exhaust gas based on the hydrogen concentration measurement value and the selected correlation function, and a combustion exhaust gas A reducing agent supply means for supplying the reducing agent and a control means for controlling the amount of the reducing agent supplied from the reducing agent supply means based on the calculated NOx concentration are provided.

したがって、請求項4記載のガス化発電プラントの運転方法及び請求項8記載のガス化発電プラントによると、ガス化ガス燃料の窒素化合物濃度が変動した場合でも、ガス化ガス燃料の水素濃度の測定値から、ガス化ガス燃料の水素濃度とガス化ガス燃料に含まれる窒素化合物の燃焼装置でのNOxへの転換率との相関について予め求められた相関関数に基づいて、燃焼排ガスのNOx濃度を予測することができる。よって、この予測値に応じて最適な量の還元剤を供給することで、燃焼排ガスのNOx濃度を低減することができる。   Therefore, according to the operation method of the gasification power plant according to claim 4 and the gasification power plant according to claim 8, the hydrogen concentration of the gasification gas fuel is measured even when the nitrogen compound concentration of the gasification gas fuel fluctuates. From the value, the NOx concentration of the combustion exhaust gas is calculated based on a correlation function obtained in advance for the correlation between the hydrogen concentration of the gasification gas fuel and the conversion rate of nitrogen compounds contained in the gasification gas fuel into NOx in the combustion device. Can be predicted. Therefore, the NOx concentration of the combustion exhaust gas can be reduced by supplying an optimal amount of the reducing agent according to the predicted value.

ここで、請求項5、7及び9記載の発明のように、燃焼排ガス中のNOxの還元に最適な反応温度と燃焼排ガスのCO濃度との相関関係について予め求めておき、燃焼排ガスのCO濃度を測定してCO濃度測定値を取得し、CO濃度測定値と上記相関関係とに基づいて最適反応温度予測値を得て、最適反応温度予測値に適合する温度帯域の燃焼排ガスに還元剤を供給することが好ましい。   Here, as in the inventions of claims 5, 7 and 9, the correlation between the optimum reaction temperature for the reduction of NOx in the combustion exhaust gas and the CO concentration of the combustion exhaust gas is obtained in advance, and the CO concentration of the combustion exhaust gas is determined. To obtain a measured value of CO concentration, obtain an optimum predicted reaction temperature value based on the measured CO concentration value and the above correlation, and apply a reducing agent to the flue gas in a temperature range suitable for the predicted optimum reaction temperature value. It is preferable to supply.

燃焼装置から排出される燃焼排ガスの温度は、燃焼装置出口からガス化発電プラントの後段に向かうに従い低下する。したがって、還元剤の供給量を燃焼排ガスのNOx濃度に対して最適な量としつつ、NOxの還元反応に最適な温度帯域にある燃焼排ガスに還元剤を供給することで、燃焼排ガスのNOx濃度を確実に低減することができる。   The temperature of the combustion exhaust gas discharged from the combustion device decreases as it goes from the combustion device outlet to the subsequent stage of the gasification power plant. Therefore, by supplying the reducing agent to the combustion exhaust gas in the temperature range optimal for the NOx reduction reaction while setting the supply amount of the reducing agent to the optimal amount with respect to the NOx concentration of the combustion exhaust gas, the NOx concentration of the combustion exhaust gas is reduced. It can be surely reduced.

請求項1または2記載のNOx排出量予測方法によれば、燃焼排ガスのNOx濃度を予測することができるので、燃焼排ガスのNOx濃度を低減するための対策を実施しやすくなり、ガス化発電プラントの運用性を向上することができる。   According to the NOx emission amount predicting method according to claim 1 or 2, the NOx concentration of the combustion exhaust gas can be predicted. Therefore, it becomes easy to implement a measure for reducing the NOx concentration of the combustion exhaust gas, and the gasification power plant. Operability can be improved.

また、請求項3または4記載のガス化発電プラントの運転方法及び請求項6または8記載のガス化発電プラントによれば、燃焼排ガスのNOx濃度を予測し、この予測結果に応じて最適な量の還元剤を供給することが可能となる。したがって、ガス化ガス燃料の組成等に起因する燃焼排ガスのNOx濃度の変動に依らずに、ガス化発電プラントからのNOxの排出量を低減することができる。しかも、燃焼排ガスのNOx濃度予測値に応じて最適な量の還元剤を供給することができるので、還元剤の過剰供給を防ぐことができ、還元剤がガス化発電プラント外へ排出されることを防ぐことができる。   Further, according to the operation method of the gasification power plant according to claim 3 or 4, and the gasification power plant according to claim 6 or 8, the NOx concentration of the combustion exhaust gas is predicted, and an optimum amount is determined according to the prediction result. It becomes possible to supply the reducing agent. Therefore, it is possible to reduce the NOx emission amount from the gasification power plant without depending on the fluctuation of the NOx concentration of the combustion exhaust gas caused by the composition of the gasification gas fuel. In addition, since an optimal amount of reducing agent can be supplied according to the predicted NOx concentration value of the combustion exhaust gas, excessive supply of the reducing agent can be prevented, and the reducing agent is discharged out of the gasification power plant. Can be prevented.

さらに、請求項5記載のガス化発電プラントの運転方法及び請求項7または9記載のガス化発電プラントによれば、燃焼排ガスのNOx濃度を予測と、NOxの還元に最適な反応温度の予測とを行い、この予測結果に応じて最適な量の還元剤を最適な位置に供給することが可能となる。したがって、ガス化ガス燃料の組成等に起因する燃焼排ガスのNOx濃度の変動に依らずに、ガス化発電プラントからのNOxの排出量を確実に低減することができる。しかも、燃焼排ガスのNOx濃度の予測値に応じて最適な量の還元剤を供給することができるので、還元剤の過剰供給を確実に防ぐことができ、還元剤がガス化発電プラント外へ排出されることを確実に防ぐことができる。   Furthermore, according to the operation method of the gasification power plant according to claim 5 and the gasification power plant according to claim 7 or 9, the prediction of the NOx concentration of the combustion exhaust gas and the prediction of the optimum reaction temperature for the reduction of NOx It is possible to supply an optimum amount of the reducing agent to the optimum position according to the prediction result. Therefore, the amount of NOx discharged from the gasification power plant can be reliably reduced without depending on the fluctuation of the NOx concentration of the combustion exhaust gas caused by the composition of the gasification gas fuel. Moreover, since an optimal amount of reducing agent can be supplied according to the predicted value of the NOx concentration of the combustion exhaust gas, excessive supply of the reducing agent can be reliably prevented, and the reducing agent is discharged out of the gasification power plant. Can be surely prevented.

以下、本発明を実施するための最良の形態について、図面に基づいて詳細に説明する。尚、以下の実施形態では、ガス化ガス燃料に含まれる窒素化合物をNHとして説明するが、NH以外の他の窒素化合物に対して本発明を適用することも可能である。 The best mode for carrying out the present invention will be described below in detail with reference to the drawings. In the following embodiments, the nitrogen compound contained in the gasified gas fuel is described as NH 3 , but the present invention can also be applied to other nitrogen compounds other than NH 3 .

(第一の実施形態)
本発明のガス化発電プラントは、ガス化ガス燃料の水素濃度の測定値を利用して燃焼排ガスのNOx濃度を予測し、この予測結果に基づいて最適な量の還元剤を燃焼排ガスに供給することによって、還元剤の過剰供給を防止して、還元剤のプラントからの漏洩を防ぎながらも、燃焼排ガスのNOx濃度を低減することができる点に特徴がある。より具体的には、ガス化装置に供給されるガス化原料の種類が変わった場合や、ガス化条件(ガス化剤の種類、ガス化剤の酸素含有量、ガス化炉の形式等)が変動したことにより、燃焼ガスFGのNOx濃度が変動した場合であっても、その変動をガス化ガス燃料の水素濃度から事前に予測し、この予測結果に応じて最適な量の還元剤を燃焼排ガスに供給し、還元剤をガス化発電プラント外へ漏洩させることなく、燃焼排ガスのNOx濃度を低減できるものである。
(First embodiment)
The gasification power plant of the present invention predicts the NOx concentration of combustion exhaust gas using the measured value of the hydrogen concentration of the gasification gas fuel, and supplies an optimal amount of reducing agent to the combustion exhaust gas based on the prediction result. Thus, the NOx concentration in the combustion exhaust gas can be reduced while preventing excessive supply of the reducing agent and preventing leakage of the reducing agent from the plant. More specifically, when the type of gasification raw material supplied to the gasifier changes, or when the gasification conditions (type of gasification agent, oxygen content of gasification agent, type of gasification furnace, etc.) Even if the NOx concentration of the combustion gas FG changes due to the fluctuation, the fluctuation is predicted in advance from the hydrogen concentration of the gasification gas fuel, and an optimum amount of reducing agent is burned according to the prediction result. The NOx concentration of the combustion exhaust gas can be reduced without supplying the exhaust gas and causing the reducing agent to leak out of the gasification power plant.

本発明のガス化発電プラントの第一の実施形態を図1に示す。尚、本実施形態では、燃焼装置としてガスタービンを例に挙げて説明するが、燃焼により動力を発生する燃焼装置であれば、ガスタービンに限らず使用することができる。例えば、ボイラやガスエンジン(レシプロエンジン)等を燃焼装置として使用することもできる。   A first embodiment of the gasification power plant of the present invention is shown in FIG. In this embodiment, a gas turbine is described as an example of the combustion device. However, any combustion device that generates power by combustion can be used without being limited to the gas turbine. For example, a boiler, a gas engine (reciprocating engine), etc. can also be used as a combustion device.

第一の実施形態のガス化発電プラントは、ガス化原料1をガス化剤2によりガス化して生成ガス4を得るガス化装置3と、生成ガス4を精製してガス化ガス燃料4aを得るガス精製装置5と、ガス化ガス燃料4aを燃焼させるガスタービン6(6a〜6c)とを備えている。ガスタービン6では、作動媒体である空気ARを圧縮する空気圧縮機6aから供給される圧縮空気HAをガス化ガス燃料4aと共にガスタービン燃焼器6bに供給して燃焼させ、高温・高圧の燃焼ガスGを膨張タービン6cに導入して駆動させ、膨張タービン6cに結合されている発電機7により発電する。ガスタービン6(6a〜6c)から排出される燃焼排ガスFGのNOx濃度を予測するための装置構成は以下の通りである。即ち、ガス化ガス燃料4aの水素濃度とガス化ガス燃料4aに含まれるNHのガスタービン6でのNOxへの転換率との相関について予め求められた相関関数を記憶する記憶装置16と、ガス化ガス燃料4aの水素濃度を測定する水素濃度測定装置17と、水素濃度測定装置17で測定された水素濃度から記憶装置16に記憶されている相関関数に基づいて燃焼排ガスAのNOx濃度を算出する演算装置11とにより、ガスタービン燃焼器6bから排出される燃焼ガスG及び膨張タービン6cから排出される燃焼排ガスAのNOx濃度予測値が得られる。 The gasification power plant of the first embodiment includes a gasification device 3 that gasifies a gasification raw material 1 with a gasifying agent 2 to obtain a product gas 4, and a gasification gas fuel 4a obtained by purifying the product gas 4 The gas purification apparatus 5 and the gas turbine 6 (6a-6c) which burns the gasification gas fuel 4a are provided. In the gas turbine 6, the compressed air HA supplied from the air compressor 6 a that compresses the air AR that is a working medium is supplied to the gas turbine combustor 6 b together with the gasified gas fuel 4 a to be burned, and high-temperature and high-pressure combustion gas is produced. G is introduced into the expansion turbine 6c and driven, and power is generated by the generator 7 coupled to the expansion turbine 6c. The apparatus configuration for predicting the NOx concentration of the combustion exhaust gas FG discharged from the gas turbine 6 (6a to 6c) is as follows. That is, a storage device 16 that stores a correlation function obtained in advance for the correlation between the hydrogen concentration of the gasified gas fuel 4a and the conversion rate of NH 3 contained in the gasified gas fuel 4a into NOx in the gas turbine 6; The hydrogen concentration measuring device 17 that measures the hydrogen concentration of the gasified gas fuel 4a, and the NOx concentration of the combustion exhaust gas A based on the correlation function stored in the storage device 16 from the hydrogen concentration measured by the hydrogen concentration measuring device 17 By the calculation device 11 to be calculated, predicted NOx concentration values of the combustion gas G discharged from the gas turbine combustor 6b and the combustion exhaust gas A discharged from the expansion turbine 6c are obtained.

