JPS6319762B2 - - Google Patents

Info

Publication number
JPS6319762B2
JPS6319762B2 JP57038664A JP3866482A JPS6319762B2 JP S6319762 B2 JPS6319762 B2 JP S6319762B2 JP 57038664 A JP57038664 A JP 57038664A JP 3866482 A JP3866482 A JP 3866482A JP S6319762 B2 JPS6319762 B2 JP S6319762B2
Authority
JP
Japan
Prior art keywords
furnace
combustion
supplied
desulfurization
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57038664A
Other languages
Japanese (ja)
Other versions
JPS58156104A (en
Inventor
Yoshitoshi Sekiguchi
Yoshimasa Miura
Kunio Sasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP57038664A priority Critical patent/JPS58156104A/en
Publication of JPS58156104A publication Critical patent/JPS58156104A/en
Publication of JPS6319762B2 publication Critical patent/JPS6319762B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • F23C6/04Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection
    • F23C6/045Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection with staged combustion in a single enclosure
    • F23C6/047Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection with staged combustion in a single enclosure with fuel supply in stages

Description

【発明の詳細な説明】 この発明は固体燃焼炉における炉内脱硫法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an in-furnace desulfurization method in a solid combustion furnace.

硫黄分を含有する燃料の燃焼に伴つて発生する
硫黄酸化物(以下SOxと称する)は、公害の原因
物質であるため、これを効果的に除去する方法が
要望せられ、従来多くのSOx除去技術が提案ない
し実用化されている。しかしこれらの方法はいず
れも液化ないし気体燃料を対象としたものである
ため、固体燃焼炉からの排ガスのように多量のダ
ストを含んだ排ガスの脱硫に適用すると、ダスト
による炉閉塞や脱硫率の低下などの問題をまねい
た。そこでこの問題の解決策として、石灰石、消
石灰、ドロマイトなどの固形のSOx吸収剤を火炉
内へ直接噴射する乾式炉内脱硫法が提案された。
しかしこの方法では高温の酸化雰囲気中へ吸収剤
を直接供給するため、SOxの吸収率が低く、その
結果吸収剤を多量必要とする欠点があつた。
Sulfur oxides (hereinafter referred to as SOx) generated when sulfur-containing fuel is burned are a substance that causes pollution, so there is a need for a method to effectively remove them. A technology has been proposed or put into practical use. However, all of these methods target liquefied or gaseous fuels, so if they are applied to desulfurizing exhaust gas that contains a large amount of dust, such as exhaust gas from a solid combustion furnace, they may cause furnace clogging due to dust or reduce the desulfurization rate. This led to problems such as deterioration. As a solution to this problem, a dry in-furnace desulfurization method was proposed in which a solid SOx absorbent such as limestone, slaked lime, or dolomite is directly injected into the furnace.
However, this method has the disadvantage that the absorption rate of SOx is low because the absorbent is directly supplied into the high-temperature oxidizing atmosphere, and as a result, a large amount of absorbent is required.

