JPS58193013A - Desulfurization performed in solid fuel combustion furnace - Google Patents

Desulfurization performed in solid fuel combustion furnace

Info

Publication number
JPS58193013A
JPS58193013A JP7695582A JP7695582A JPS58193013A JP S58193013 A JPS58193013 A JP S58193013A JP 7695582 A JP7695582 A JP 7695582A JP 7695582 A JP7695582 A JP 7695582A JP S58193013 A JPS58193013 A JP S58193013A
Authority
JP
Japan
Prior art keywords
furnace
air
combustion
nozzle
desulfurization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7695582A
Other languages
Japanese (ja)
Other versions
JPH0159489B2 (en
Inventor
Yoshitoshi Sekiguchi
善利 関口
Yoshimasa Miura
三浦 祥正
Kunio Sasaki
邦夫 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP7695582A priority Critical patent/JPS58193013A/en
Publication of JPS58193013A publication Critical patent/JPS58193013A/en
Publication of JPH0159489B2 publication Critical patent/JPH0159489B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • F23C6/04Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection
    • F23C6/045Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection with staged combustion in a single enclosure

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Incineration Of Waste (AREA)

Abstract

PURPOSE:To efficiently desulfurize exhaust gas after combustion of solid fuel containing dust in high concentration, by feeding desulfurizing agent to the primary combustion zone of reducing atmosphere formed on the upstream side of the secondary combustion air feeding port. CONSTITUTION:The mixture of pulverized coal and fuel transfer air is fed into a furnace from a burner 7. Then, the primary combustion air is fed into the furnace from a wind box 8 to make the air ratio below 1.0. In addition, practically theoretical secondary combustion air is fed into the furnace from a nozzle 9. As a result, the secondary combustion zone b is formed on the downstream side of the nozzle 9, while the primary combustion zone a is formed on the upstream side of the nozzle 9. The primary combustion zone a is in the reducing atmosphere in the temperature of 900-1,300 deg.C, so that it provides the furnace with the optimum condition to perform desulfurization. Then, a desulfurizing agent is fed into the furnace from a nozzle 10, and desulfurization in the furnace is taken place effectively.

Description

【発明の詳細な説明】 この発明は固体燃焼炉における炉内脱硫法に関する。[Detailed description of the invention] This invention relates to an in-furnace desulfurization method in a solid combustion furnace.

硫黄分を含有する燃料の燃焼に伴って発生する硫黄酸化
物(以下SOXと称する)は、公害の原因物質であるた
め、これを効果的に除去する方法が要望せられ、従来多
くのSOx除去技術が提案ないし実用化されている。し
かしこれらの方法はいずれも液化ないし気体燃料を対象
としタモのであるため、固体燃焼炉からの排ガスのよう
に多量のダストを含んだ排ガスの脱硫に適用すると、ダ
ストによる炉閉塞や脱硫率の低下などの問題をまねいた
。そこでこの問題の解決策として、石灰石、消石灰ヘド
ロマイトなどの固形のSOx吸収剤を火炉内へ直接噴射
する乾式炉内脱硫法が提案された。しかしこの方法では
高温の酸化雰囲気中へ吸収剤を直接供給するため、 S
Oxの吸収が悪く、その結果吸収剤を多量必要とする欠
点があった。
Sulfur oxides (hereinafter referred to as SOX) generated when sulfur-containing fuel is burned are a substance that causes pollution, so there is a need for a method to effectively remove them. A technology has been proposed or put into practical use. However, all of these methods target liquefied or gaseous fuels, so if they are applied to desulfurizing exhaust gas that contains a large amount of dust, such as exhaust gas from a solid combustion furnace, they may cause furnace clogging due to dust or a decrease in the desulfurization rate. This led to problems such as As a solution to this problem, a dry in-furnace desulfurization method has been proposed in which a solid SOx absorbent such as limestone or slaked lime hedromite is directly injected into the furnace. However, in this method, the absorbent is directly supplied into the high-temperature oxidizing atmosphere, so S
Ox absorption is poor, and as a result, a large amount of absorbent is required.