尚、燃焼排ガスAとは、ガスタービン燃焼器6bから排出される燃焼ガスG及び膨張タービン6cから排出される燃焼排ガスFGの総称である。つまり、本発明でいうところの、「燃焼装置から排出される燃焼排ガス」を意味している。   The combustion exhaust gas A is a general term for the combustion gas G discharged from the gas turbine combustor 6b and the combustion exhaust gas FG discharged from the expansion turbine 6c. That is, it means “combustion exhaust gas discharged from the combustion apparatus” in the present invention.

本実施形態にかかるガス化発電プラントでは、燃焼排ガスAに含まれるNOxを気相にてNに還元分解して除去するために還元剤10を供給する還元剤供給手段13が備えられ、演算装置11により算出されたNOx濃度に基づいて還元剤供給手段13から供給される還元剤10の量を制御手段14により制御するようにしている。そして、NOxがNに分解除去された燃焼排ガスFGは、煙突9から排出される。 The gasification power plant according to the present embodiment includes a reducing agent supply means 13 that supplies a reducing agent 10 for reducing and removing NOx contained in the combustion exhaust gas A by reducing and decomposing it into N 2 in the gas phase. Based on the NOx concentration calculated by the apparatus 11, the amount of the reducing agent 10 supplied from the reducing agent supply means 13 is controlled by the control means 14. The combustion exhaust gas FG from which NOx has been decomposed and removed into N 2 is discharged from the chimney 9.

尚、本実施形態におけるガス化発電プラントでは、燃焼排ガスFGの熱を回収する排熱回収装置8と、復水器15から供給される復水FWを利用して排熱回収装置8により水蒸気STを発生させ、水蒸気STにより蒸気タービン20を駆動させて発電する蒸気サイクルによる蒸気発電を併用するようにしている。但し、蒸気サイクル発電を併用するこの構成はガス化発電プラントの高効率化を図るためのものであり、ガス化発電プラントにおける必須の構成ではない。   In the gasification power plant according to the present embodiment, the exhaust heat recovery device 8 that recovers the heat of the combustion exhaust gas FG and the steam ST by the exhaust heat recovery device 8 using the condensate FW supplied from the condenser 15. And steam power generation by a steam cycle in which the steam turbine 20 is driven by the steam ST to generate power. However, this configuration using steam cycle power generation is intended to increase the efficiency of the gasification power plant, and is not an essential configuration in the gasification power plant.

以下、本実施形態にかかるガス化発電プラントをさらに詳細に説明する。   Hereinafter, the gasification power plant according to the present embodiment will be described in more detail.

ガス化原料1としては、例えば、石炭、石油、バイオマス、廃棄物等が挙げられるが、これらに限定されるものではない。   Examples of the gasification raw material 1 include, but are not limited to, coal, petroleum, biomass, waste, and the like.

ガス化剤2は、例えば、酸素、空気、酸素富化空気等が挙げられるが、これらに限定されるものではない。   Examples of the gasifying agent 2 include, but are not limited to, oxygen, air, oxygen-enriched air, and the like.

ガス化装置3は、ガス化原料1をガス化剤2によりガス化して、生成ガス4を得る装置であれば、特に限定されるものではない。例えば、固定床、噴流床方式のガス化炉等を使用することができる。   The gasifier 3 is not particularly limited as long as the gasifier 1 is gasified with the gasifying agent 2 to obtain the product gas 4. For example, a fixed bed, spouted bed type gasification furnace or the like can be used.

ガス精製装置5としては、生成ガス4から硫黄や灰分等の夾雑物を除去する乾式精製装置、生成ガス4から硫黄や灰分等の夾雑物のみならずNHを除去する湿式精製装置が挙げられる。また、使用する燃焼装置及びガス化発電設備によっては、フィルタ等により煤塵のみを除去するガス精製装置も含まれる。 Examples of the gas purification device 5 include a dry purification device that removes impurities such as sulfur and ash from the product gas 4, and a wet purification device that removes NH 3 as well as impurities such as sulfur and ash from the product gas 4. . In addition, depending on the combustion apparatus and gasification power generation equipment used, a gas purification apparatus that removes only soot by a filter or the like is also included.

ガスタービン(燃焼装置)6は、ガス化ガス燃料4aを量論混合比以下で燃焼させ、発電機7を運転する動力を発生させるものである。ここで、「ガス化ガス燃料4aを量論混合比以下で燃焼させる」の意味は、還元燃焼方式で燃焼させる燃焼方式ではないことを意味している。換言すると、ガス化ガス燃料4aと当量(化学量論量)以上の酸素又は当量以上の酸素を含むガスにより燃焼させることを意味している。具体例としては、ガスタービンやエンジン機関等で最も一般的に利用されている拡散燃焼や、部分希薄予混合燃焼に代表される疑似均一燃焼が挙げられるが、これらに限られるものではない。   The gas turbine (combustion device) 6 burns the gasified gas fuel 4a at a stoichiometric mixture ratio or less to generate power for operating the generator 7. Here, the meaning of “combusting the gasified gas fuel 4a at a stoichiometric mixture ratio or less” means that the combustion method is not a combustion method in which the gasification gas fuel 4a is combusted by a reduction combustion method. In other words, it means that the gasified gas fuel 4a is burned with an oxygen equivalent to (stoichiometric amount) or more or a gas containing oxygen equivalent to or more. Specific examples include diffusion combustion that is most commonly used in gas turbines, engine engines, and the like, and quasi-uniform combustion typified by partially lean premixed combustion, but are not limited thereto.

ガス化ガス燃料4aを量論混合比以下で燃焼させる場合、ガス化ガス燃料4aに含まれるNHに起因するフュエルNOxが発生する。即ち、ガス精製装置5によって生成ガス4を湿式精製する場合であってもNHを完全に除去できるわけではなく、NHの残留分に起因してフュエルNOxが発生する。また、ガス精製装置5によって生成ガス4を乾式精製または煤塵のみを除去する精製を行う場合には、生成ガス4からNHは除去されず、これに起因してフュエルNOxが発生する。本発明は、燃焼排ガスAのフュエルNOx濃度の指標となる値、即ちガス化ガス燃料4aに含まれるNHのガスタービン燃焼器6bでのNOxへの転換率とガス化ガス燃料4aの水素濃度との相関を示す相関関数に基づいて燃焼排ガスAのNOx濃度を予測するものである。 When the gasified gas fuel 4a is burned at a stoichiometric mixture ratio or lower, fuel NOx resulting from NH 3 contained in the gasified gas fuel 4a is generated. That is, even when the product gas 4 is wet-purified by the gas purification device 5, NH 3 cannot be completely removed, and fuel NOx is generated due to the residual NH 3 . Further, when the gas purification device 5 performs dry purification of the product gas 4 or purification for removing only dust, NH 3 is not removed from the product gas 4, and fuel NOx is generated due to this. The present invention provides a value that is an index of the fuel NOx concentration of the combustion exhaust gas A, that is, the conversion rate of NH 3 contained in the gasified gas fuel 4a to NOx in the gas turbine combustor 6b and the hydrogen concentration of the gasified gas fuel 4a. The NOx concentration of the combustion exhaust gas A is predicted on the basis of a correlation function indicating the correlation.

例えば、近年、燃焼装置としてレシプロエンジン等のガスエンジンを採用した小規模発電設備の検討も行われつつある。このような小規模発電設備においては、ガス化ガス燃料の顕熱の損失を防ぐ観点から、乾式精製あるいは粉塵のみを除く精製処理がされたガス化ガス燃料が用いられる場合が多い。また、レシプロエンジン等のガスエンジンでは、ガス化ガス燃料を量論混合比以下で燃焼させるのが一般的である。したがって、ガス化発電プラントからフュエルNOxが発生しやすい状況になることが懸念されるが、本発明は、このような状況下においても、ガスエンジンから排出される燃焼排ガスのNOx濃度を予測することができるものである。   For example, in recent years, a small-scale power generation facility that employs a gas engine such as a reciprocating engine as a combustion device is being studied. In such a small-scale power generation facility, from the viewpoint of preventing the loss of sensible heat of gasified gas fuel, gasified gas fuel that has been subjected to dry refining or purification treatment that excludes only dust is often used. In a gas engine such as a reciprocating engine, gasified gas fuel is generally burned at a stoichiometric mixture ratio or less. Accordingly, there is a concern that fuel NOx is likely to be generated from the gasification power plant, but the present invention predicts the NOx concentration of the combustion exhaust gas discharged from the gas engine even under such a situation. It is something that can be done.

次に、記憶装置16は、例えば、ハードディスク、RAM等である。記憶装置16には、ガス化ガス燃料4aの水素濃度とガス化ガス燃料4aに含まれるNHのガスタービン燃焼器6bでのNOxへの転換率との相関について予め求められた相関関数が記憶されている。 Next, the storage device 16 is, for example, a hard disk, a RAM, or the like. The storage device 16 stores a correlation function obtained in advance for the correlation between the hydrogen concentration of the gasified gas fuel 4a and the conversion rate of NH 3 contained in the gasified gas fuel 4a into NOx in the gas turbine combustor 6b. Has been.

水素濃度測定装置17は、ガス化ガス燃料4aの水素濃度を測定することができる装置であれば、特に限定されるものではないが、例えば、ガスクロマトグラフ装置(装置名:AG-1000TTH、メーカー名:ヤナコ分析工業株式会社)を使用すればよい。尚、ガス化ガス燃料4aの水素濃度の測定は、ガス化ガス燃料4aが燃焼装置6に供給される前に行う。これにより、燃焼装置6で燃焼されるガス化ガス燃料4aに由来する燃焼排ガスAのNOx濃度を事前に予測することができる。   The hydrogen concentration measuring device 17 is not particularly limited as long as it can measure the hydrogen concentration of the gasified gas fuel 4a. For example, a gas chromatograph device (device name: AG-1000TTH, manufacturer name) : Yanaco Analytical Industrial Co., Ltd.) may be used. Note that the hydrogen concentration of the gasified gas fuel 4 a is measured before the gasified gas fuel 4 a is supplied to the combustion device 6. Thereby, the NOx concentration of the combustion exhaust gas A derived from the gasified gas fuel 4a combusted by the combustion device 6 can be predicted in advance.

演算装置11及び制御手段14は、CPU(中央演算装置)またはMPU(超小型演算装置)により構成される。   The arithmetic device 11 and the control means 14 are comprised by CPU (central processing unit) or MPU (microminiature arithmetic device).

演算装置11では、記憶装置16に記憶されている相関関数と、水素濃度測定装置17から入力される水素濃度測定データとに基づいて演算処理が行われ、演算結果に基づいて制御手段14により還元剤供給手段13に命令信号が送られ、その動作が制御されて、還元剤10が燃焼排ガスAに供給される。本実施形態では、排煙脱硝設備12を燃焼排ガスAの流路に設けて、排煙脱硝設備12に還元剤10を供給することによって燃焼排ガスA中のNOxを還元するようにしているが、還元剤10の供給方法はこれに限定されるものではない。例えば、燃焼排ガスAが流通するラインに還元剤10を直接供給するようにしてもよいし、燃焼排ガスAが流通するラインと排煙脱硝設備12の双方に還元剤10を供給するようにしてもよい。   In the arithmetic unit 11, arithmetic processing is performed based on the correlation function stored in the storage device 16 and the hydrogen concentration measurement data input from the hydrogen concentration measuring device 17, and reduction is performed by the control means 14 based on the arithmetic result. A command signal is sent to the agent supply means 13, its operation is controlled, and the reducing agent 10 is supplied to the combustion exhaust gas A. In this embodiment, the flue gas denitration facility 12 is provided in the flow path of the flue gas A, and NOx in the flue gas A is reduced by supplying the reducing agent 10 to the flue gas denitration facility 12. The supply method of the reducing agent 10 is not limited to this. For example, the reducing agent 10 may be directly supplied to a line through which the combustion exhaust gas A circulates, or the reducing agent 10 may be supplied to both the line through which the combustion exhaust gas A circulates and the flue gas denitration facility 12. Good.

還元剤10としては、NOxを還元しうる物質であれば特に限定されないが、例えば、アンモニア(NH)や尿素を用いることができる。 The reducing agent 10 is not particularly limited as long as it is a substance that can reduce NOx. For example, ammonia (NH 3 ) or urea can be used.