本発明者らは、従来の炉内脱硫の効率が悪い原
因について検討を行なつたところ、つぎのような
知見を得た。すなわち、通常の火炉内雰囲気のよ
うに、酸化雰囲気ではあるが酸素濃度が1〜5%
以下と非常に低い場合、900℃程度の温度では Na2O+SO2+1/2O2→Na2SO4 …(1) CaO+SO2+1/2O2→CaSO4 …(2) の反応が起こりにくい。これに対し、還元雰囲気
では、900〜1300℃の高温域で Na2O+H2S→Na2S+H2O …(3) CaO+H2S→CaS+H2O …(4) CaO+COS→CaS+CO2 …(5) CaSO4+4CO→CaS+4CO2 …(6) Na2O+SO2+3C→Na2S+3CO …(7) などの硫化物を生成する反応が主となり、
Na2SO4、CaSO4などの硫酸塩よりもNa2S、CaS
などの硫化物の方が安定であることがわかつた。
したがつてNa2S、CaSなどの硫化物の生成量を
増すには、反応式(3)(4)(5)(6)(7)の平衡を右にかたよ
らせればよく、そのためには900〜1300℃の温度
域において還元性ガスであるH2S、COS、COな
どのガス濃度を高くし、かつ還元領域に
Na2CO3、CaO、Ca(OH)2などの脱硫剤を供給し
てやるのがよいことがわかる。
The present inventors investigated the cause of the poor efficiency of conventional in-furnace desulfurization and obtained the following findings. In other words, it is an oxidizing atmosphere like the atmosphere inside a normal furnace, but the oxygen concentration is 1 to 5%.
If the temperature is very low, below 900℃, the reaction Na 2 O + SO 2 + 1/2O 2 →Na 2 SO 4 …(1) CaO + SO 2 +1/2O 2 →CaSO 4 …(2) is unlikely to occur. On the other hand, in a reducing atmosphere, Na 2 O + H 2 S → Na 2 S + H 2 O ... (3) CaO + H 2 S → CaS + H 2 O ... (4) CaO + COS → CaS + CO 2 ... (5) The main reaction is to generate sulfides such as CaSO 4 +4CO→CaS+4CO 2 …(6) Na 2 O+SO 2 +3C→Na 2 S+3CO …(7)
Na 2 S, CaS than sulfates such as Na 2 SO 4 , CaSO 4
It was found that sulfides such as
Therefore, in order to increase the amount of sulfides such as Na 2 S and CaS produced, it is sufficient to shift the equilibrium of reaction equations (3), (4), (5), (6), and (7) to the right; Increase the concentration of reducing gases such as H2S , COS, and CO in the temperature range of 900 to 1300℃, and
It turns out that it is better to supply a desulfurizing agent such as Na 2 CO 3 , CaO, Ca(OH) 2 .

この発明は上記のような知見に基づいてなされ
たものであつて、ダストを高濃度で含む固体燃料
燃焼排ガスに対して適用した場合も、脱硫を効率
よく行なうことのできる脱硫法を提供することを
目的とする。
The present invention has been made based on the above findings, and an object of the present invention is to provide a desulfurization method that can efficiently desulfurize even when applied to solid fuel combustion exhaust gas containing a high concentration of dust. With the goal.

なお、以下の説明において、空気比とは、燃焼
に要する理論空気量に対する実際の空気量の割合
をいい、前後方向については、第1図を基準とし
て、その左方を前方、またその右方を後方と称す
ることとする。
In the following explanation, the air ratio refers to the ratio of the actual amount of air to the theoretical amount of air required for combustion, and with respect to the front-rear direction, the left side is the front, and the right side is the front, with reference to Figure 1. is referred to as the rear.

この発明による脱硫法は、炉内へ燃料と燃焼用
空気をそれぞれ分割供給して3段燃焼法を実施
し、温度900〜1300℃の還元雰囲気の2次燃焼域
へ脱硫剤を供給することを特徴とする。
The desulfurization method according to this invention carries out a three-stage combustion method by separately supplying fuel and combustion air into the furnace, and supplies the desulfurization agent to the secondary combustion zone in a reducing atmosphere at a temperature of 900 to 1300 degrees Celsius. Features.

還元雰囲気の温度が900〜1300℃に限定される
理由は、上記反応式(2)(3)(4)を左辺から右辺へ速や
かに進行させるためである。
The reason why the temperature of the reducing atmosphere is limited to 900 to 1300°C is to allow the above reaction formulas (2), (3), and (4) to proceed rapidly from the left side to the right side.

3段燃焼法は、前壁に設けたバーナから炉内へ
1次燃料とこれを送るための1次空気とを供給す
るとともに、バーナの周囲ないし後流側から2次
空気を供給して、炉内前部ないし上流側に酸化雰
囲気の1次燃焼域を形成し、1次燃焼域の周囲な
いし後流側に2次燃料を供給して、還元雰囲気の
2次燃焼域を形成し、2次燃焼域の周囲ないし後
流側に3次空気を供給して、3次燃焼域を形成す
る燃焼法である。
The three-stage combustion method supplies primary fuel and primary air to the furnace from a burner installed on the front wall, and also supplies secondary air from around or downstream of the burner. A primary combustion zone with an oxidizing atmosphere is formed in the front or upstream side of the furnace, and a secondary fuel is supplied around or downstream of the primary combustion zone to form a secondary combustion zone with a reducing atmosphere. This is a combustion method in which tertiary air is supplied around or downstream of the secondary combustion zone to form a tertiary combustion zone.