本発明者らは、従来の炉内脱硫の効率が悪い原因につい
て検討を行なったところ、つきのような知見を得た。す
なわち、通常の火炉内界囲気のように、酸化雰囲気では
あるが酸素濃度が1〜5%以下と非常に低い場合、9o
o℃程度の温度では Na2O+SO2+ 1/’202 →Na2SO4m
 m a l1lCaO+SO2+1/202 →Ca
SO4* 11 @ +21の反応が起こりにくい。こ
れに対し、還元雰囲気では、900〜1300℃の高温
域でNa2O+H2S −*Na2S + H2O11
@ @ (31CaO+H2S −+ CaS +H2
0* 11 @ (4)CaO+CO8−+CaS +
 CO2@ @ −[51CaSO4+4CO−+Ca
S +4CO2@ @ −+61Na20 +SO2+
3C−+NazS +3CO・・・[7)などの硫化物
生成反応が主となり、Na2SO4、CaSO4などの
硫酸塩よりNa2S s OaSなどの硫化物の方が安
定であることがわかった。したがってCaSの生成量を
増すには、反応式[31[41+51 +61 (7+
の平衡を右にかたよらせればよく、そのためには900
〜1300℃の温度域において還元性ガスであるH2S
 、 CO8、Coなどのガス濃度を高クシ、かつ還元
領域へ脱硫剤を供給してやるのがよいことがわかる。
The present inventors investigated the cause of the low efficiency of conventional in-furnace desulfurization and obtained the following findings. In other words, when the atmosphere inside a normal furnace is an oxidizing atmosphere but the oxygen concentration is very low, 1 to 5% or less, 9 o
At a temperature of about o℃, Na2O+SO2+ 1/'202 → Na2SO4m
m a l1lCaO+SO2+1/202 →Ca
SO4* 11 @ +21 reaction is difficult to occur. On the other hand, in a reducing atmosphere, Na2O + H2S - *Na2S + H2O11 in the high temperature range of 900-1300℃
@ @ (31CaO+H2S −+ CaS +H2
0* 11 @ (4) CaO+CO8-+CaS+
CO2@ @ −[51CaSO4+4CO−+Ca
S +4CO2@ @ -+61Na20 +SO2+
It was found that sulfides such as 3C-+NazS +3CO...[7] are mainly produced, and sulfides such as Na2S s OaS are more stable than sulfates such as Na2SO4 and CaSO4. Therefore, in order to increase the amount of CaS produced, the reaction formula [31[41+51 +61 (7+
All we have to do is shift the equilibrium of 900 to the right.
H2S is a reducing gas in the temperature range of ~1300℃
It can be seen that it is better to increase the concentration of gases such as , CO8, and Co, and to supply a desulfurizing agent to the reduction region.

この発明は上記のような知見に基づいてなされたもので
あって、ダストを高濃度で含む固体燃料燃焼排ガスに対
して適用した場合も、脱硫を効率よく行なうことのでき
る脱硫法を提供することを目的とする。
This invention has been made based on the above knowledge, and an object of the present invention is to provide a desulfurization method that can efficiently desulfurize even when applied to solid fuel combustion exhaust gas containing a high concentration of dust. With the goal.

なお、以下の説明において、空気比とは、燃焼に要する
理論空気量に対する実際の空気量の割合をいい、前後方
向については、第1図を基準として、その゛左方を前方
、またその右方を後方と称することとする。
In the following explanation, the air ratio refers to the ratio of the actual amount of air to the theoretical amount of air required for combustion, and in the front-back direction, the left side is the front, and the right side is This side will be referred to as the rear side.