還元剤供給手段13は、還元剤10を貯留するタンク13aと、開閉動作によってタンク13aから燃焼排ガスAへの還元剤10の供給を制御するバルブ13bとを備えている。本実施形態では、還元剤10を排熱回収装置8と排煙脱硝設備12とに流入する燃焼排ガスAに供給するようにして、無触媒脱硝方式による脱硝処理と触媒脱硝方式による脱硝処理とを併用するようにしているが、必ずしもこの形態に限定されるものではない。例えば、還元剤10の供給を排熱回収装置8よりも前段で行うようにしてもよい。また、排煙脱硝設備12よりも前段で燃焼排ガスAのNOx濃度が十分に低下する場合には、排煙脱硝設備12への還元剤10の供給ラインを省略してもよい。制御手段14からの命令信号に応答して駆動するソレノイド等が組み込まれており、ソレノイドの駆動に伴ってバルブ13bが開閉動作するように構成されている。また、還元剤10の供給量の制御は、還元剤供給手段13のバルブ13bの開度により調整してもよいし、開時間を調整することで制御するようにしてもよい。また、還元剤10を供給する際には、還元剤10を水等の媒体で希釈し、ノズル等から噴霧して燃焼ガスAの全体に還元剤10が接触するようにすることが好適である。   The reducing agent supply means 13 includes a tank 13a for storing the reducing agent 10 and a valve 13b for controlling the supply of the reducing agent 10 from the tank 13a to the combustion exhaust gas A by an opening / closing operation. In the present embodiment, the reducing agent 10 is supplied to the combustion exhaust gas A flowing into the exhaust heat recovery device 8 and the exhaust gas denitration equipment 12, and the denitration process by the non-catalytic denitration system and the denitration process by the catalytic denitration system are performed. Although used together, it is not necessarily limited to this form. For example, the reducing agent 10 may be supplied before the exhaust heat recovery device 8. Further, when the NOx concentration of the combustion exhaust gas A is sufficiently lowered before the exhaust gas denitration facility 12, the supply line of the reducing agent 10 to the exhaust gas denitration facility 12 may be omitted. A solenoid or the like that is driven in response to a command signal from the control means 14 is incorporated, and the valve 13b opens and closes as the solenoid is driven. The supply amount of the reducing agent 10 may be controlled by adjusting the opening of the valve 13b of the reducing agent supply means 13, or by adjusting the opening time. Further, when the reducing agent 10 is supplied, it is preferable that the reducing agent 10 is diluted with a medium such as water and sprayed from a nozzle or the like so that the reducing agent 10 contacts the entire combustion gas A. .

還元剤10の供給量については、燃焼排ガスAのNOx濃度と当量に相当する量とすればよい。例えば、還元剤10としてNHを使用する場合には、以下の化学反応式1より、1モルのNOxの還元に必要なNHは理論的には1モルであるから、NOxと当モル量のNHを供給すればよい。但し、NOxの還元分解率よりも還元剤10の分解率が低い場合には、これらの比率を考慮した上で、燃焼排ガスAのNOx濃度と当量に相当する量となるように、還元剤10の供給量を少なく調整することが好適である。
(化学反応式1)NO+NH+1/4O → N+3/2H
The supply amount of the reducing agent 10 may be an amount corresponding to the NOx concentration and equivalent of the combustion exhaust gas A. For example, when NH 3 is used as the reducing agent 10, from the chemical reaction formula 1 below, the amount of NH 3 required for the reduction of 1 mol of NOx is theoretically 1 mol. NH 3 may be supplied. However, when the decomposition rate of the reducing agent 10 is lower than the NOx reductive decomposition rate, the reducing agent 10 has an amount equivalent to the NOx concentration and equivalent of the combustion exhaust gas A in consideration of these ratios. It is preferable to adjust the supply amount of the resin to be small.
(Chemical reaction formula 1) NO + NH 3 + 1 / 4O 2 → N 2 + 3 / 2H 2 O

このように、燃焼排ガスAのNOx濃度の予測値に応じて還元剤10を供給することによって、過剰な還元剤の供給を防ぎながら、燃焼排ガスAに含まれるNOxの濃度を十分に低減することができる。したがって、排煙脱硝設備12に流入する前の段階において燃焼排ガスAのNOx濃度を低下させて、排煙脱硝設備12の触媒にかかる負荷を大幅に低減することができ、触媒の交換間隔の長期間化や、排煙脱硝設備12の管理にかかる手間及びコストを低減できる。また、排煙脱硝設備12の前段において、過剰な還元剤の供給を防ぎながら、燃焼排ガスAに含まれるNOxの濃度を十分に低減して規制値以下とできる場合には、排煙脱硝設備12の省略が可能となる。   In this way, by supplying the reducing agent 10 according to the predicted value of the NOx concentration of the combustion exhaust gas A, the concentration of NOx contained in the combustion exhaust gas A is sufficiently reduced while preventing the supply of excessive reducing agent. Can do. Therefore, the NOx concentration of the combustion exhaust gas A can be reduced at the stage before flowing into the flue gas denitration facility 12, and the load on the catalyst of the flue gas denitration facility 12 can be greatly reduced, and the catalyst replacement interval is long. It is possible to reduce time and cost and time and cost for managing the exhaust gas denitration facility 12. In addition, if the concentration of NOx contained in the combustion exhaust gas A can be sufficiently reduced below the regulation value while preventing excessive supply of the reducing agent before the exhaust gas denitration facility 12, the exhaust gas denitration facility 12. Can be omitted.

次に、ガス化ガス燃料4aの水素濃度とガス化ガス燃料4aに含まれるNHのガスタービン燃焼器6bでのNOxへの転換率との相関について予め求められた相関関数から、燃焼排ガスAのNOx濃度を求める方法について詳細に説明する。 Next, from the correlation function obtained in advance for the correlation between the hydrogen concentration of the gasified gas fuel 4a and the conversion rate of NH 3 contained in the gasified gas fuel 4a into NOx in the gas turbine combustor 6b, the combustion exhaust gas A A method for obtaining the NOx concentration will be described in detail.

ガス化ガス燃料4aの水素濃度とガス化ガス燃料4aに含まれるNHのガスタービン燃焼器6bでのNOxへの転換率との相関は、以下のようにして求めることができる。即ち、ガスタービン燃焼器6bにおける燃焼条件を一定とし、且つガス化ガス燃料4aのNH濃度を一定とした場合に、ガス化ガス燃料4aの水素濃度条件を複数として、それぞれの水素濃度条件におけるNHのNOxへの転換率を計測することで、ガス化ガス燃料4aの水素濃度条件とNHのNOxへの転換率との一義的な関係を求めることができる。 The correlation between the hydrogen concentration of the gasified gas fuel 4a and the conversion rate of NH 3 contained in the gasified gas fuel 4a into NOx in the gas turbine combustor 6b can be obtained as follows. That is, when the combustion conditions in the gas turbine combustor 6b are constant and the NH 3 concentration of the gasified gas fuel 4a is constant, a plurality of hydrogen concentration conditions of the gasified gas fuel 4a are set, and the respective hydrogen concentration conditions are by measuring the rate of conversion into NOx of NH 3, it can be found a unique relation between the hydrogen concentration conditions and conversion to NOx of NH 3 in the gasification gas fuel 4a.

ガス化ガス燃料4aに含まれるNHのガスタービン燃焼器6bでのNOxへの転換率(C.R.)は、以下に示す数式1で表される。 The conversion rate (CR) of NH 3 contained in the gasified gas fuel 4a into NOx in the gas turbine combustor 6b is expressed by the following formula 1.

Figure 2009275680
Figure 2009275680

数式1において、[NOx]は燃焼装置(ガスタービン燃焼器6b)の燃焼排ガスAの総NOx濃度であり、[NOxth]はサーマルNOx濃度であり、[NH]はガス化ガス燃料のNH濃度である。フュエルNOx濃度は、[NOx]と[NOxth]の差として求められる。 In Equation 1, [NOx] is the total NOx concentration in the combustion exhaust gas A combustion apparatus (gas turbine combustor 6b), [NOx th] is the thermal NOx concentration, [NH 3] is NH gasification gas fuel 3 concentrations. The fuel NOx concentration is obtained as a difference between [NOx] and [NOx th ].

サーマルNOx濃度は、燃焼装置に供給するガス化ガス燃料のNH濃度を0としたときの燃焼排ガスのNOx濃度を測定することで求めることができる。NOx濃度の測定は、例えば堀場製作所製MEXA9100分析計を利用した化学発光法により行うことができる。 The thermal NOx concentration can be obtained by measuring the NOx concentration of the combustion exhaust gas when the NH 3 concentration of the gasified gas fuel supplied to the combustion apparatus is 0. The NOx concentration can be measured by, for example, a chemiluminescence method using a MEXA9100 analyzer manufactured by Horiba.

NH濃度は一定値としているので、その値を適用すればよい。 Since the NH 3 concentration is a constant value, that value may be applied.

燃焼排ガスAの総NOx濃度は、上記と同様、例えば堀場製作所製MEXA9100分析計を利用した化学発光法により行うことができる。   The total NOx concentration of the combustion exhaust gas A can be determined by the chemiluminescence method using a MEXA9100 analyzer manufactured by Horiba, for example, as described above.

燃焼排ガスAの総NOx濃度を複数の水素濃度条件のガス化ガス燃料4aに対して測定し、データを取得することで、ガス化ガス燃料4aの水素濃度とNHのNOxへの転換率との関係を一義的に求めることができる。具体的には、水素濃度が低濃度(例えば30vol%以下)の領域では、水素濃度が高まるにつれて転換率が直線的に低下し、水素濃度が高濃度(例えば30vol%超)の領域では、水素濃度が高まるにつれて転換率が緩やかに上昇する。この関係から、例えば最小二乗法により近似式を求めることができる。 Measuring the total NOx concentration in the combustion exhaust gas A to a plurality of gasification gas fuel 4a of the hydrogen concentration conditions, by acquiring data, and conversion to NOx concentration of hydrogen and NH 3 in the gasification gas fuel 4a The relationship can be uniquely determined. Specifically, in the region where the hydrogen concentration is low (for example, 30 vol% or less), the conversion rate decreases linearly as the hydrogen concentration increases, and in the region where the hydrogen concentration is high (for example, more than 30 vol%), hydrogen The conversion rate increases gradually as the concentration increases. From this relationship, an approximate expression can be obtained by, for example, the least square method.

したがって、この近似式を利用することで、燃焼装置(ガスタービン燃焼器6b)の燃焼条件及びNH濃度条件が一定の場合に、ガス化ガス燃料4aの水素濃度の測定値を得ることによって、NHのNOxへの転換率を求めることができる。そして、NHのNOxへの転換率から、フュエルNOx濃度とサーマルNOx濃度を加味した総NOx濃度を予測することができる。 Therefore, by using this approximate expression, when the combustion condition of the combustion apparatus (gas turbine combustor 6b) and the NH 3 concentration condition are constant, the measurement value of the hydrogen concentration of the gasified gas fuel 4a is obtained. The conversion rate of NH 3 to NOx can be determined. Then, from the conversion rate of NH 3 to NOx, the total NOx concentration taking into account the fuel NOx concentration and the thermal NOx concentration can be predicted.

ここで、上述の予測方法では、ガス化ガス燃料4aのNH濃度を一定としたが、ガス化ガス燃料4aの水素濃度とガス化ガス燃料4aに含まれるNHのガスタービン燃焼器6bでのNOxへの転換率との相関を、NH濃度条件毎に複数求めるようにしてもよい。この場合には、ガス化ガス燃料4aのNH濃度を測定し、NH濃度の測定値と同条件のNH濃度としたときに得られた相関関数を選択し、この相関関数を用いてガス化ガス燃料4aの水素濃度の測定値から、NHのNOxへの転換率を求めることができる。つまり、ガス化ガス燃料4aのNH濃度の測定値に適合する相関関数を選択し、これをNHのNOxへの転換率を求めるための相関関数として採用するようにしてもよい。この場合には、あらゆるNH濃度に対してNHのNOxへの転換率を予測することが可能となる。尚、ガス化ガス燃料中のNH濃度を0〜3000ppm程度まで変化させた場合、NH濃度の増加に伴い転換率は低下する傾向があることが本願発明者の実験により確認されている。 Here, in the above-described prediction method, the NH 3 concentration of the gasified gas fuel 4a is constant. However, the hydrogen concentration of the gasified gas fuel 4a and the gas turbine combustor 6b of NH 3 contained in the gasified gas fuel 4a are used. A plurality of correlations with the conversion rate to NOx may be obtained for each NH 3 concentration condition. In this case, by measuring the NH 3 concentration of the gasification gas fuels 4a, select the correlation function obtained when the NH 3 concentration measurement under the same conditions of the NH 3 concentration, using the correlation function From the measured value of the hydrogen concentration of the gasified gas fuel 4a, the conversion rate of NH 3 into NOx can be obtained. That is, a correlation function that matches the measured value of the NH 3 concentration of the gasified gas fuel 4a may be selected and used as a correlation function for determining the conversion rate of NH 3 to NOx. In this case, it is possible to predict the conversion rate of NH 3 to NOx for all NH 3 concentrations. In the case of changing the NH 3 concentration of the gasification gas in the fuel to about 0~3000Ppm, it has been confirmed by the present inventors experiments the conversion rate with increasing NH 3 concentration tends to decrease.