2次燃焼域への脱硫剤の供給は、2次燃料とと
もに行なつてもよいし、2次燃料供給位置と3次
空気供給位置の間から燃料ないし空気とは別に行
なつてもよい。
The desulfurizing agent may be supplied to the secondary combustion zone together with the secondary fuel, or may be supplied separately from the fuel or air from between the secondary fuel supply position and the tertiary air supply position.

燃料としては石炭を微粉化した微粉炭が用いら
れる。また脱硫剤としては、CaCO3、Ca(OH)2
NaCO3、ドロマイトなどのアルカリなどが用い
られる。
Pulverized coal, which is made by pulverizing coal, is used as fuel. In addition, as desulfurizing agents, CaCO 3 , Ca(OH) 2 ,
Alkali such as NaCO 3 and dolomite are used.

まず、この発明において使用する燃焼炉の構造
について説明する。
First, the structure of the combustion furnace used in this invention will be explained.

第1図において、1は吸熱用ジヤケツトを有す
る円筒状周壁2とその両端に設けられた前壁3と
後壁4とからなる炉本体、5は前壁3の中央にあ
けられた開口で、前方突出状の2次空気供給口6
を有する。7は2次空気供給口6の中心部に炉内
向きに配されたバーナで、ここから1次燃料と1
次空気が供給される。8は前壁3の前面に設けら
れた風箱で、2次空気供給口6を介して炉内に通
じている。9は周壁2の長さの中央からやや前寄
りに設けられた複数の2次燃料ノズル、10は2
次燃料ノズル9より後方にてやはり周壁2に設け
られた複数の3次空気ノズル、11は周壁2の後
端部に設けられた煙道である。
In FIG. 1, 1 is a furnace body consisting of a cylindrical peripheral wall 2 having a heat absorbing jacket, a front wall 3 and a rear wall 4 provided at both ends thereof, 5 is an opening made in the center of the front wall 3, Front-protruding secondary air supply port 6
has. 7 is a burner placed in the center of the secondary air supply port 6 facing inside the furnace, from which the primary fuel and
Next air is supplied. Reference numeral 8 denotes a wind box provided on the front surface of the front wall 3, which communicates with the inside of the furnace via a secondary air supply port 6. Reference numeral 9 indicates a plurality of secondary fuel nozzles provided slightly forward from the center of the length of the peripheral wall 2;
A plurality of tertiary air nozzles are also provided on the peripheral wall 2 behind the secondary fuel nozzle 9, and 11 is a flue provided at the rear end of the peripheral wall 2.

上記構造の燃焼炉において、バーナ7から炉内
へ1次燃料とこれを送る1次空気とを供給する。
さらに風箱8から炉内へ2次空気を供給して、空
気比を1.0以上にする。この状態で燃焼を行なつ
て、炉内前部に酸化雰囲気の高温の1次燃焼域a
を形成する。
In the combustion furnace having the above structure, the burner 7 supplies primary fuel and primary air for feeding the fuel into the furnace.
Furthermore, secondary air is supplied from the wind box 8 into the furnace to make the air ratio 1.0 or more. Combustion is carried out in this state, and a high-temperature primary combustion zone a with an oxidizing atmosphere is created at the front of the furnace.
form.

また2次燃料ノズル9から炉内へ2次燃料を供
給して、空気比を1.0以下にする。この状態で緩
慢な還元燃焼を行なつて、1次燃焼域aの後流側
に2次燃焼域bを形成する。同燃焼域bは温度
900〜1300℃の還元雰囲気であるので、炉内脱硫
を行なうには最適条件を備えている。そこで2次
燃料とともに脱硫剤を炉内に供給し、効果的に炉
内脱硫を行なう。
Also, secondary fuel is supplied from the secondary fuel nozzle 9 into the furnace to make the air ratio 1.0 or less. In this state, slow reductive combustion is performed to form a secondary combustion zone b on the downstream side of the primary combustion zone a. The combustion zone b is the temperature
Since it is a reducing atmosphere of 900 to 1300°C, it has optimal conditions for in-furnace desulfurization. Therefore, a desulfurizing agent is supplied into the furnace together with the secondary fuel to effectively perform desulfurization inside the furnace.

また3次空気ノズル10から炉内へ、2次燃焼
の残存燃料に対して実質的に理論量の3次空気を
供給して、2次燃焼域bの後流側に3次燃焼域c
を形成する。
Furthermore, a substantially stoichiometric amount of tertiary air is supplied from the tertiary air nozzle 10 into the furnace with respect to the residual fuel of the secondary combustion, so that the tertiary combustion area c is supplied to the downstream side of the secondary combustion area b.
form.

