JPH0211813B2 - - Google Patents

Info

Publication number
JPH0211813B2
JPH0211813B2 JP59217791A JP21779184A JPH0211813B2 JP H0211813 B2 JPH0211813 B2 JP H0211813B2 JP 59217791 A JP59217791 A JP 59217791A JP 21779184 A JP21779184 A JP 21779184A JP H0211813 B2 JPH0211813 B2 JP H0211813B2
Authority
JP
Japan
Prior art keywords
combustion chamber
exhaust gas
temperature
primary
primary combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59217791A
Other languages
Japanese (ja)
Other versions
JPS6196319A (en
Inventor
Yoshitoshi Sekiguchi
Kunio Sasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP59217791A priority Critical patent/JPS6196319A/en
Publication of JPS6196319A publication Critical patent/JPS6196319A/en
Publication of JPH0211813B2 publication Critical patent/JPH0211813B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • F23C6/04Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J7/00Arrangement of devices for supplying chemicals to fire

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Treating Waste Gases (AREA)
  • Incineration Of Waste (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は石炭等の灰分、N分、S分を同時に多
く含む燃料を燃焼させた際に発生する媒塵、
NOx、SOxの有害物質を効果的に除去することが
できる燃焼法に関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention is directed to the use of dust particles generated when a fuel containing large amounts of ash, N, and S, such as coal, is burned.
This relates to a combustion method that can effectively remove harmful substances such as NO x and SO x .

従来の技術 従来から石炭等の灰分の多い燃料の燃焼排ガス
を脱硫する方法の一つとして、炉内に直接、炭酸
カルシウム(石灰石)、消石灰、ドロマイト、炭
酸ソーダなどのアルカリ(多くは粉体で)を供給
し、SOxを硫酸塩あるいは亜硫酸塩として吸収除
去する方法がある。
Conventional technology One of the conventional methods for desulfurizing combustion exhaust gas from fuels with a high ash content such as coal is to directly inject into the furnace an alkali (often in the form of powder) such as calcium carbonate (limestone), slaked lime, dolomite, or soda carbonate. ) and absorb and remove SO x as sulfate or sulfite.

発明が解決しようとする問題点 上記従来方法によれば、炉内温度が高い場合、 CaO+SO2+1/2O2→CaSO4 ……(1) Na2CO3+SO2+1/2O2→NaSO4+CO2
……(2) などの反応は起りにくくなり、1000℃以上の温度
においては脱硫率が低下する(第4図参照)。
Problems to be Solved by the Invention According to the above conventional method, when the temperature inside the furnace is high, CaO + SO 2 +1/2O 2 →CaSO 4 ...(1) Na 2 CO 3 +SO 2 +1/2O 2 →NaSO 4 +CO 2
Reactions such as (2) become less likely to occur, and the desulfurization rate decreases at temperatures above 1000°C (see Figure 4).

一方、900℃〜1000℃であつても、NOx抑制の
ために空気二段燃焼をおこなつた場合、1次燃焼
域の空気比が0.8以下では、酸素濃度が低いため
に上記(1)(2)の反応が進まず、脱硫率が低いという
欠点があつた。
On the other hand, even if the temperature is between 900°C and 1000°C, when air two-stage combustion is performed to suppress NO x , if the air ratio in the primary combustion zone is 0.8 or less, the oxygen concentration is low, so (1) The disadvantage was that the reaction (2) did not proceed and the desulfurization rate was low.

しかしながら、1次燃焼域の空気比をさらに低
くした場合は、還元燃焼が強化され、SO2はほと
んど発生せず、燃料中のSはH2S、COSとなる。
However, when the air ratio in the primary combustion zone is further lowered, reductive combustion is strengthened, almost no SO 2 is generated, and S in the fuel becomes H 2 S and COS.

また900℃〜1400℃の高温域では、これらとア
ルカリは次の反応により直接反応する。
In addition, in the high temperature range of 900°C to 1400°C, these and alkali react directly through the following reaction.