この場合には、図1に示すガス化発電プラントに、燃焼装置6に供給される前のガス化ガス燃料4aのNH濃度を測定する装置(例えば、イオン選択電極法によるアンモニア濃度計(NH-26:京都電子工業株式会社))をさらに備え、記憶装置16には、NH濃度条件毎の複数の相関関数を記憶させ、NH濃度を測定する装置により測定されたNH濃度と合致するNH濃度条件の相関関数を演算装置11で選択して、水素濃度測定値からNHのNOxへの転換率を求めることができる。 In this case, the gasification power plant shown in FIG. 1 is a device that measures the NH 3 concentration of the gasified gas fuel 4a before being supplied to the combustion device 6 (for example, an ammonia concentration meter (NH -26: Kyoto Electronics Manufacturing Co., Ltd.)) further comprises a in the storage device 16, NH 3 is stored a plurality of the correlation function for each concentration conditions, consistent with the NH 3 concentration measured by the apparatus for measuring the NH 3 concentration The correlation function of the NH 3 concentration condition to be selected can be selected by the arithmetic unit 11 to obtain the conversion rate of NH 3 to NOx from the measured hydrogen concentration.

(第二の実施形態)
本発明のガス化発電プラントの第二の実施形態を図2に示す。
(Second embodiment)
FIG. 2 shows a second embodiment of the gasification power plant of the present invention.

第二の実施形態にかかるガス化発電プラントは、第一の実施形態にかかるガス化発電プラントとは、以下の点で異なる。   The gasification power plant according to the second embodiment is different from the gasification power plant according to the first embodiment in the following points.

即ち、記憶装置16には、ガス化ガス燃料4aの水素濃度とガス化ガス燃料4aに含まれるNHのガスタービン燃焼器6bでのNOxへの転換率との相関について予め求められた相関関数のみならず、NOxの還元に最適な反応温度とCO濃度との相関関係も記憶されている。 That is, the storage device 16 has a correlation function obtained in advance for the correlation between the hydrogen concentration of the gasified gas fuel 4a and the conversion rate of NH 3 contained in the gasified gas fuel 4a into NOx in the gas turbine combustor 6b. In addition, the correlation between the reaction temperature optimum for NOx reduction and the CO concentration is also stored.

また、燃焼排ガスAのCO濃度を測定するCO濃度測定装置18が備えられている。   Further, a CO concentration measuring device 18 for measuring the CO concentration of the combustion exhaust gas A is provided.

さらに、還元剤供給手段13の構成が異なる。即ち、第二の実施形態にかかるガス化発電プラントの還元剤供給手段13では、燃焼排ガスAの温度が異なる位置に還元剤10を供給しうる複数の還元剤供給部13cが備えられている。そして、制御手段14では、還元剤供給手段13から供給される還元剤10の量を制御するだけでなく、複数の還元剤供給部13cのうち最適反応温度に適合する位置の還元剤供給部13cを選択する制御が行われる。   Furthermore, the configuration of the reducing agent supply means 13 is different. That is, the reducing agent supply means 13 of the gasification power plant according to the second embodiment includes a plurality of reducing agent supply units 13c that can supply the reducing agent 10 to positions where the temperature of the combustion exhaust gas A is different. The control unit 14 not only controls the amount of the reducing agent 10 supplied from the reducing agent supply unit 13, but also the reducing agent supply unit 13c at a position suitable for the optimum reaction temperature among the plurality of reducing agent supply units 13c. Control to select is performed.

要するに、第二の実施形態にかかるガス化発電プラントでは、第一の実施形態における燃焼排ガスAのNOx濃度に応じた還元剤10の供給量の制御の他に、上記化学反応式1の最適反応温度に影響を与える燃焼排ガスAのCO濃度を測定し、CO濃度の測定値から、還元剤10の最適供給位置を決定する点に特徴がある。燃焼排ガスAに存在するCOは、ガスタービン燃焼器6bにおける未燃焼成分である。そして、燃焼排ガスAはガスタービン燃焼器6bの出口から煙突に向かうまでの間に徐々に温度が低下していることから、上記化学反応式1の正方向(化学反応式1の右辺に向かう方向)の反応を促進する最適反応温度帯域の燃焼排ガスに還元剤10を供給することで、確実にNOx濃度を低減するものである。   In short, in the gasification power plant according to the second embodiment, in addition to the control of the supply amount of the reducing agent 10 according to the NOx concentration of the combustion exhaust gas A in the first embodiment, the optimum reaction of the above chemical reaction formula 1 It is characterized in that the CO concentration of the combustion exhaust gas A that affects the temperature is measured, and the optimum supply position of the reducing agent 10 is determined from the measured value of the CO concentration. CO present in the combustion exhaust gas A is an unburned component in the gas turbine combustor 6b. The temperature of the combustion exhaust gas A gradually decreases from the outlet of the gas turbine combustor 6b to the chimney, so that the positive direction of the chemical reaction formula 1 (the direction toward the right side of the chemical reaction formula 1). The NOx concentration is surely reduced by supplying the reducing agent 10 to the combustion exhaust gas in the optimum reaction temperature range that promotes the reaction (1).

NOxの還元に最適な反応温度とCO濃度との相関関係は、以下のようにして求めることができる。即ち、複数の反応温度帯域において、CO濃度を振りながら上記化学反応式1を進行させ、NOxのNへの還元分解と、NHのNへの分解とが最も効率良く起こる反応温度帯域、即ち、「反応窓」を探索してこれを最適反応温度帯域とする。そして、最適温度帯域とCO濃度との関係を求めることにより、NOxの還元に最適な反応温度とCO濃度との相関関係が得られる。この相関関係は実験的に求めてもよいし、素反応を考慮した数値解析を利用し、理論計算により求めてもよい。また、複数の文献を利用してデータベースを作成することによって求めるようにしてもよい。 The correlation between the optimum reaction temperature for the reduction of NOx and the CO concentration can be obtained as follows. That is, in the plurality of reaction temperature zones, the chemical reaction formula 1 is advanced while varying the CO concentration, and the reaction temperature zone in which the reductive decomposition of NOx into N 2 and the decomposition of NH 3 into N 2 occur most efficiently. That is, the “reaction window” is searched and set as the optimum reaction temperature zone. Then, by obtaining the relationship between the optimum temperature zone and the CO concentration, a correlation between the optimum reaction temperature for the reduction of NOx and the CO concentration can be obtained. This correlation may be obtained experimentally, or may be obtained by theoretical calculation using numerical analysis in consideration of elementary reactions. Further, it may be obtained by creating a database using a plurality of documents.

CO濃度測定装置18は、CO濃度を測定することができる装置であれば、特に限定されるものではないが、例えば、非分散赤外線吸収法(IRA-106:島津製作所)を使用すればよい。尚、CO濃度の測定は、ガスタービン燃焼器6bの出口付近で行うことが好ましい。   The CO concentration measuring device 18 is not particularly limited as long as it can measure the CO concentration. For example, a non-dispersive infrared absorption method (IRA-106: Shimadzu Corporation) may be used. The CO concentration is preferably measured near the outlet of the gas turbine combustor 6b.

CO濃度測定装置18によりCO濃度を測定することで、記憶装置16に記憶されている相関関係に基づき、NOxの還元に最適な反応温度が予測される。   By measuring the CO concentration by the CO concentration measuring device 18, the optimum reaction temperature for NOx reduction is predicted based on the correlation stored in the storage device 16.

次に、還元剤供給手段13の還元剤供給部13cには、熱電対(不図示)が備えられており、還元剤供給部13cの各位置における燃焼排ガスAの温度が制御手段14に送信される。そして、燃焼排ガスAのNOx濃度の予測結果と、最適反応温度の予測結果とに基づき、還元剤10の供給量の制御と、最適反応温度に適合する燃焼排ガスの温度帯域の還元剤供給部13cを選択する制御が制御手段14で行われる。   Next, the reducing agent supply unit 13 c of the reducing agent supply unit 13 includes a thermocouple (not shown), and the temperature of the combustion exhaust gas A at each position of the reducing agent supply unit 13 c is transmitted to the control unit 14. The Then, based on the prediction result of the NOx concentration of the combustion exhaust gas A and the prediction result of the optimum reaction temperature, the control of the supply amount of the reducing agent 10 and the reducing agent supply unit 13c in the combustion exhaust gas temperature band suitable for the optimum reaction temperature are performed. Control for selecting is performed by the control means 14.

以上の構成により、ガス化発電プラントから排出されるNOx量を確実に低減することができる。したがって、排煙脱硝設備12に流入する前の段階において燃焼排ガスAのNOx濃度を低下させて、排煙脱硝設備12の触媒にかかる負荷を大幅に低減することができ、触媒の交換間隔の長期間化や、排煙脱硝設備12の管理にかかる手間及びコストを低減できる。また、排煙脱硝設備12の前段において、過剰な還元剤の供給を防ぎながら、燃焼排ガスAに含まれるNOxの濃度を十分に低減して規制値以下とし易いので、排煙脱硝設備12の省略が実現し易い。即ち、本実施形態では排煙脱硝設備12と排煙脱硝設備12に還元剤10を供給するラインが設けられているが、排煙脱硝設備12の前段において、過剰な還元剤の供給を防ぎながら、燃焼排ガスAに含まれるNOxの濃度を十分に低減して規制値以下とできる場合には、排煙脱硝設備12と排煙脱硝設備12に還元剤10を供給するラインを省略することができる。   With the above configuration, the amount of NOx discharged from the gasification power plant can be reliably reduced. Therefore, the NOx concentration of the combustion exhaust gas A can be reduced at the stage before flowing into the flue gas denitration facility 12, and the load on the catalyst of the flue gas denitration facility 12 can be greatly reduced, and the catalyst replacement interval is long. It is possible to reduce time and cost and time and cost for managing the exhaust gas denitration facility 12. Further, in the previous stage of the flue gas denitration facility 12, it is easy to sufficiently reduce the concentration of NOx contained in the combustion exhaust gas A to be below the regulation value while preventing excessive supply of the reducing agent. Is easy to realize. That is, in the present embodiment, the flue gas denitration facility 12 and a line for supplying the reducing agent 10 to the flue gas denitration facility 12 are provided, but in the preceding stage of the flue gas denitration facility 12, the supply of excessive reducing agent is prevented. When the concentration of NOx contained in the combustion exhaust gas A can be sufficiently reduced to be below the regulation value, the exhaust gas denitration equipment 12 and the line for supplying the reducing agent 10 to the exhaust gas denitration equipment 12 can be omitted. .

上述の形態は本発明の好適な形態の一例ではあるがこれに限定されるものではなく本発明の要旨を逸脱しない範囲において種々変形実施可能である。例えば、燃焼排ガスAに含まれるNOやNO成分、さらにはCHやH成分がNOxの還元反応に与える影響を加味した上で、気相脱硝反応の適正化を行うようにしてもよい。 The above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto, and various modifications can be made without departing from the gist of the present invention. For example, N 2 O and NO 2 components contained in the combustion exhaust gas A, even more upon adding the effect of CH 4 or H 2 component has on the reduction reaction of NOx, so as to perform optimization of the gas phase denitration reaction Also good.

また、上述の実施形態では、フュエルNOxの発生要因たる窒素化合物をNHとして説明したが、HCN等、フュエルNOxの発生要因たる他の窒素化合物を含めた全窒素化合物のNOxへの転換率に対して本願発明を適用するようにしてもよい。 In the above-described embodiment, the nitrogen compound that causes fuel NOx generation is described as NH 3. However, the conversion rate of all nitrogen compounds including other nitrogen compounds that cause fuel NOx generation, such as HCN, to NOx is increased. On the other hand, the present invention may be applied.