第2図は燃焼炉の変形を示すものである。この
炉21は箱形の大型垂直炉であつて、前壁22の
下端部に第1図の燃焼炉のものと同じ構造の2次
空気供給口23とバーナ24と風箱25が設けら
れ、バーナ24から1次燃料および1次空気が供
給され、風箱25から2次空気が供給される。ま
たバーナ24の上方すなわち後流側に2次燃料ノ
ズル26が設けられ、同ノズル26のさらに上方
すなわち後流側に3次空気ノズル27が設けら
れ、これらノズル26,27からそれぞれ2次燃
料および3次空気が供給される。こうしてこの場
合も、1次、2次および3次燃焼域d,e,fが
形成される。そして2次燃料ノズル26と3次空
気ノズル27の中間位置に脱硫剤ノズル28が設
けられて、ここから2次燃焼域eに脱硫剤が供給
される。
FIG. 2 shows a modification of the combustion furnace. This furnace 21 is a box-shaped large vertical furnace, and the lower end of the front wall 22 is provided with a secondary air supply port 23, a burner 24, and a wind box 25 having the same structure as that of the combustion furnace shown in FIG. Primary fuel and primary air are supplied from the burner 24, and secondary air is supplied from the wind box 25. Further, a secondary fuel nozzle 26 is provided above the burner 24, that is, on the downstream side, and a tertiary air nozzle 27 is provided further above the burner 26, that is, on the downstream side. Tertiary air is supplied. Thus, in this case as well, primary, secondary and tertiary combustion zones d, e, f are formed. A desulfurizing agent nozzle 28 is provided at an intermediate position between the secondary fuel nozzle 26 and the tertiary air nozzle 27, from which the desulfurizing agent is supplied to the secondary combustion zone e.

第3図は、この発明による3段燃焼法における
脱硫法と、空気2段燃焼法における脱硫法との場
合について、酸素濃度30%およびCaO/SO2当量
比4における炉内温度と脱硫率の関係を示すもの
である。同図から明らかなように、この発明の脱
硫法によれば、脱硫率を大幅に向上させることが
できる。
Figure 3 shows the furnace temperature and desulfurization rate at an oxygen concentration of 30% and a CaO/SO 2 equivalence ratio of 4 for the desulfurization method in the three-stage combustion method and the desulfurization method in the two-stage air combustion method according to the present invention. It shows the relationship. As is clear from the figure, according to the desulfurization method of the present invention, the desulfurization rate can be significantly improved.

以上の次第で、この発明の炉内脱硫法によれ
ば、炉内へ燃料と燃焼用空気をそれぞれ分割供給
して3段燃焼法を実施し、温度900〜1300℃の還
元雰囲気の2次燃焼域へ微粉状の脱硫剤を供給す
るので、脱硫剤との反応性に富むH2S、COS、
COなどの還元性ガスの濃度を高めることができ、
その結果、固体燃料の燃焼排ガスのように多量の
ダストを含んだ排ガスに対しても、高い脱硫率で
脱硫を達成することができる。
As described above, according to the in-furnace desulfurization method of the present invention, a three-stage combustion method is carried out by separately supplying fuel and combustion air into the furnace, and secondary combustion in a reducing atmosphere at a temperature of 900 to 1300°C is performed. Since fine powder desulfurization agent is supplied to the area, H 2 S, COS, which is highly reactive with desulfurization agent,
Can increase the concentration of reducing gases such as CO,
As a result, desulfurization can be achieved at a high desulfurization rate even for exhaust gas containing a large amount of dust, such as combustion exhaust gas of solid fuel.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例を示す燃焼炉の垂直
縦断面図、第2図は変形例を示す炉前部の垂直断
面図、第3図は炉内温度と脱硫率の関係を示すグ
ラフである。
FIG. 1 is a vertical cross-sectional view of a combustion furnace showing an embodiment of the present invention, FIG. 2 is a vertical cross-sectional view of the front part of the furnace showing a modified example, and FIG. 3 is a graph showing the relationship between furnace temperature and desulfurization rate. It is.