CaO+H2S→CaS+H2O ……(3) CaO+COS→CaS+CO2 ……(4) Na2CO3+H2S→Na2S+H2O+CO2 ……(5) Na2CO3+COS→Na2S+2CO2 ……(6) CaSO4+4CO→CaS+4CO2 ……(7) NaCO3+SO2+3C →Na2S+3CO+CO2 ……(8) これらの反応により生成した硫化物は高温にお
いても安定である。
CaO+H 2 S→CaS+H 2 O ……(3) CaO+COS→CaS+CO 2 ……(4) Na 2 CO 3 +H 2 S→Na 2 S+H 2 O+CO 2 ……(5) Na 2 CO 3 +COS→Na 2 S+2CO 2 ...(6) CaSO 4 +4CO→CaS+4CO 2 ...(7) NaCO 3 +SO 2 +3C → Na 2 S+3CO+CO 2 ...(8) The sulfides produced by these reactions are stable even at high temperatures.

そこでNOx抑制燃焼法の一つである空気二段
燃焼法を適用し、1次燃焼域を空気比0.8以下で
還元燃焼させ、この1次燃焼域へ脱硫剤を供給す
る方法が考えられた。
Therefore, a method was considered to apply the air two-stage combustion method, which is one of the NO x suppression combustion methods, to perform reductive combustion in the primary combustion zone at an air ratio of 0.8 or less, and to supply a desulfurization agent to this primary combustion zone. .

しかしこの方法によると、灰分が少なく、かつ
融点の非常に高い石油コークス等では脱硝、脱硫
が効果的におこなわれるが、石炭等の灰の量が多
くかつ低融点の燃料に対しては、灰の主成分が一
般的に珪酸塩であり、灰が溶融すると、供給した
アルカリの大部分がこの珪酸と反応し、複雑な珪
酸塩の化合物をつくつてしまうため脱硫効果が小
さい(第5図参照)という問題がある。
However, this method effectively denitrates and desulfurizes petroleum coke, etc., which has a low ash content and a very high melting point; Generally, the main component of ash is silicate, and when the ash is melted, most of the supplied alkali reacts with this silicic acid, creating a complex silicate compound, so the desulfurization effect is small (see Figure 5). ) There is a problem.

問題点を解決するための手段 上記問題を解決するため、本発明の脱硫を同時
におこなう低NOx燃焼法は、燃料を1次燃焼室
で還元燃焼させると共に1次燃焼室内の温度を燃
料の灰分が溶融し流動化する温度以上に保持して
溶けた灰を溶融状態で取除き、次に未燃分を含ん
だ1次燃焼排ガスを2次空気により燃焼させる2
次燃焼室へ導入し、まず排ガス中に脱硫剤を供給
して脱硫すると共に周囲への熱放散によつてガス
温度を下げ、次に1次燃焼排ガスに必要かつ十分
な2次空気を供給して未燃分を完全燃焼させるこ
とにより硫化物を硫酸塩にするものである。
Means for Solving the Problems In order to solve the above problems, the low NOx combustion method of the present invention that simultaneously performs desulfurization burns the fuel in a primary combustion chamber and lowers the temperature in the primary combustion chamber by reducing the ash content of the fuel. The ash is maintained at a temperature higher than that at which it melts and becomes fluidized, and the molten ash is removed in a molten state.Then, the primary combustion exhaust gas containing unburned components is combusted with secondary air.2
Introduced into the secondary combustion chamber, first a desulfurizing agent is supplied into the exhaust gas to desulfurize it and lower the gas temperature by dissipating heat to the surroundings, and then the necessary and sufficient secondary air is supplied to the primary combustion exhaust gas. This process converts sulfides into sulfates by completely burning the unburned components.