さらに、上述の実施形態におけるNOx排出量の予測方法では、ガス化発電プラントの燃焼装置における燃焼条件は通常一定とすることから、燃焼条件を加味することなくNOx排出量を予測するようにしていたが、ガス化ガス燃料4aの水素濃度とガス化ガス燃料4aに含まれるNHのガスタービン燃焼器6bでのNOxへの転換率との複数の相関を、燃焼条件毎に複数求めるようにしてもよい。この場合には、燃焼装置を作動させる燃焼条件と同一の燃焼条件としたときに得られた相関関数を選択し、この相関関数を用いてガス化ガス燃料4aの水素濃度の測定値から、NHのNOxへの転換率を求めることができる。つまり、燃焼装置を作動させる燃焼条件に適合する相関関数を選択し、これをNHのNOxへの転換率を求めるための相関関数として採用するようにしてもよい。この場合には、あらゆる燃焼条件に対してNHのNOxへの転換率を予測することが可能となる。 Furthermore, in the method for predicting NOx emissions in the above-described embodiment, since the combustion conditions in the combustion apparatus of the gasification power plant are normally constant, the NOx emissions are predicted without taking combustion conditions into account. However, a plurality of correlations between the hydrogen concentration of the gasified gas fuel 4a and the conversion rate of NH 3 contained in the gasified gas fuel 4a into NOx in the gas turbine combustor 6b are obtained for each combustion condition. Also good. In this case, the correlation function obtained when the combustion condition is the same as the combustion condition for operating the combustion apparatus is selected, and the NH value from the measured value of the hydrogen concentration of the gasified gas fuel 4a is calculated using this correlation function. Conversion rate of 3 to NOx can be obtained. That is, a correlation function that matches the combustion conditions for operating the combustion apparatus may be selected and used as a correlation function for determining the conversion rate of NH 3 to NOx. In this case, it is possible to predict the conversion rate of NH 3 to NOx for all combustion conditions.

以下に本発明の実施例を説明するが、本発明はこれら実施例に限られるものではない。   Examples of the present invention will be described below, but the present invention is not limited to these examples.

(実施例1)
内側を耐火材で覆った内径90mm、長さ1000mmの円筒型の燃焼室31、一次空気導入部32および燃料噴射ノズル33からなる燃焼器30(図3参照)を用いて実験を行った。燃焼用空気はすべて一次空気導入部32から供給した。
Example 1
An experiment was conducted using a combustor 30 (see FIG. 3) comprising a cylindrical combustion chamber 31 having an inner diameter of 90 mm and a length of 1000 mm, an inner side covered with a refractory material, a primary air introduction part 32 and a fuel injection nozzle 33. All the combustion air was supplied from the primary air introduction section 32.

本実験で使用した供試バーナは、口径1.5mm×12、吹き出し角度θ=90゜の燃料噴射ノズルと内径24.0mm、外径36.4mm、旋回角度45゜の一次空気旋回器から構成した。スワール数Sは0.84とした。   The test burner used in this experiment consisted of a fuel injection nozzle with a caliber of 1.5 mm × 12, a blowing angle θ = 90 °, a primary air swirler with an inner diameter of 24.0 mm, an outer diameter of 36.4 mm, and a swivel angle of 45 °. did. The swirl number S was 0.84.

はじめに、燃焼器30を使用して、ガス化ガス燃料の燃料発熱量(HHV:高位発熱量)とガス化ガス燃料に含まれるNHの燃焼器30でのNOxへの転換率(以下、NHのNOxへの転換率と呼ぶ)との関係について、ガス化ガス燃料の主要な可燃性成分であるCOとHのモル比をパラメータとして検討した。 First, using the combustor 30, the fuel calorific value (HHV: higher calorific value) of the gasification gas fuel and the conversion rate of NH 3 contained in the gasification gas fuel into NOx in the combustor 30 (hereinafter referred to as NH 3 ). relationship between 3 is referred to as a conversion to NOx of), were studied molar ratio of CO and H 2 is the major combustible components of gasification gas fuel as parameters.

実験条件は以下の通りとした。ガス化ガス燃料中のNH濃度は1000ppmvとし、CH濃度は0ppmとした。燃焼器から排出されるガスの平均温度(Tex)は1773Kに維持した。ガス化ガス燃料中のCO/H(モル比)は0.43,1.00及び2.33とし、この条件を維持しつつ、Nによる希釈によってガス化ガス燃料の燃料発熱量を調整し、燃焼温度Texは空気供給量によって調整した。 The experimental conditions were as follows. The NH 3 concentration in the gasified gas fuel was 1000 ppmv, and the CH 4 concentration was 0 ppm. The average temperature (T ex ) of the gas discharged from the combustor was maintained at 1773K. The CO / H 2 (molar ratio) in the gasified gas fuel is 0.43, 1.00, and 2.33, and while maintaining this condition, the fuel heating value of the gasified gas fuel is adjusted by dilution with N 2 The combustion temperature T ex was adjusted by the air supply amount.

燃焼排ガスは、燃焼室出口ダクト中心軸上に挿入した水冷プローブ(1点)によりサンプリングし、CO、COについては非分散赤外線吸収法により、NOx、O、THCはそれぞれ化学発光法、磁気圧力法、水素炎イオン検出法により濃度を測定した(堀場製作所製MEXA9100分析計を使用)。また、実験はすべて大気圧にて実施した。 The combustion exhaust gas is sampled by a water-cooled probe (one point) inserted on the central axis of the combustion chamber outlet duct, and CO and CO 2 are analyzed by a non-dispersive infrared absorption method. NOx, O 2 and THC are respectively measured by a chemiluminescence method and a magnetic field. The concentration was measured by a pressure method and a flame ion detection method (using a MEXA9100 analyzer manufactured by Horiba, Ltd.). All experiments were performed at atmospheric pressure.

結果を図4に示す。尚、図4において、Tairは供給空気の温度(K)であり、Tfuelは供給されたガス化ガス燃料の温度(K)であり、Vfuelはガス化ガス燃料の燃焼器30への燃料ノズルにおける噴射速度(m/s)である。 The results are shown in FIG. In FIG. 4, T air is the temperature (K) of the supply air, T fuel is the temperature (K) of the supplied gasification gas fuel, and V fuel is the gasification gas fuel to the combustor 30. It is the injection speed (m / s) in the fuel nozzle.

図4に示される結果から、COとHのモル比によって、NHのNOxへの転換率に差が見られることが確認された。このことから、ガス化ガス燃料の高位発熱量に対してNHのNOxへの転換率を整理しても、一義的なものとはならないことが明らかとなった。 From the results shown in FIG. 4, it was confirmed that there was a difference in the conversion ratio of NH 3 to NOx depending on the molar ratio of CO and H 2 . From this, it has been clarified that even if the conversion rate of NH 3 to NOx is arranged with respect to the higher calorific value of the gasified gas fuel, it is not unique.

そこで、燃焼排ガスのNOx濃度が変動する要因を各種パラメータから検討した結果、図4で示された結果を、ガス化ガス燃料の水素濃度を横軸とし、NHのNOxへの転換率を縦軸とすることによって、ガス化ガス燃料の水素濃度とNHのNOxへの転換率との間に、一義的な相関関係があることが明らかとなった。結果を図5に示す。 Therefore, as a result of examining the factors that fluctuate the NOx concentration of combustion exhaust gas from various parameters, the result shown in FIG. 4 is obtained by using the hydrogen concentration of gasification gas fuel as the horizontal axis and the conversion rate of NH 3 to NOx as the vertical axis. By using the axis, it became clear that there is a unique correlation between the hydrogen concentration of the gasified gas fuel and the conversion rate of NH 3 to NOx. The results are shown in FIG.

図5に示される結果から、ガス化ガス燃料の水素濃度とNHのNOxへの転換率との間の一義的な相関関係が、ガス化ガス燃料の主要な成分であるCOとHのモル比によらないことが明らかとなった。 From the results shown in FIG. 5, the unambiguous correlation between the hydrogen concentration of the gasification gas fuel and the conversion rate of NH 3 to NOx is that of CO and H 2 which are the main components of the gasification gas fuel. It became clear that it did not depend on the molar ratio.

次に、図5に示される結果から最小二乗法を用いて近似式を求めた。
C.R.(%)= −5.9×10−4×X 3+0.086×X2−4.0×X+100 ・・・(近似式1)
ここで、Xはガス化ガス燃料中の水素濃度(vol%)である。また、この場合の標準偏差は2.7%であった。
Next, an approximate expression was obtained from the results shown in FIG. 5 using the least square method.
CR (%) = − 5.9 × 10 −4 × X 3 + 0.086 × X 2 −4.0 × X + 100 (Approximation 1)
Here, X is the hydrogen concentration (vol%) in the gasified gas fuel. In this case, the standard deviation was 2.7%.

しかしながら、図5に示される関数は、ある水素濃度で最小値を示し、それよりも水素濃度が低くなった場合も、高くなった場合も転換率が高くなる傾向を示していることから、図5に示される関数の物理現象を説明する上では、近似式を水素濃度の2乗の関数として表すのがふさわしいと考えられた。そこで、最小二乗法により近似式を再計算し、以下の式を得た。
C.R.= 0.02×X2−1.8×X+80 ・・・(近似式2)
この場合の標準偏差は3.6%であった。
However, the function shown in FIG. 5 shows a minimum value at a certain hydrogen concentration, and shows a tendency that the conversion rate becomes higher when the hydrogen concentration becomes lower and higher than that. In explaining the physical phenomenon of the function shown in FIG. 5, it was considered appropriate to express the approximate expression as a function of the square of the hydrogen concentration. Therefore, the approximate expression was recalculated by the least square method to obtain the following expression.
CR = 0.02 × X 2 −1.8 × X + 80 (Approximation 2)
The standard deviation in this case was 3.6%.

近似式2からの偏差の要因は、反応ガス中の成分としてCOとNが存在することと、実験誤差との重層であると考えられる。 The cause of the deviation from the approximate expression 2 is considered to be an overlap between the presence of CO and N 2 as components in the reaction gas and the experimental error.

以上、ガス化ガス燃料の水素濃度とNHのNOxへの転換率とが、ガス化ガス燃料の主要な成分であるCOとHのモル比によらず、一義的な関係を示すことが明らかとなった。 As described above, the hydrogen concentration of the gasification gas fuel and the conversion rate of NH 3 to NOx have a unique relationship regardless of the molar ratio of CO and H 2 which are the main components of the gasification gas fuel. It became clear.

尚、本実施例で得られた結果は、ガス化ガス燃料中のNH濃度を1000ppmvで一定とし、CO/Hモル比を0.43〜2.33の範囲とし、燃焼平均温度を1500℃で一定とする条件下において燃料発熱量を変化させた場合におけるガス化ガス燃料中の水素濃度とNHのNOxへの転換率との物理的関係を解析的に検討した結果であるが、燃焼温度、NH濃度などの条件が他の条件の場合にも同様の手法で相関関数を求めることができる。 The results obtained in this example are as follows. The NH 3 concentration in the gasified gas fuel is constant at 1000 ppmv, the CO / H 2 molar ratio is in the range of 0.43 to 2.33, and the combustion average temperature is 1500. It is a result of analytically examining the physical relationship between the hydrogen concentration in the gasified gas fuel and the conversion rate of NH 3 to NOx when the fuel heating value is changed under the condition of constant at 0 ° C. The correlation function can be obtained by the same method even when the conditions such as the combustion temperature and the NH 3 concentration are other conditions.

但し、燃焼温度、NH濃度などの条件が変わった場合には、ガス化ガス燃料の水素濃度とNHのNOxへの転換率との物理的関係は保たれるものの、ガス化ガス燃料の水素濃度とNHのNOxへの転換率との関係を示す式の係数は変化するので、予め必要な条件においてガス化ガス燃料の水素濃度とNHのNOxへの転換率との関係を示す式を求めておくことにより、燃焼器出口でのNHのNOxへの転換率を予測することができる。 However, when conditions such as the combustion temperature and NH 3 concentration change, the physical relationship between the hydrogen concentration of the gasified gas fuel and the conversion rate of NH 3 to NOx is maintained, but the gasified gas fuel Since the coefficient of the equation indicating the relationship between the hydrogen concentration and the conversion rate of NH 3 to NOx changes, the relationship between the hydrogen concentration of the gasification gas fuel and the conversion rate of NH 3 to NOx is shown in advance under the necessary conditions. By obtaining the equation, the conversion rate of NH 3 to NOx at the combustor outlet can be predicted.

以上、本実施例の結果から、COとHを主要な可燃性成分とし、微量のCHを含み、残りのほとんどはCO、NとHOであるガス化ガス燃料、例えば、CHの含有率が0.1vol%未満のガス化ガス燃料において、ガス化ガス燃料の水素濃度とNHのNOxへの転換率とが、ガス化ガス燃料の主要な成分であるCOとHのモル比によらず、一義的な関係を示すことが明らかとなり、この一義的な関係を利用することで、ガス化ガス燃料の水素濃度から、燃焼器出口でのNHのNOxへの転換率を予測できることが明らかとなった。 As described above, from the results of the present example, gasified gas fuel containing CO and H 2 as main combustible components, a small amount of CH 4 , and most of the remaining being CO 2 , N 2 and H 2 O, for example, In a gasified gas fuel with a CH 4 content of less than 0.1 vol%, the hydrogen concentration of the gasified gas fuel and the conversion rate of NH 3 to NOx are the main components of the gasified gas fuel, CO and H It becomes clear that a unique relationship is shown regardless of the molar ratio of 2 , and by utilizing this unique relationship, from the hydrogen concentration of the gasified gas fuel to the NOx of NH 3 at the combustor outlet It became clear that the conversion rate could be predicted.