Claims (1)

【特許請求の範囲】 1 炉内へ燃料と燃焼用空気をそれぞれ分割供給
して3段燃焼法を実施し、温度900〜1300℃の還
元雰囲気の2次燃焼域へ微粉状の脱硫剤を供給す
ることを特徴とする炉内脱硫法。 2 脱硫剤を2次燃料とともに供給する特許請求
の範囲第1項記載の方法。 3 脱硫剤を2次燃料供給位置と3次空気供給位
置の間から供給する特許請求の範囲第1項記載の
方法。
[Scope of Claims] 1 A three-stage combustion method is carried out by separately supplying fuel and combustion air into the furnace, and fine powder desulfurization agent is supplied to the secondary combustion zone in a reducing atmosphere at a temperature of 900 to 1300°C. An in-furnace desulfurization method characterized by: 2. The method according to claim 1, wherein the desulfurization agent is supplied together with the secondary fuel. 3. The method according to claim 1, wherein the desulfurizing agent is supplied from between the secondary fuel supply position and the tertiary air supply position.
JP57038664A 1982-03-10 1982-03-10 Desulfurizing method for inside of furnace in solid combustion furnace Granted JPS58156104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57038664A JPS58156104A (en) 1982-03-10 1982-03-10 Desulfurizing method for inside of furnace in solid combustion furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57038664A JPS58156104A (en) 1982-03-10 1982-03-10 Desulfurizing method for inside of furnace in solid combustion furnace

Publications (2)

Publication Number Publication Date
JPS58156104A JPS58156104A (en) 1983-09-17
JPS6319762B2 true JPS6319762B2 (en) 1988-04-25

Family

ID=12531530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57038664A Granted JPS58156104A (en) 1982-03-10 1982-03-10 Desulfurizing method for inside of furnace in solid combustion furnace

Country Status (1)

Country Link
JP (1) JPS58156104A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU577366B2 (en) * 1984-04-27 1988-09-22 Foster Wheeler Energy Corporation Controlled flow, split stream burner assembly with sorbent injection
CA1309571C (en) * 1986-07-14 1992-11-03 Ronald R. Landreth Method and apparatus for reducing sulfur dioxide content in flue gases
DE3943084A1 (en) * 1989-12-27 1991-07-04 Saarbergwerke Ag METHOD FOR REDUCING NITROGEN OXIDE EMISSION IN THE FIRING OF SOLID FUELS
KR100955537B1 (en) * 2008-10-14 2010-04-30 한국생산기술연구원 Reburning System

Also Published As

Publication number Publication date
JPS58156104A (en) 1983-09-17

Similar Documents

Publication Publication Date Title
EP0650018B1 (en) Desulfurization of carbonaceous fuels
JPS61107925A (en) Method of reducing sulfur product in exhaust gas from combustion chamber
US5084256A (en) Method for reduction of sulfur products for gases by injection of powdered alkali sorbent at intermediate temperatures
ES2218565T3 (en) GLASS FUSION METHOD WITH REDUCED VOLATILIZATION OF ALKALINE SPECIES.
US5048431A (en) Method and apparatus for reducing sulfur dioxide content in flue gases
CA1309571C (en) Method and apparatus for reducing sulfur dioxide content in flue gases
JPS6319762B2 (en)
JPH0159489B2 (en)
EP0156784B1 (en) A method of reducing sulphur-oxide and nitrogen-oxide emission when burning solid fuel on travelling grates
JPS6131363B2 (en)
CA1310807C (en) Method for reduction of sulfur products from flue gases by injection of powdered alkali sorbent at intermediate temperatures
JPS5821163B2 (en) Fluidized bed combustion control method
JPH0211812B2 (en)
JPH0211813B2 (en)
JPS6127645B2 (en)
CA1325363C (en) Method to enhance removal of sulfur compounds by slag
JPS6137522B2 (en)
AU2004226590B2 (en) Process for burning sulfur-containing fuels
JPS6249097B2 (en)
JPS59195015A (en) Low nox and low sox combustion
JP3621811B2 (en) Coal-fired fluidized bed boiler
JPH01270926A (en) Flue gas desulfurizer by dry process using fly ash containing lime at high concentration
JPH0445826A (en) Flue gas desulfurization apparatus
JPS599004B2 (en) Fluidized bed combustion control method
JPS5913643B2 (en) Fluidized bed combustion control method