実施例 以下、本発明の一実施例を第1図に基づいて説
明する。1は1次燃焼室、2は2次燃焼室、3は
1次バーナであつて、風箱4と、その風箱4の1
次空気供給ノズル5に挿入された石炭供給ノズル
6とを有する。7は1次燃焼室1の下部に設けら
れた溶融灰取出口、8は2次燃焼室2内の下部の
脱硫反応域9に炭酸カルシウム、消石灰分、ドロ
マイト、炭酸ソーダなどの脱硫剤を供給するため
の脱硫剤供給ノズル、11は2次燃焼室2内の上
部の2次燃焼域12に2次空気を供給するための
2次空気供給ノズルである。
Embodiment Hereinafter, an embodiment of the present invention will be described based on FIG. 1 is a primary combustion chamber, 2 is a secondary combustion chamber, 3 is a primary burner, and includes a wind box 4 and 1 of the wind box 4.
The coal supply nozzle 6 is inserted into the air supply nozzle 5. Reference numeral 7 indicates a molten ash outlet provided at the lower part of the primary combustion chamber 1, and 8 supplies a desulfurizing agent such as calcium carbonate, slaked lime, dolomite, and soda carbonate to the desulfurization reaction zone 9 at the lower part of the secondary combustion chamber 2. A desulfurizing agent supply nozzle 11 is a secondary air supply nozzle for supplying secondary air to the upper secondary combustion zone 12 in the secondary combustion chamber 2.

上記構成に基づいて、脱硫を同時におこなう低
NOx燃焼法を説明する。まず1次バーナ3に着
火し、石炭供給ノズル6から1次燃焼室1内に供
給される石炭(微粉炭)を燃焼させる。1次空気
供給ノズル5から1次燃焼室1内に供給される1
次空気の量は不足ぎみにして石炭を空気比が1以
下の還元雰囲気で燃焼させる。また1次燃焼室1
内の温度を1350℃〜1450℃に保持して石炭の灰分
を溶解し、流動化させ、その溶解灰を取出口7か
ら取出す。次に未燃分を含んだ1次燃焼排ガスを
2次燃焼室2へ導入し、脱硫剤供給ノズル8から
1次燃焼排ガス中に脱硫剤を供給し、脱硫する。
また周囲への熱放散によつてガス温度を下げ、次
に硫化物(CaS、Na2S)を含む1次燃焼排ガス
に2次空気供給ノズル11から必要かつ十分な空
気を供給して2次燃焼域12で未燃分を完全燃焼
させ、これによつて硫化物を下記のように無害な
硫酸塩に変える。
Based on the above configuration, a low temperature
Explain NOx combustion method. First, the primary burner 3 is ignited, and the coal (pulverized coal) supplied from the coal supply nozzle 6 into the primary combustion chamber 1 is combusted. 1 supplied into the primary combustion chamber 1 from the primary air supply nozzle 5
Next, the amount of air is insufficient, and the coal is burned in a reducing atmosphere with an air ratio of 1 or less. Also, the primary combustion chamber 1
The temperature inside is maintained at 1350°C to 1450°C to melt and fluidize the ash of the coal, and the dissolved ash is taken out from the outlet 7. Next, the primary combustion exhaust gas containing unburned components is introduced into the secondary combustion chamber 2, and a desulfurizing agent is supplied into the primary combustion exhaust gas from the desulfurizing agent supply nozzle 8 to desulfurize it.
In addition, the gas temperature is lowered by heat dissipation to the surroundings, and then necessary and sufficient air is supplied from the secondary air supply nozzle 11 to the primary combustion exhaust gas containing sulfides (CaS, Na 2 S). In the combustion zone 12, the unburned matter is completely combusted, thereby converting the sulfides into harmless sulfates as described below.

CaS+2O2→CaSO4 ……(9) Na2S+2O2→Na2SO4 ……(10) 第4図に炉内温度と脱硫率の関係を示す。また
第5図に1次空気比とNOx及びSOxとの関係を示
す。この第5図に示すごとく、本発明の実施例(イ)
による場合の方が従来例(ロ)に比べてSO2の発生率
が低いものである。特に空気比0.8以下の場合に
その傾向が著しい。
CaS+2O 2 →CaSO 4 ...(9) Na 2 S+2O 2 →Na 2 SO 4 ...(10) Figure 4 shows the relationship between furnace temperature and desulfurization rate. Furthermore, Fig. 5 shows the relationship between the primary air ratio and NO x and SO x . As shown in FIG. 5, an embodiment (a) of the present invention
The generation rate of SO 2 is lower in the case compared to the conventional example (b). This tendency is particularly noticeable when the air ratio is 0.8 or less.