また、本実施形態では、窒素化合物をNHとしたが、窒素化合物をHCNとした場合であっても、NHの場合と同様、ガス化ガス燃料の水素濃度とHCNのNOxへの転換率とが、ガス化ガス燃料の主要な成分であるCOとHのモル比によらず、一義的な関係を示すことが推定された。 In the present embodiment, the nitrogen compound is NH 3 , but even when the nitrogen compound is HCN, the hydrogen concentration of the gasification gas fuel and the conversion rate of HCN to NOx are the same as in the case of NH 3. DOO is irrespective of the molar ratio of CO and H 2 is a major component of the gasification gas fuel, was estimated to exhibit unique relation.

即ち、反応素解析を行った結果、NHの場合と同様、HCNもNOxに酸化されること、NHの分解開始もHCNの分解開始もOHやOやH基が主導すること、OHやOやH基の生成量および生成速度が速くなる時間は反応温度に依存すること、OHやOやH基を生成する反応温度が最も低いのがH成分であること、空気中へのHの拡散係数は、CHやOの4倍以上の以上あることから、NHの場合と同様、ガス化ガス燃料の水素濃度とHCNのNOxへの転換率とが、ガス化ガス燃料の主要な成分であるCOとHのモル比によらず、一義的な関係を示すことが推定された。 That is, as a result of the analysis of the reactants, as in the case of NH 3 , HCN is also oxidized to NOx, the decomposition start of NH 3 and the start of decomposition of HCN are led by OH, O, and H groups, OH and The amount of generation of O and H groups and the time during which the generation rate is increased depends on the reaction temperature, the reaction temperature at which OH, O and H groups are generated is the H 2 component, and H in the air. Since the diffusion coefficient of 2 is more than four times that of CH 4 and O 2 , the hydrogen concentration of the gasification gas fuel and the conversion rate of HCN to NOx are similar to those of NH 3. regardless of the molar ratio of CO and H 2 is the main component of which is estimated to exhibit a unique relation.

したがって、窒素化合物にNHとHCNが含まれている場合においても、ガス化ガス燃料の水素濃度と窒素化合物全体のNOxへの転換率との間には一義的な相関関係があるものと推定された。 Accordingly, even when NH 3 and HCN are contained in the nitrogen compound, it is estimated that there is a unique correlation between the hydrogen concentration of the gasification gas fuel and the conversion rate of the entire nitrogen compound into NOx. It was done.

(実施例2)
燃焼排ガスのCO濃度とNOxを還元するための最適反応温度との関係について、数値解析と実験の両面から検討した。
(Example 2)
The relationship between the CO concentration of the combustion exhaust gas and the optimum reaction temperature for reducing NOx was examined from both numerical analysis and experiments.

まず、数値解析を行い、燃焼排ガスのCO濃度がNOxの還元に及ぼす影響について検討した。   First, numerical analysis was performed to examine the influence of the CO concentration of the combustion exhaust gas on the reduction of NOx.

数値解析には、MillarとBowmanによって提案された素反応スキームを使用した(文献名:Miller,J.A., and Bowman,C.T., 1989, “Mechanism and modeling of nitrogen chemistry in combustion,” Prog. Energy Combust. Sci., Vol.15, pp.287-338.)。この文献の素反応スキームは、248式の素反応からなり、考慮されている化学種は50成分である。   For the numerical analysis, the elementary reaction scheme proposed by Millar and Bowman was used (literature name: Miller, JA, and Bowman, CT, 1989, “Mechanism and modeling of nitrogen chemistry in combustion,” Prog. Energy Combust. Sci. , Vol.15, pp.287-338.). The elementary reaction scheme of this document consists of 248 elementary reactions, and the chemical species considered are 50 components.

熱力学データは、JANAFの熱力学物性値を使用し、不明の物性値については、Gibbsの標準生成エネルギーと化学平衡定数の関係から導出した。即ち、50成分の化学種が含まれる化学反応式系から、反応時間に対する各化学種濃度を求める微分方程式が50式作成できる。この50式の非線形微分方程式系をGear法を用いて解くことにより、任意の反応時間後の各化学種濃度を求めた。また、反応過程において、すべての化学種は均一に混合されているものとし、拡散・混合過程は考慮せず、反応は一定温度で進行するものとした。尚、数値解法は、Gear法に限定されるものではなく、ルンゲクッタ法等の他の数値解法を用いてもよい。   As thermodynamic data, JANAAF thermodynamic property values were used, and unknown physical property values were derived from the relationship between Gibbs standard formation energy and chemical equilibrium constants. That is, 50 differential equations for obtaining the concentration of each chemical species with respect to the reaction time can be created from a chemical reaction equation system including 50 component chemical species. The concentration of each chemical species after an arbitrary reaction time was obtained by solving this 50-type nonlinear differential equation system using the Gear method. Also, in the reaction process, all chemical species are assumed to be uniformly mixed, diffusion and mixing processes are not considered, and the reaction proceeds at a constant temperature. The numerical method is not limited to the Gear method, and other numerical methods such as the Runge-Kutta method may be used.

また、一般に、NOxの殆どはNOであることから、NOxをNOとして数値解析を行った。   In general, since most of NOx is NO, numerical analysis was performed with NOx as NO.

数値解析の条件は以下の通りとした。即ち、反応温度を800℃で一定とし、NO濃度150ppmvに対して半分の75ppmvに相当するNHを供給する条件下において、CO濃度を変えた場合について行った。燃焼排ガス中のCO2およびH2O濃度は約13%、O2濃度は約3%とし、残りはN2ガスで調整した。燃焼排ガスのCO濃度条件は、0、50、100ppmvとした。 The conditions for numerical analysis were as follows. That is, the reaction temperature was kept constant at 800 ° C., and the CO concentration was changed under the condition of supplying NH 3 corresponding to 75 ppmv, which is half of the NO concentration of 150 ppmv. The CO 2 and H 2 O concentrations in the flue gas were about 13%, the O 2 concentration was about 3%, and the remainder was adjusted with N 2 gas. The CO concentration conditions of the combustion exhaust gas were 0, 50, and 100 ppmv.

結果を図6に示す。この結果から、CO濃度が0ppmvから100ppmvに変化すると、反応時間は1/10に減少することが明らかとなった。つまり、CO濃度の上昇により、反応速度が向上する傾向が見られた。   The results are shown in FIG. From this result, it became clear that when the CO concentration was changed from 0 ppmv to 100 ppmv, the reaction time was reduced to 1/10. That is, there was a tendency for the reaction rate to improve as the CO concentration increased.

次に、実験により、燃焼排ガスのCO濃度とNOxを還元するための最適反応温度との関係について検討した。石英管を電気炉に入れ、混合したガス(NH:0.1vol%、NO:0.1vol%、O:0.5vol%、ベースガス:N)を石英管に流した。そして、電気炉により1000℃まで昇温して2.2秒間保持した後に降温し、NHとNOのモル分率を計測した。また、この実験は、混合したガスにCOを流通しない場合(0ppmv)と、COを1000ppmv流通した場合とについて実施した。 Next, the relationship between the CO concentration of the combustion exhaust gas and the optimum reaction temperature for reducing NOx was examined by experiments. Put quartz tube in an electric furnace, mixed gas (NH 3: 0.1vol%, NO : 0.1vol%, O 2: 0.5vol%, base gas: N 2) was flowed into the quartz tube. Then, the temperature was lowered after holding 2.2 seconds was heated to 1000 ° C. in an electric furnace was measured mole fraction of the NH 3 and NO. In addition, this experiment was performed for the case where CO was not circulated through the mixed gas (0 ppmv) and the case where CO was circulated 1000 ppmv.

結果を図7に示す。COを流通しない場合(0ppmv)においてNH及びNO双方のモル分率が最も低くなったのは、900℃付近であった。また、COを1000ppmv流通した場合においてNH及びNO双方のモル分率が最も低くなったのは、800℃付近であった。 The results are shown in FIG. In the case where no CO was circulated (0 ppmv), the lowest NH 3 and NO molar fraction was around 900 ° C. Moreover, when 1000 ppmv of CO was circulated, the molar fraction of both NH 3 and NO was lowest at around 800 ° C.

この実験結果から、CO濃度によって最適反応温度がシフトし、CO濃度が高まると最適反応温度が低下することが確認された。尚、図7において、極小値が0とならなかった理由について数値解析により検討した結果、混合ガスを常温から1000℃まで昇温する過程に起因するものであることが明らかとなった。   From this experimental result, it was confirmed that the optimum reaction temperature shifts depending on the CO concentration, and that the optimum reaction temperature decreases as the CO concentration increases. In FIG. 7, the reason why the minimum value did not become 0 was examined by numerical analysis, and as a result, it became clear that it was caused by the process of raising the temperature of the mixed gas from room temperature to 1000 ° C.

以上より、上記化学反応式1で表される気相脱硝反応を効率良く適用するには、反応温度と反応時間を適切に設定することが好ましいことがわかった。   From the above, it has been found that in order to efficiently apply the gas phase denitration reaction represented by the chemical reaction formula 1, it is preferable to appropriately set the reaction temperature and the reaction time.

本発明のガス化発電プラントの第一の実施形態の概略図である。It is the schematic of 1st embodiment of the gasification power plant of this invention. 本発明のガス化発電プラントの第二の実施形態の概略図である。It is the schematic of 2nd embodiment of the gasification power plant of this invention. 本実施例において使用した燃焼器の構成概略図である。It is the structure schematic of the combustor used in the present Example. 高位発熱量(HHV)に対するNHのNOx転換率を示す図である。It is a diagram showing a NOx conversion rate of the NH 3 for higher heating value (HHV). ガス化ガス燃料の水素濃度に対するNHのNOx転換率を示す図である。Is a diagram showing the NOx conversion of NH 3 to hydrogen concentration of the gasification gas fuel. 燃焼排ガス中の無触媒脱硝反応に及ぼすCO濃度の影響についての数値解析結果を示す図である。It is a figure which shows the numerical analysis result about the influence of CO density | concentration which has on the non-catalytic denitration reaction in combustion exhaust gas. 燃焼排ガスのCO濃度とNOxを還元するための最適反応温度との関係について実験した結果を示す図である。It is a figure which shows the result of having experimented about the relationship between CO density | concentration of combustion exhaust gas, and the optimal reaction temperature for reduce | restoring NOx.