この発明による脱硫法は、燃焼用空気を2分割して炉内
に供給する空気2段燃焼法において、燃焼用2次空気供
給口より上流側に形成された還元雰囲気の1次燃焼域へ
脱硫剤を供給することを特徴とする。
The desulfurization method according to the present invention is a two-stage combustion method in which combustion air is divided into two parts and supplied into the furnace. It is characterized by supplying an agent.

空気2段燃焼法は、前壁に設けたバーナから炉内へ、粉
末燃料とこれを送るための燃料輸送用空気とを供給し、
燃焼用空気を2分割して炉内へ供給し、燃焼用2次空気
供給口より上流側に還元雰囲気の1次燃焼域を形成する
とともに、同供給口より下流側に参会勢壽条幸2次燃焼
域を形成する燃焼法である。
In the air two-stage combustion method, powdered fuel and air for transporting the fuel are supplied into the furnace from a burner installed on the front wall.
Combustion air is divided into two parts and supplied into the furnace to form a primary combustion zone with a reducing atmosphere upstream from the secondary combustion air supply port, and a primary combustion zone with a reducing atmosphere downstream from the supply port. This is a combustion method that forms a secondary combustion zone.

2次燃焼域への脱硫剤の供給は、燃焼用1次空気供給口
と同2次空気供給口の間において炉壁に設けられた脱硫
剤供給口によって行なわれる。
The desulfurization agent is supplied to the secondary combustion zone through a desulfurization agent supply port provided in the furnace wall between the primary combustion air supply port and the secondary air supply port.

燃料としては石炭を微粉化した微粉炭がよく用いられる
。また脱硫剤としては、Na2(1’03 、CaCO
3、Ca(OH)2、ドロマイトなどのアルカリがよく
用いられる。
Pulverized coal, which is made by pulverizing coal, is often used as a fuel. In addition, as a desulfurizing agent, Na2(1'03, CaCO
3. Alkali such as Ca(OH)2 and dolomite are often used.

まず、この発明において使用する燃焼炉の構造について
説明する。
First, the structure of the combustion furnace used in this invention will be explained.

第1図において、(1)は吸熱用ジャケットを有する円
筒状周壁(2)とその両端に設けられた前壁(3)と後
壁(4)とからなる炉本体、(5)は前壁(3)の中′
央にあけられた開口で、前方突出状の燃焼用1次空気供
給口(6)を有する。(7)は燃焼用1次空気供給口(
6)の中心部に炉内向きに配されたバーナで、ここから
微粉炭と燃料輸送用空気の混合物が供給される。(8)
は前壁(3)の前面に設けられた風箱で、燃焼用1次空
気供給口(6)を介して炉内に通じている。(9)は周
壁(2)の長さの中央がらやや後壁寄りに設けられた複
数の燃焼用2次空気ノズル、aOIは燃焼用2次空気ノ
ズル(9)より上流側において周壁(2)に設けらnた
複数の脱硫剤ノズル、01)は周壁(2)の後端部に設
けられた煙道である。
In Fig. 1, (1) is a furnace body consisting of a cylindrical peripheral wall (2) having a heat absorption jacket, a front wall (3) and a rear wall (4) provided at both ends thereof, and (5) is a front wall. Inside (3)
It has an opening in the center and a primary combustion air supply port (6) projecting forward. (7) is the primary air supply port for combustion (
6) is a burner placed in the center facing the furnace, from which a mixture of pulverized coal and air for fuel transportation is supplied. (8)
is a wind box provided in the front of the front wall (3), which communicates with the inside of the furnace via the primary combustion air supply port (6). (9) is a plurality of secondary air nozzles for combustion provided slightly toward the rear wall from the center of the length of the peripheral wall (2), and aOI is a secondary air nozzle for combustion provided on the upstream side of the secondary air nozzle (9) for peripheral wall (2). A plurality of desulfurizing agent nozzles, 01) provided in the peripheral wall (2) are flues provided at the rear end of the peripheral wall (2).