硫化物を2次燃焼室2から取出したいときに
は、第2図および第3図に示すごとく、2次燃焼
室2の下部を下にのばしてホツパー14とし、ま
た2次空気、脱硫剤および1次燃焼排ガスを2次
燃焼室2内に対して接線方向から供給し、これに
よつてホツパー14の下部の硫化物取出口15か
ら硫化物を取出すようにすればよい。
When it is desired to take out sulfides from the secondary combustion chamber 2, as shown in FIGS. 2 and 3, the lower part of the secondary combustion chamber 2 is extended downward to form a hopper 14, and the secondary air, desulfurization agent and primary The combustion exhaust gas may be supplied into the secondary combustion chamber 2 from a tangential direction, thereby taking out the sulfide from the sulfide outlet 15 in the lower part of the hopper 14.

発明の効果 以上述べたごとく本発明によれば、1次燃焼排
ガスを2次空気により燃焼させる2次燃焼室にお
いて、まず1次燃焼排ガス中に脱硫剤を供給して
脱硫すると共に排ガスを熱放散させてガス温度を
下げ、次に2次空気を供給して未燃分を完全燃焼
させるので、水に溶け易くかつ有害な化合物であ
る硫化物を無害な硫酸塩にすることができ、石炭
等の灰の量が多くかつ低融点の燃料であつても、
脱硫率を従来に比べて大幅に上げることができる
(実験によれば脱硫率を45%まで上げることがで
きた)。またNOxの低減も図ることができるもの
である。
Effects of the Invention As described above, according to the present invention, in the secondary combustion chamber where primary combustion exhaust gas is combusted by secondary air, a desulfurizing agent is first supplied to the primary combustion exhaust gas to desulfurize it and dissipate heat from the exhaust gas. This process lowers the gas temperature and then supplies secondary air to completely combust the unburned components, making it possible to convert sulfides, which are easily water-soluble and harmful compounds, into harmless sulfates. Even if the fuel has a large amount of ash and a low melting point,
The desulfurization rate can be significantly increased compared to conventional methods (according to experiments, the desulfurization rate could be increased to 45%). Furthermore, it is possible to reduce NOx .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す概略縦断面
図、第2図は本発明の他の実施例を示す要部の縦
断面図、第3図は同要部の横断面図である。第4
図は炉内温度と脱硫率の関係を示すグラフ、第5
図は一次空気比とNOx及びSOxの関係を示すグラ
フである。 1……1次燃焼室、2……2次燃焼室、6……
石炭供給ノズル、7……溶融灰取出口、8……脱
硫剤供給ノズル、11……2次空気供給ノズル。
FIG. 1 is a schematic vertical sectional view showing one embodiment of the present invention, FIG. 2 is a longitudinal sectional view of a main part showing another embodiment of the invention, and FIG. 3 is a cross-sectional view of the main part. . Fourth
The figure is a graph showing the relationship between furnace temperature and desulfurization rate.
The figure is a graph showing the relationship between the primary air ratio and NO x and SO x . 1...Primary combustion chamber, 2...Secondary combustion chamber, 6...
Coal supply nozzle, 7... Molten ash outlet, 8... Desulfurization agent supply nozzle, 11... Secondary air supply nozzle.

Claims (1)

【特許請求の範囲】[Claims] 1 燃料を1次燃焼室で還元燃焼させると共に1
次燃焼室内の温度を燃料の灰分が溶融し流動化す
る温度以上に保持して溶けた灰を溶融状態で取除
き、次に未燃分を含んだ1次燃焼排ガスを2次空
気により燃焼させる2次燃焼室へ導入し、まず排
ガス中に脱硫剤を供給して脱硫すると共に周囲へ
の熱放散によつてガス温度を下げ、次に1次燃焼
排ガスに必要かつ十分な2次空気を供給して未燃
分を完全燃焼させることにより硫化物を硫酸塩に
することを特徴とする脱硫を同時におこなう低
NOx燃焼法。
1 Reductive combustion of fuel in the primary combustion chamber and 1
The temperature in the next combustion chamber is maintained above the temperature at which the ash content of the fuel melts and becomes fluidized, the molten ash is removed in a molten state, and then the primary combustion exhaust gas containing unburned components is combusted with secondary air. Introduced into the secondary combustion chamber, firstly, a desulfurizing agent is supplied into the exhaust gas to desulfurize it and reduce the gas temperature by dissipating heat to the surroundings, and then supplying the necessary and sufficient secondary air to the primary combustion exhaust gas. It is characterized by the fact that sulfide is converted into sulfate by completely burning the unburned matter.
NOx combustion method.
JP59217791A 1984-10-16 1984-10-16 Method of low nox combustion to be performed along with desulfurization Granted JPS6196319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59217791A JPS6196319A (en) 1984-10-16 1984-10-16 Method of low nox combustion to be performed along with desulfurization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59217791A JPS6196319A (en) 1984-10-16 1984-10-16 Method of low nox combustion to be performed along with desulfurization

Publications (2)

Publication Number Publication Date
JPS6196319A JPS6196319A (en) 1986-05-15
JPH0211813B2 true JPH0211813B2 (en) 1990-03-15

Family

ID=16709780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59217791A Granted JPS6196319A (en) 1984-10-16 1984-10-16 Method of low nox combustion to be performed along with desulfurization

Country Status (1)

Country Link
JP (1) JPS6196319A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0301714A3 (en) * 1987-07-30 1989-07-19 Trw Inc. Sulfur removal by sorbent injection in secondary combustion zones
CN104534490B (en) * 2014-12-30 2017-08-01 黑龙江国德节能服务有限公司 The device and air distribution method of boiler ph balancing auxiliary air distribution

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58190605A (en) * 1982-04-28 1983-11-07 Hitachi Zosen Corp Three-stage combustion in restricting nox for performing desulfurization simultaneously
JPS58193013A (en) * 1982-05-07 1983-11-10 Hitachi Zosen Corp Desulfurization performed in solid fuel combustion furnace

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58190605A (en) * 1982-04-28 1983-11-07 Hitachi Zosen Corp Three-stage combustion in restricting nox for performing desulfurization simultaneously
JPS58193013A (en) * 1982-05-07 1983-11-10 Hitachi Zosen Corp Desulfurization performed in solid fuel combustion furnace

Also Published As

Publication number Publication date
JPS6196319A (en) 1986-05-15

Similar Documents

Publication Publication Date Title
US4542704A (en) Three-stage process for burning fuel containing sulfur to reduce emission of particulates and sulfur-containing gases
JP2967394B2 (en) Desulfurization of carbonaceous fuel
US4517165A (en) Combustion method
JPS61107925A (en) Method of reducing sulfur product in exhaust gas from combustion chamber
US4523532A (en) Combustion method
ES2218565T3 (en) GLASS FUSION METHOD WITH REDUCED VOLATILIZATION OF ALKALINE SPECIES.
NO855006L (en) Combustion process for combustion of fuels containing sulfur.
US4981667A (en) Removal of sulfur from petroleum coke with lime
JPH0211813B2 (en)
JPH0159489B2 (en)
JPH0211812B2 (en)
JPS6319762B2 (en)
JPS6137522B2 (en)
JPS6131363B2 (en)
CA2036642C (en) Method of retaining sulfur in ash during coal combustion
JPS6127645B2 (en)
JP2545804B2 (en) High oxidation combustion type smelting reduction method
JPH044485B2 (en)
JPH044484B2 (en)
JPH04117491A (en) Operation of coal gasifier
JPH04122486A (en) Waste melting furnace
JPH0135785B2 (en)
JPS6111510A (en) Fluidal burning method of coal
JPS6249097B2 (en)
JPS6367601B2 (en)