符号の説明Explanation of symbols

1 ガス化原料
2 ガス化剤
3 ガス化装置
4 生成ガス
4a ガス化ガス燃料
5 ガス精製装置
6 燃焼装置(ガスタービン)
6a ガスタービンの空気圧縮機
6b ガスタービン燃焼器
6c ガスタービンの膨張タービン
7 発電機
10 還元剤
11 演算装置
13 還元剤供給手段
13a 還元剤供給部
14 制御手段
16 記憶装置
17 水素濃度測定装置
18 CO濃度測定装置
FG 燃焼排ガス(ガスタービン排出ガス)
G 燃焼ガス(ガスタービン燃焼器排気ガス)
A 燃焼排ガス
DESCRIPTION OF SYMBOLS 1 Gasification raw material 2 Gasifying agent 3 Gasification apparatus 4 Product gas 4a Gasification gas fuel 5 Gas purification apparatus 6 Combustion apparatus (gas turbine)
6a Gas Turbine Air Compressor 6b Gas Turbine Combustor 6c Gas Turbine Expansion Turbine 7 Generator 10 Reducing Agent 11 Computing Device 13 Reducing Agent Supplying Unit 13a Reducing Agent Supplying Unit 14 Controlling Unit 16 Storage Device 17 Hydrogen Concentration Measuring Device 18 CO Concentration measuring device FG Combustion exhaust gas (gas turbine exhaust gas)
G Combustion gas (gas turbine combustor exhaust gas)
A Combustion exhaust gas

Claims (9)

ガス化原料をガス化剤によりガス化して生成ガスを得るガス化装置と、前記生成ガスを精製してガス化ガス燃料を得るガス精製装置と、前記ガス化ガス燃料を量論混合比以下で燃焼させて動力を発生させる燃焼装置と、前記動力を利用して発電する発電機とを少なくとも備えるガス化発電プラントにおいて、
前記ガス化ガス燃料の水素濃度と前記ガス化ガス燃料に含まれる窒素化合物の前記燃焼装置でのNOxへの転換率との関係を示す相関関数を予め求めておき、
前記ガス化ガス燃料の水素濃度を測定して水素濃度測定値を取得し、
前記水素濃度測定値と前記相関関数とに基づいて前記燃焼装置から排出される燃焼排ガスのNOx濃度を予測することを特徴とするNOx排出量予測方法。
A gasification device that gasifies a gasification raw material with a gasifying agent to obtain a product gas; a gas purification device that purifies the product gas to obtain a gasification gas fuel; and the gasification gas fuel at a stoichiometric mixing ratio or less. In a gasification power plant comprising at least a combustion device that generates power by burning and a generator that generates power using the power,
A correlation function indicating the relationship between the hydrogen concentration of the gasified gas fuel and the conversion rate of nitrogen compounds contained in the gasified gas fuel into NOx in the combustion device is obtained in advance.
Measure the hydrogen concentration of the gasified gas fuel to obtain a hydrogen concentration measurement value,
A NOx emission amount prediction method, wherein NOx concentration of combustion exhaust gas discharged from the combustion device is predicted based on the hydrogen concentration measurement value and the correlation function.
ガス化原料をガス化剤によりガス化して生成ガスを得るガス化装置と、前記生成ガスを精製してガス化ガス燃料を得るガス精製装置と、前記ガス化ガス燃料を量論混合比以下で燃焼させて動力を発生させる燃焼装置と、前記動力を利用して発電する発電機とを少なくとも備えるガス化発電プラントにおいて、
前記ガス化ガス燃料の水素濃度と前記ガス化ガス燃料に含まれる窒素化合物の前記燃焼装置でのNOxへの転換率との関係を示す相関関数を前記ガス化ガス燃料の窒素化合物濃度条件毎に予め求めておき、
前記ガス化ガス燃料の水素濃度を測定して水素濃度測定値を取得し、
前記ガス化ガス燃料の窒素化合物濃度を測定して窒素化合物濃度測定値を取得し、
前記窒素化合物濃度測定値に適合する窒素化合物濃度条件の前記相関関数を選択し、
前記水素濃度測定値と前記選択された相関関数とに基づいて前記燃焼装置から排出される燃焼排ガスのNOx濃度を予測することを特徴とするNOx排出量予測方法。
A gasification device that gasifies a gasification raw material with a gasifying agent to obtain a product gas; a gas purification device that purifies the product gas to obtain a gasification gas fuel; and the gasification gas fuel at a stoichiometric mixing ratio or less. In a gasification power plant comprising at least a combustion device that generates power by burning and a generator that generates power using the power,
A correlation function indicating the relationship between the hydrogen concentration of the gasified gas fuel and the conversion rate of nitrogen compounds contained in the gasified gas fuel into NOx in the combustion device is obtained for each nitrogen compound concentration condition of the gasified gas fuel. Find in advance,
Measure the hydrogen concentration of the gasified gas fuel to obtain a hydrogen concentration measurement value,
Measuring the nitrogen compound concentration of the gasified gas fuel to obtain a nitrogen compound concentration measurement value,
Select the correlation function of the nitrogen compound concentration condition that fits the nitrogen compound concentration measurement,
A NOx emission amount prediction method for predicting a NOx concentration of combustion exhaust gas discharged from the combustion device based on the hydrogen concentration measurement value and the selected correlation function.
ガス化原料をガス化剤によりガス化して生成ガスを得るガス化装置と、前記生成ガスを精製してガス化ガス燃料を得るガス精製装置と、前記ガス化ガス燃料を量論混合比以下で燃焼させて動力を発生させる燃焼装置と、前記動力を利用して発電する発電機とを少なくとも備えるガス化発電プラントにおいて、
前記ガス化ガス燃料の水素濃度と前記ガス化ガス燃料に含まれる窒素化合物の前記燃焼装置でのNOxへの転換率との関係を示す相関関数を予め求めておき、
前記ガス化ガス燃料の水素濃度を測定して水素濃度測定値を取得し、
前記水素濃度測定値と前記相関関数とに基づいて前記燃焼装置から排出される燃焼排ガスのNOx濃度予測値を得て、前記NOx濃度予測値に応じて前記燃焼排ガスへの還元剤の供給量を制御することを特徴とするガス化発電プラントの運転方法。
A gasification device that gasifies a gasification raw material with a gasifying agent to obtain a product gas; a gas purification device that purifies the product gas to obtain a gasification gas fuel; and the gasification gas fuel at a stoichiometric mixing ratio or less. In a gasification power plant comprising at least a combustion device that generates power by burning and a generator that generates power using the power,
A correlation function indicating the relationship between the hydrogen concentration of the gasified gas fuel and the conversion rate of nitrogen compounds contained in the gasified gas fuel into NOx in the combustion device is obtained in advance.
Measure the hydrogen concentration of the gasified gas fuel to obtain a hydrogen concentration measurement value,
A predicted NOx concentration value of the flue gas discharged from the combustion device is obtained based on the measured hydrogen concentration value and the correlation function, and the amount of reducing agent supplied to the flue gas is determined according to the predicted NOx concentration value. An operation method of a gasification power plant characterized by controlling.
ガス化原料をガス化剤によりガス化して生成ガスを得るガス化装置と、前記生成ガスを精製してガス化ガス燃料を得るガス精製装置と、前記ガス化ガス燃料を量論混合比以下で燃焼させて動力を発生させる燃焼装置と、前記動力を利用して発電する発電機とを少なくとも備えるガス化発電プラントにおいて、
前記ガス化ガス燃料の水素濃度と前記ガス化ガス燃料に含まれる窒素化合物の前記燃焼装置でのNOxへの転換率との関係を示す相関関数を前記ガス化ガス燃料の窒素化合物濃度条件毎に予め求めておき、
前記ガス化ガス燃料の水素濃度を測定して水素濃度測定値を取得し、
前記ガス化ガス燃料の窒素化合物濃度を測定して窒素化合物濃度測定値を取得し、
前記窒素化合物濃度測定値に適合する窒素化合物濃度条件の前記相関関数を選択し、
前記水素濃度測定値と前記選択された相関関数とに基づいて前記燃焼装置から排出される燃焼排ガスのNOx濃度予測値を得て、前記NOx濃度予測値に応じて前記燃焼排ガスへの還元剤の供給量を制御することを特徴とするガス化発電プラントの運転方法。
A gasification device that gasifies a gasification raw material with a gasifying agent to obtain a product gas; a gas purification device that purifies the product gas to obtain a gasification gas fuel; and the gasification gas fuel at a stoichiometric mixing ratio or less. In a gasification power plant comprising at least a combustion device that generates power by burning and a generator that generates power using the power,
A correlation function indicating the relationship between the hydrogen concentration of the gasified gas fuel and the conversion rate of nitrogen compounds contained in the gasified gas fuel into NOx in the combustion device is obtained for each nitrogen compound concentration condition of the gasified gas fuel. Find in advance,
Measure the hydrogen concentration of the gasified gas fuel to obtain a hydrogen concentration measurement value,
Measuring the nitrogen compound concentration of the gasified gas fuel to obtain a nitrogen compound concentration measurement value,
Select the correlation function of the nitrogen compound concentration condition that fits the nitrogen compound concentration measurement,
A predicted NOx concentration value of the flue gas discharged from the combustion device is obtained based on the measured hydrogen concentration value and the selected correlation function, and the reducing agent to the flue gas is determined according to the predicted NOx concentration value. A method for operating a gasification power plant, characterized by controlling a supply amount.
請求項3または4に記載のガス化発電プラントの運転方法において、
前記燃焼排ガス中のNOxの還元に最適な反応温度と燃焼排ガスのCO濃度との関係について予め求めておき、
前記燃焼排ガスのCO濃度を測定してCO濃度測定値を取得し、
前記CO濃度測定値と前記関係とに基づいて最適反応温度予測値を得て、
前記最適反応温度予測値に適合する温度帯域の前記燃焼排ガスに前記還元剤を供給することを特徴とするガス化発電プラントの運転方法。
In the operation method of the gasification power plant according to claim 3 or 4,
Obtaining in advance the relationship between the optimum reaction temperature for the reduction of NOx in the flue gas and the CO concentration of the flue gas,
Measuring the CO concentration of the flue gas to obtain a CO concentration measurement value;
Based on the measured CO concentration value and the relationship, obtain an optimum predicted reaction temperature value,
A method for operating a gasification power plant, wherein the reducing agent is supplied to the combustion exhaust gas in a temperature range suitable for the predicted optimum reaction temperature.
ガス化原料をガス化剤によりガス化して生成ガスを得るガス化装置と、前記生成ガスを精製してガス化ガス燃料を得るガス精製装置と、前記ガス化ガス燃料を量論混合比以下で燃焼させて動力を発生させる燃焼装置と、前記動力を利用して発電する発電機とを少なくとも備えるガス化発電プラントにおいて、
前記ガス化ガス燃料の水素濃度と前記ガス化ガス燃料に含まれる窒素化合物の前記燃焼装置でのNOxへの転換率との相関について予め求められた相関関数を記憶する記憶装置と、
前記ガス化ガス燃料の水素濃度を測定して水素濃度測定値を得る水素濃度測定装置と、
前記水素濃度測定値と前記相関関数とに基づいて前記燃焼排ガスのNOx濃度計算値を得る演算装置と、
前記燃焼排ガスに還元剤を供給する還元剤供給手段と、
前記NOx濃度計算値に基づいて前記還元剤供給手段から供給される前記還元剤の量を制御する制御手段と
を備えることを特徴とするガス化発電プラント。
A gasification device that gasifies a gasification raw material with a gasifying agent to obtain a product gas; a gas purification device that purifies the product gas to obtain a gasification gas fuel; and the gasification gas fuel at a stoichiometric mixing ratio or less. In a gasification power plant comprising at least a combustion device that generates power by burning and a generator that generates power using the power,
A storage device for storing a correlation function obtained in advance for the correlation between the hydrogen concentration of the gasified gas fuel and the conversion rate of nitrogen compounds contained in the gasified gas fuel into NOx in the combustion device;
A hydrogen concentration measuring device for measuring a hydrogen concentration of the gasified gas fuel to obtain a hydrogen concentration measurement value;
An arithmetic device for obtaining a NOx concentration calculation value of the combustion exhaust gas based on the hydrogen concentration measurement value and the correlation function;
Reducing agent supply means for supplying a reducing agent to the combustion exhaust gas;
A gasification power plant comprising: control means for controlling the amount of the reducing agent supplied from the reducing agent supply means based on the calculated NOx concentration.
ガス化原料をガス化剤によりガス化して生成ガスを得るガス化装置と、前記生成ガスを精製してガス化ガス燃料を得るガス精製装置と、前記ガス化ガス燃料を量論混合比以下で燃焼させて動力を発生させる燃焼装置と、前記動力を利用して発電する発電機とを少なくとも備えるガス化発電プラントにおいて、
前記ガス化ガス燃料の水素濃度と前記ガス化ガス燃料に含まれる窒素化合物の前記燃焼装置でのNOxへの転換率との相関について予め求められた相関関数と、燃焼排ガス中のNOxの還元に最適な反応温度と燃焼排ガスのCO濃度との相関関係とを記憶する記憶装置と、
前記ガス化ガス燃料の水素濃度を測定して水素濃度測定値を得る水素濃度測定装置と、
前記燃焼排ガスのCO濃度を測定してCO濃度測定値を得るCO濃度測定装置と、
前記水素濃度測定値と前記相関関数とに基づいて前記燃焼排ガスのNOx濃度予測値を得ると共に、前記CO濃度測定値と前記相関関係とに基づいて最適反応温度予測値を得る演算装置と、
前記燃焼排ガスの温度が異なる位置に還元剤を供給しうる複数の還元剤供給部が備えられている還元剤供給手段と、
NOx濃度予測値と前記最適反応温度予測値とに基づいて前記還元剤供給手段から供給される前記還元剤の量を制御すると共に、前記複数の還元剤供給部のうち前記最適反応温度予測値に適合する位置の前記還元剤供給部を選択して前記還元剤を供給する制御手段とを備えることを特徴とするガス化発電プラント。
A gasification device that gasifies a gasification raw material with a gasifying agent to obtain a product gas; a gas purification device that purifies the product gas to obtain a gasification gas fuel; and the gasification gas fuel at a stoichiometric mixing ratio or less. In a gasification power plant comprising at least a combustion device that generates power by burning and a generator that generates power using the power,
Correlation function obtained in advance for the correlation between the hydrogen concentration of the gasified gas fuel and the conversion rate of nitrogen compounds contained in the gasified gas fuel into NOx in the combustion device, and reduction of NOx in the combustion exhaust gas A storage device for storing the optimum reaction temperature and the correlation between the CO concentration of the flue gas,
A hydrogen concentration measuring device for measuring a hydrogen concentration of the gasified gas fuel to obtain a hydrogen concentration measurement value;
A CO concentration measuring device for measuring the CO concentration of the flue gas to obtain a CO concentration measurement value;
An arithmetic unit that obtains a predicted NOx concentration value of the flue gas based on the measured hydrogen concentration value and the correlation function, and obtains an optimum predicted reaction temperature value based on the measured CO concentration value and the correlation;
A reducing agent supply means provided with a plurality of reducing agent supply units capable of supplying a reducing agent to a position where the temperature of the combustion exhaust gas is different;
The amount of the reducing agent supplied from the reducing agent supply means is controlled based on the predicted NOx concentration value and the predicted optimal reaction temperature value, and the optimal reaction temperature predicted value among the plurality of reducing agent supply units. A gasification power plant comprising: control means for selecting the reducing agent supply unit at a suitable position and supplying the reducing agent.
ガス化原料をガス化剤によりガス化して生成ガスを得るガス化装置と、前記生成ガスを精製してガス化ガス燃料を得るガス精製装置と、前記ガス化ガス燃料を量論混合比以下で燃焼させて動力を発生させる燃焼装置と、前記動力を利用して発電する発電機とを少なくとも備えるガス化発電プラントにおいて、
前記ガス化ガス燃料の水素濃度と前記ガス化ガス燃料に含まれる窒素化合物の前記燃焼装置でのNOxへの転換率との相関について前記ガス化ガス燃料の窒素化合物濃度毎に予め求められた複数の相関関数を記憶する記憶装置と、
前記ガス化ガス燃料の水素濃度を測定して水素濃度測定値を得る水素濃度測定装置と、
前記ガス化ガス燃料の窒素化合物濃度を測定して窒素化合物濃度測定値を得る窒素化合物濃度測定装置と、
前記窒素化合物濃度測定値に適合する窒素化合物濃度条件の前記相関関数を選択すると共に、前記水素濃度測定値と前記選択された相関関数とに基づいて前記燃焼排ガスのNOx濃度計算値を得る演算装置と、
前記燃焼排ガスに還元剤を供給する還元剤供給手段と、
前記NOx濃度計算値に基づいて前記還元剤供給手段から供給される前記還元剤の量を制御する制御手段と
を備えることを特徴とするガス化発電プラント。
A gasification device that gasifies a gasification raw material with a gasifying agent to obtain a product gas; a gas purification device that purifies the product gas to obtain a gasification gas fuel; and the gasification gas fuel at a stoichiometric mixing ratio or less. In a gasification power plant comprising at least a combustion device that generates power by burning and a generator that generates power using the power,
The correlation between the hydrogen concentration of the gasified gas fuel and the conversion rate of nitrogen compounds contained in the gasified gas fuel into NOx in the combustion device is obtained in advance for each nitrogen compound concentration of the gasified gas fuel. A storage device for storing the correlation function of
A hydrogen concentration measuring device for measuring a hydrogen concentration of the gasified gas fuel to obtain a hydrogen concentration measurement value;
A nitrogen compound concentration measuring device for measuring a nitrogen compound concentration of the gasified gas fuel to obtain a nitrogen compound concentration measurement value;
An arithmetic unit that selects the correlation function of the nitrogen compound concentration condition that matches the measured nitrogen compound concentration value, and obtains the calculated NOx concentration value of the combustion exhaust gas based on the measured hydrogen concentration value and the selected correlation function When,
Reducing agent supply means for supplying a reducing agent to the combustion exhaust gas;
A gasification power plant comprising: control means for controlling the amount of the reducing agent supplied from the reducing agent supply means based on the calculated NOx concentration.
ガス化原料をガス化剤によりガス化して生成ガスを得るガス化装置と、前記生成ガスを精製してガス化ガス燃料を得るガス精製装置と、前記ガス化ガス燃料を量論混合比以下で燃焼させて動力を発生させる燃焼装置と、前記動力を利用して発電する発電機とを少なくとも備えるガス化発電プラントにおいて、
前記ガス化ガス燃料の水素濃度と前記ガス化ガス燃料に含まれる窒素化合物の前記燃焼装置でのNOxへの転換率との相関について前記ガス化ガス燃料の窒素化合物濃度毎に予め求められた複数の相関関数と、燃焼排ガス中のNOxの還元に最適な反応温度と燃焼排ガスのCO濃度との相関関係とを記憶する記憶装置と、
前記ガス化ガス燃料の水素濃度を測定して水素濃度測定値を得る水素濃度測定装置と、
前記ガス化ガス燃料の窒素化合物濃度を測定して窒素化合物濃度測定値を得る窒素化合物濃度測定装置と、
前記窒素化合物濃度測定値に適合する窒素化合物濃度条件の前記相関関数を選択すると共に、前記水素濃度測定値と前記選択された相関関数とに基づいて前記燃焼排ガスのNOx濃度予測値を得て、さらに前記CO濃度測定値から前記相関関係に基づいて最適反応温度予測値を得る演算装置と、
前記燃焼排ガスの温度が異なる位置に還元剤を供給しうる複数の還元剤供給部が備えられている還元剤供給手段と、
NOx濃度予測値と前記最適反応温度予測値とに基づいて前記還元剤供給手段から供給される前記還元剤の量を制御すると共に、前記複数の還元剤供給部のうち前記最適反応温度予測値に適合する位置の還元剤供給部を選択して前記還元剤を供給する制御手段とを備えることを特徴とするガス化発電プラント。
A gasification device that gasifies a gasification raw material with a gasifying agent to obtain a product gas; a gas purification device that purifies the product gas to obtain a gasification gas fuel; and the gasification gas fuel at a stoichiometric mixing ratio or less. In a gasification power plant comprising at least a combustion device that generates power by burning and a generator that generates power using the power,
The correlation between the hydrogen concentration of the gasified gas fuel and the conversion rate of nitrogen compounds contained in the gasified gas fuel into NOx in the combustion device is obtained in advance for each nitrogen compound concentration of the gasified gas fuel. A storage device that stores a correlation function of the above and a correlation between a reaction temperature optimum for the reduction of NOx in the combustion exhaust gas and a CO concentration of the combustion exhaust gas,
A hydrogen concentration measuring device for measuring a hydrogen concentration of the gasified gas fuel to obtain a hydrogen concentration measurement value;
A nitrogen compound concentration measuring device for measuring a nitrogen compound concentration of the gasified gas fuel to obtain a nitrogen compound concentration measurement value;
While selecting the correlation function of the nitrogen compound concentration condition that matches the nitrogen compound concentration measurement value, obtaining a predicted NOx concentration value of the combustion exhaust gas based on the hydrogen concentration measurement value and the selected correlation function, Further, an arithmetic device that obtains an optimum predicted reaction temperature value from the measured CO concentration value based on the correlation;
A reducing agent supply means provided with a plurality of reducing agent supply units capable of supplying a reducing agent to a position where the temperature of the combustion exhaust gas is different;
The amount of the reducing agent supplied from the reducing agent supply means is controlled based on the predicted NOx concentration value and the predicted optimal reaction temperature value, and the optimal reaction temperature predicted value among the plurality of reducing agent supply units. A gasification power plant comprising: control means for selecting a reducing agent supply unit at a suitable position and supplying the reducing agent.
JP2008130514A 2008-05-19 2008-05-19 NOx emission prediction method, operation method of gasification power plant using this method, and gasification power plant Expired - Fee Related JP4933485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008130514A JP4933485B2 (en) 2008-05-19 2008-05-19 NOx emission prediction method, operation method of gasification power plant using this method, and gasification power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008130514A JP4933485B2 (en) 2008-05-19 2008-05-19 NOx emission prediction method, operation method of gasification power plant using this method, and gasification power plant