上記構造の燃焼炉において、バーナ(7)から炉内へ微
粉炭と燃料輸送用空気の混合物を供給する。ざらをヒ風
箱(8)から炉内へ燃焼用1次空気を供給し、空気比を
1.0以下にする。
In the combustion furnace having the above structure, a mixture of pulverized coal and fuel transporting air is supplied from the burner (7) into the furnace. Primary air for combustion is supplied from the colander box (8) into the furnace, and the air ratio is kept below 1.0.

またノズル(9)から炉内へ実質的に理論量の燃焼用2
次空気を供給する。この結果ノズル(9)より上流側に
1次燃焼域(a)が形成されるとともに、ノズル(9)
より下流側に2次燃焼域(b)が形成される。1次燃焼
域(IL)は温度900〜1300℃の還元雰囲気であ
るので、炉内脱硫を行なうには最適条件を備えている。
Also, a substantially stoichiometric amount of combustion 2 is supplied from the nozzle (9) into the furnace.
Next, supply air. As a result, a primary combustion zone (a) is formed upstream of the nozzle (9), and the nozzle (9)
A secondary combustion zone (b) is formed further downstream. Since the primary combustion zone (IL) is a reducing atmosphere with a temperature of 900 to 1300°C, it has optimal conditions for in-furnace desulfurization.

そこでノズルC1Oから脱硫剤を炉内に供給し、効果的
に炉内脱硫を行なう。
Therefore, a desulfurizing agent is supplied into the furnace from the nozzle C1O to effectively perform desulfurization in the furnace.

第2図は燃焼炉の変形を示すものである。この炉(2)
は箱形の大型垂直炉であって、前壁■の下端部に第1図
の燃焼炉のものと同じ構造の燃焼用1次空気供給口凶と
バーナ(241と風箱(ハ)が設けられ、バーナ例から
微粉炭と燃料輸送用空気の混合物が供給され、風箱(ハ
)から燃焼用1次空気が供給される。またバーナ例の上
方において前壁のに燃焼用2次空気ノズル例が設けられ
、同ノズルがとバーナ例の間において前壁(イ)に脱硫
剤ノズル万が設けられている。そしてこの場合も燃焼用
2次空気ノズル(至)より上流側に還元雰囲気の1次燃
焼域(0)が形成されるとともに、ノズル(至)の下流
側に2次燃焼域(d)が形成される。そ乙でノズル助が
ら1次燃am(c)に脱硫剤を供給する。
FIG. 2 shows a modification of the combustion furnace. This furnace (2)
is a box-shaped large vertical furnace, and a primary air supply port for combustion and a burner (241) and a wind box (c) of the same structure as the combustion furnace shown in Fig. 1 are installed at the lower end of the front wall (2). A mixture of pulverized coal and air for fuel transportation is supplied from the burner, and primary air for combustion is supplied from the wind box (c).A secondary air nozzle for combustion is installed on the front wall above the burner. An example is provided in which a desulfurizing agent nozzle is provided on the front wall (A) between the nozzle and the burner.In this case as well, a reducing atmosphere is provided upstream of the secondary combustion air nozzle (A). A primary combustion zone (0) is formed, and a secondary combustion zone (d) is formed downstream of the nozzle (to).At that point, a desulfurizing agent is added to the primary combustion zone (c) with the help of the nozzle. supply

第3図は、この発明による空気2段燃焼法における脱硫
法と、単段燃焼法における脱硫法との場合について、酸
素濃度3%、CaO/ SO2およびNa2O/ 80
2当量比それぞれ4における炉内温度と脱硫率の関係を
示すものである。同図から明らかなように、この発明の
脱硫法によれば、脱硫率を大幅に向上させることができ
る。
Figure 3 shows the desulfurization method in the two-stage air combustion method and the desulfurization method in the single-stage combustion method according to the present invention, with an oxygen concentration of 3%, CaO/SO2, and Na2O/80.
2 shows the relationship between furnace temperature and desulfurization rate at each equivalent ratio of 4. As is clear from the figure, according to the desulfurization method of the present invention, the desulfurization rate can be significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例を示す燃焼炉の垂直縦断面図
、第2図は変形例を示す炉前部の垂直断面図、第3図は
炉内温度と脱硫率の関係を示すグラフである。 以  上 昭和57年7月72日 特許庁長官 若 杉 和 夫 殿 ■、廖件の人生  昭和57年特許願第76抽ビ 号2
 発明の名称  固体燃焼炉における炉内脱硫法3 補
正をする者 事件との関係    特許出願人 11    所 大阪市西区江戸堀1丁目6番14号氏
名9名称 (511)  日立造船株式会社4代 理 
人 外4 名 5 補正命令の日付   昭和  年  月   口6
 補正により増加する発明の数 7 補正ノ対象    明細書の発明の詳細な説明の欄
8 補i1.の内容
FIG. 1 is a vertical cross-sectional view of a combustion furnace showing an embodiment of the present invention, FIG. 2 is a vertical cross-sectional view of the front part of the furnace showing a modified example, and FIG. 3 is a graph showing the relationship between furnace temperature and desulfurization rate. It is. End of July 72, 1980 Mr. Kazuo Wakasugi, Commissioner of the Patent Office, The Life of Liao Case, Patent Application No. 76, No. 2 of 1980
Title of the invention In-furnace desulfurization method in a solid combustion furnace 3 Relationship with the case of the person making the amendment Patent applicant 11 Address 1-6-14 Edobori, Nishi-ku, Osaka Name 9 Name (511) Hitachi Zosen Corporation 4th representative Director
Non-human 4 persons 5 Date of amendment order Showa year month month 6
Number of inventions increased by amendment 7 Subject of amendment Column 8 for detailed explanation of the invention in the specification Supplement i1. contents of

Claims (2)

【特許請求の範囲】[Claims] (1)燃焼用空気を2分割して炉内へ供給する空気2段
燃焼法において、燃焼用2次空気供給口より上流側に形
成さnた還元雰囲気の1次燃焼域に脱硫剤を供給するこ
とを特徴とする固体燃焼炉における炉内脱硫法。
(1) In the air two-stage combustion method where combustion air is divided into two and supplied into the furnace, a desulfurizing agent is supplied to the primary combustion zone of the reducing atmosphere formed upstream from the secondary combustion air supply port. An in-furnace desulfurization method in a solid combustion furnace characterized by:
(2)1次燃焼域の温度範囲が900〜1300℃であ
る特許請求の範囲第1項記載の方法。
(2) The method according to claim 1, wherein the temperature range of the primary combustion zone is 900 to 1300°C.
JP7695582A 1982-05-07 1982-05-07 Desulfurization performed in solid fuel combustion furnace Granted JPS58193013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7695582A JPS58193013A (en) 1982-05-07 1982-05-07 Desulfurization performed in solid fuel combustion furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7695582A JPS58193013A (en) 1982-05-07 1982-05-07 Desulfurization performed in solid fuel combustion furnace

Publications (2)

Publication Number Publication Date
JPS58193013A true JPS58193013A (en) 1983-11-10
JPH0159489B2 JPH0159489B2 (en) 1989-12-18

Family

ID=13620196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7695582A Granted JPS58193013A (en) 1982-05-07 1982-05-07 Desulfurization performed in solid fuel combustion furnace

Country Status (1)

Country Link
JP (1) JPS58193013A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6196318A (en) * 1984-10-16 1986-05-15 Hitachi Zosen Corp Method of low nox combustion to be performed along with desulfurization
JPS6196319A (en) * 1984-10-16 1986-05-15 Hitachi Zosen Corp Method of low nox combustion to be performed along with desulfurization
WO1994020788A1 (en) * 1993-03-08 1994-09-15 Dykema Owen W COAL COMBUSTION PROCESS FOR SOx AND NOx CONTROL
US6206685B1 (en) * 1999-08-31 2001-03-27 Ge Energy And Environmental Research Corporation Method for reducing NOx in combustion flue gas using metal-containing additives

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5432834A (en) * 1977-08-19 1979-03-10 Mitsubishi Heavy Ind Ltd Processing system for exhaust combustion gas
JPS5691106A (en) * 1979-12-07 1981-07-23 Exxon Research Engineering Co Improved coal combustion method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5432834A (en) * 1977-08-19 1979-03-10 Mitsubishi Heavy Ind Ltd Processing system for exhaust combustion gas
JPS5691106A (en) * 1979-12-07 1981-07-23 Exxon Research Engineering Co Improved coal combustion method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6196318A (en) * 1984-10-16 1986-05-15 Hitachi Zosen Corp Method of low nox combustion to be performed along with desulfurization
JPS6196319A (en) * 1984-10-16 1986-05-15 Hitachi Zosen Corp Method of low nox combustion to be performed along with desulfurization
JPH0211813B2 (en) * 1984-10-16 1990-03-15 Hitachi Shipbuilding Eng Co
JPH0211812B2 (en) * 1984-10-16 1990-03-15 Hitachi Shipbuilding Eng Co
WO1994020788A1 (en) * 1993-03-08 1994-09-15 Dykema Owen W COAL COMBUSTION PROCESS FOR SOx AND NOx CONTROL
US6206685B1 (en) * 1999-08-31 2001-03-27 Ge Energy And Environmental Research Corporation Method for reducing NOx in combustion flue gas using metal-containing additives
US6471506B1 (en) 1999-08-31 2002-10-29 Ge Energy & Environmental Research Corp. Methods for reducing NOx in combustion flue gas using metal-containing additives

Also Published As

Publication number Publication date
JPH0159489B2 (en) 1989-12-18

Similar Documents

Publication Publication Date Title
US5458659A (en) Desulfurization of carbonaceous fuels
US4423702A (en) Method for desulfurization, denitrifaction, and oxidation of carbonaceous fuels
US3599610A (en) Combustion of high-sulfur coal with minimal ecological trauma
CA1176032A (en) Combustion method and apparatus therefor
US4315735A (en) Process for calcining mineral raw materials in a uniflow regenerative shaft furnace
CN109809368A (en) A kind of oxygen-enriched combustion system and technique of the sulphur recovery for coal chemical industry
US5609662A (en) Method for processing niter-containing glassmaking materials
JPS58193013A (en) Desulfurization performed in solid fuel combustion furnace
JPS58156104A (en) Desulfurizing method for inside of furnace in solid combustion furnace
US7069867B2 (en) Process for burning sulfur-containing fuels
JPS5821163B2 (en) Fluidized bed combustion control method
JPH07332613A (en) Method for combustion in fluidized bed for performing concurrent reduction of nitrous oxide and nitrogen oxide
JPH0211812B2 (en)
JPS6196319A (en) Method of low nox combustion to be performed along with desulfurization
JPS58190607A (en) Combustion with low nox performing desulfurization simultaneously
Tan Pollutant formation and emissions from oxy-coal power plants
AU2004226590B2 (en) Process for burning sulfur-containing fuels
GB1562839A (en) Desulphurization of hot reducing gas
JPS59195015A (en) Low nox and low sox combustion
SU1766474A1 (en) Method for purification of smoke gases from toxic components
JPH03293015A (en) Method and device for treating waste gas from fluidized-bed combustion boiler
JPS61208411A (en) Two-stage combustion method to suppress nox development with simultaneous desulphurization
ZA200507992B (en) Process for burning sulfur-containing fuels
JPS6365011A (en) High oxidizing combustion type smelting reduction method
JPH083106B2 (en) Method for producing flammable gas containing ammonia