Publications (2)

Publication Number Publication Date
JP2009275680A true JP2009275680A (en) 2009-11-26
JP4933485B2 JP4933485B2 (en) 2012-05-16

Family

ID=41441325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008130514A Expired - Fee Related JP4933485B2 (en) 2008-05-19 2008-05-19 NOx emission prediction method, operation method of gasification power plant using this method, and gasification power plant

Country Status (1)

Country Link
JP (1) JP4933485B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160141037A (en) * 2015-05-27 2016-12-08 현대중공업 주식회사 Combined cycle power generation system
JP7524629B2 (en) 2019-06-27 2024-07-30 中国電力株式会社 Coal and Biomass Operation Support System

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002188457A (en) * 2000-12-19 2002-07-05 Central Res Inst Of Electric Power Ind Reformed type gasified gas generation plant and its operation method
JP2002235556A (en) * 2001-02-06 2002-08-23 Central Res Inst Of Electric Power Ind Reformed gasification gas power generation plant and operation method therefor
JP2004060623A (en) * 2002-07-31 2004-02-26 Central Res Inst Of Electric Power Ind Gas turbine combustor for gasification power generation plant

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002188457A (en) * 2000-12-19 2002-07-05 Central Res Inst Of Electric Power Ind Reformed type gasified gas generation plant and its operation method
JP2002235556A (en) * 2001-02-06 2002-08-23 Central Res Inst Of Electric Power Ind Reformed gasification gas power generation plant and operation method therefor
JP2004060623A (en) * 2002-07-31 2004-02-26 Central Res Inst Of Electric Power Ind Gas turbine combustor for gasification power generation plant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160141037A (en) * 2015-05-27 2016-12-08 현대중공업 주식회사 Combined cycle power generation system
KR102113792B1 (en) * 2015-05-27 2020-05-22 현대중공업파워시스템 주식회사 Combined cycle power generation system
JP7524629B2 (en) 2019-06-27 2024-07-30 中国電力株式会社 Coal and Biomass Operation Support System

Also Published As

Publication number Publication date
JP4933485B2 (en) 2012-05-16

Similar Documents

Publication Publication Date Title
RU2299758C2 (en) Device and the method of control over nitrogen dioxide ejections from the boilers burning the carbonic fuels without usage of the external reactant
JP5610561B2 (en) Tar decomposition method and tar decomposition apparatus
JP2009085221A (en) Low emission turbine system and method
JP2014500942A (en) Method and apparatus for reducing NOx emissions in exhaust gas incineration
JP2006023076A (en) Method and system for operating combustion system
JP2016514226A (en) Catalysts containing oxygen storage components for the treatment of gas turbine exhaust gas
KR101604679B1 (en) Reduction reaction burner for convertion incineration chamber to reduction(gasification) chamber with exactly separating the oxidation reaction and reduction(gasification) reaction in the same chamber without isolating each other, and energy recycling system using it
JP2020112280A (en) Boiler device and thermal power generation facility, capable of carrying out mixed combustion of ammonia
JP5599743B2 (en) Closed-cycle gas turbine power plant for CO2 recovery gasification gas power generation
JP5599742B2 (en) Closed-cycle gas turbine power plant for CO2 recovery gasification gas power generation
JP4933485B2 (en) NOx emission prediction method, operation method of gasification power plant using this method, and gasification power plant
Lee et al. Behavior of nitrogen oxides in a lab-scale coal ammonia co-firing system
JP4933496B2 (en) NOx emission prediction method, operation method of gasification power plant using this method, and gasification power plant
JP5047056B2 (en) Method for falling tar decomposition system and tar decomposition system
Chae et al. Characteristics of syngas reburning in a natural gas firing furnace-Effects of combustible gas species in the syngas
Zajemska et al. Formation of pollutants in the process of co-combustion of different biomass grades
Wilk et al. Syngas as a reburning fuel for natural gas combustion
JP2013022520A (en) Operation method of exhaust gas circulation type thermal power plant
Starley et al. The influence of bed-region stoichiometry on nitric oxide formation in fixed-bed coal combustion
Dybe et al. Experimental Characterization of the Combustion in Fuel Flexible Humid Power Cycles
JP4459003B2 (en) Waste treatment system
JP5762109B2 (en) Tar decomposition method and tar decomposition equipment
Poskrobko et al. A primary method for reducing nitrogen oxides in coal combustion through addition of Bio-CONOx
JP2011012875A (en) Method and device for suppressing generation of hydrogen chloride gas in waste gasification melting furnace
JP5900924B2 (en) Closed-cycle gas turbine power plant for CO2 recovery gasification gas power generation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120216

R150 Certificate of patent or registration of utility model

Ref document number: 4933485

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees