JPS5987394A - Overflow structure in reactor container - Google Patents

Overflow structure in reactor container

Info

Publication number
JPS5987394A
JPS5987394A JP57198071A JP19807182A JPS5987394A JP S5987394 A JPS5987394 A JP S5987394A JP 57198071 A JP57198071 A JP 57198071A JP 19807182 A JP19807182 A JP 19807182A JP S5987394 A JPS5987394 A JP S5987394A
Authority
JP
Japan
Prior art keywords
reactor vessel
reactor
plenum
cold
wall cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57198071A
Other languages
Japanese (ja)
Inventor
吉郎 神島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Atomic Power Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Atomic Power Industries Inc filed Critical Mitsubishi Atomic Power Industries Inc
Priority to JP57198071A priority Critical patent/JPS5987394A/en
Publication of JPS5987394A publication Critical patent/JPS5987394A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は原子炉のA−パフ口〜414)古、1!1に
液体金属冷却高速増殖炉のA−パフロー構造に関1′ろ
()のでdりる。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to the A-puff flow structure of a liquid metal cooled fast breeder reactor in 1!1.

液体金属冷1117:!J速増殖炉においては、原子炉
容器を低温に保つために原子炉容器の内面に沿・)で低
温の冷却材を流す場合がある。1′なわら、従来の炉壁
冷却方式を取入れたループ型1MFBR(液体金属冷却
高速増殖炉)では、第1図に示すように、原子炉容器1
、遮蔽プラグ3、炉心4、炉心上部機415を備える仙
に、原子炉容器1の内側に沿って炉壁冷却ライブ−6を
設け、原子炉容器1ど炉壁冷却ライナー6との間の環状
間隙からなる流路7を設け、これに下部プレナム8がら
の低温プ1〜リウムを脣き、高温の上部プレプ私11に
これを流出させている。また上部プレナム11の冷IJ
J材液位を規定する位置にA−パフロー管12を開口さ
せ、これにより、原子炉容器1内のすI・リウムレベル
を一定に保つように構成されている。オーバフローした
ナトリウムはオーバフロー  2 − −管12を通して一旦A−バフロータンク(図示しく7
い)にン9かれて、再びポンプ(図示しイイい)により
、汲1こげ配管10を通して、原子炉容器1内に戻され
る。 ところで、従来のA−バフロ一方式では、上部プ
レナムの高温プ斗すウムがオーバ70−づるため、Δ”
−バフロータンクを含めオーパフ[]−系全体が高温と
なり段別が容易で<Kくなるという問題点があり、また
、原子炉容器壁が低温に保たれる一方で、オルバフロー
配管及び汲上げ配管が高温であり、ぞのためオーバフロ
ー配管及び汲上げ配管が原子炉容器壁を貫通ずる部分(
ずなわちノズル部)では原子炉容器壁と配管の温度差に
にる大きな熱応力が生凸、設計が容易でなくなるという
問題点があり、これらの問題に対する対策が必要である
Liquid metal cold 1117:! In a J-fast breeder reactor, a low-temperature coolant may be flowed along the inner surface of the reactor vessel in order to keep the reactor vessel at a low temperature. 1' However, in a loop-type 1MFBR (liquid metal cooled fast breeder reactor) that incorporates the conventional reactor wall cooling method, as shown in Figure 1, the reactor vessel 1
, a shielding plug 3 , a reactor core 4 , and a core upper machine 415 are provided, and a reactor wall cooling live-6 is provided along the inside of the reactor vessel 1 , and an annular cooling liner 6 is provided between the reactor vessel 1 and the reactor wall cooling liner 6 . A flow path 7 consisting of a gap is provided, through which the low-temperature plastics 1 to 2 of the lower plenum 8 are passed and flowed out to the high-temperature upper plenum 11. Also, the cold IJ in the upper plenum 11
The A-puff flow tube 12 is opened at a position that defines the J material liquid level, thereby keeping the I and Lium levels in the reactor vessel 1 constant. The overflowing sodium passes through the overflow pipe 12 and is temporarily transferred to the A-buffer tank (7 as shown).
9) and returned to the reactor vessel 1 through the pump 1 burnt pipe 10 by a pump (not shown). By the way, in the conventional A-baffle one-way system, the high-temperature pump in the upper plenum exceeds 70 degrees.
- Overpuff [] including the buffflow tank - There is a problem that the entire system becomes high temperature and it is easy to separate the stages to <K.Also, while the reactor vessel wall is kept at a low temperature, the orbaflow piping and pumping piping The area where the overflow piping and pumping piping penetrate the reactor vessel wall (
There is a problem that large thermal stress due to the temperature difference between the reactor vessel wall and the piping occurs in the nozzle part, making the design difficult, and countermeasures are needed to address these problems.

この発明は」−記のごとき事情に鑑みてなされたもので
あって、Δ−バフロー系全体を比較的低温にすることが
できて段目を容易にし、かつまた、それによってオーバ
フロー配管及び汲上げ配管が原子炉容器を貫通づる部分
(すなわち、ノズル部)−3− で容器と配管の)品度差を従来のしのJ−りも小さくし
て、熱応力を低く抑える原子炉容器内A パーツ[]−
構造を捏供することを目的とづ−るものτ゛あイ)。
This invention was made in view of the circumstances as described in "-", and it is possible to make the entire delta-buffer flow system relatively low temperature, thereby making it easier to stage the overflow piping and pumping. In the part where the piping penetrates the reactor vessel (i.e., the nozzle part), the difference in quality between the vessel and the piping is reduced compared to the conventional method, and thermal stress is kept low. Parts []-
Something whose purpose is to fabricate the structure.

この目的に対応してこの発明のA−パフml  4M)
告は、原子炉容器壁に沿・)て炉壁冷却用冷J、11祠
が流れる流路を形成づる炉壁冷却ライプ−を設()、か
つ、連通穴を通1ノで上部ブレナムど連通ミする内部空
間を持つバケツ1〜を設け、航記流路から流出する炉壁
冷却用途ilI′1月が前記バケツ1〜内に流入するよ
うに構成し、かつ、前記パケット内の液位を決定づる位
置にオーパフ【コー管を開口させてなることを特徴とし
ている。
Corresponding to this purpose, the A-Puff ml of the present invention (4M)
The plan was to install a reactor wall cooling pipe along the reactor vessel wall to form a flow path for cooling the reactor wall, and to connect the upper blennium with one hole through the communicating hole. Buckets 1~ having an internal space communicating with each other are provided, and configured so that the reactor wall cooling purpose flowing out from the navigation channel flows into the buckets 1~, and the liquid level in the packets is It is characterized by an opening of an overpuff [Ko tube] at a position that determines the

」メ下、この発明の詳細を、一実施例を承り図面につい
て説明する。
The details of this invention will now be described with reference to one embodiment and the drawings.

第2図、第3図及び第4図において、1はml子炉容器
であり、原子炉容器1の内側に、原子炉容器壁に沿って
炉壁冷却ライナー6を設り、原子炉容器壁との間に環状
間隙から成る流路7を形成している。この流路7の下端
部は下部ブレナム8に開口し、また、上端部は上部プレ
ナム11に間口−4− し、炉心4を通らない冷却拐の流路を形成している。
In FIGS. 2, 3, and 4, reference numeral 1 indicates a ml sub-reactor vessel, and a reactor wall cooling liner 6 is provided inside the reactor vessel 1 along the reactor vessel wall. A flow path 7 consisting of an annular gap is formed between the two. The lower end of this flow path 7 opens into the lower plenum 8, and the upper end opens into the upper plenum 11, forming a cooling flow path that does not pass through the core 4.

炉壁冷却ライナー6の内側の上部プレナム11内にはバ
ケツ!・壁13によってバケツ1〜内プレナム14が形
成される。パケット内プレナム14はバケツ1〜壁13
によって上部プレナム11と隔離されているが、バケツ
1〜壁13の下端部に連通穴15が貫通形成されており
、この連通穴15を介1ノでパケット内プレナム14と
上部プレナム11は連通している。炉壁冷却ライナー6
の高さは上部プレナム11にお(プる冷却材の液位16
を決定する高さよりも若干高い。パケット内プレナム1
4内の液位を決定する位置にオーバフロー管12の開口
部17が開口する。
There is a bucket inside the upper plenum 11 inside the furnace wall cooling liner 6! - The wall 13 forms the bucket 1 to the inner plenum 14. Plenum 14 in the packet includes buckets 1 to walls 13
However, a communication hole 15 is formed through the lower end of the bucket 1 to the wall 13, and the intra-packet plenum 14 and the upper plenum 11 communicate with each other through the communication hole 15. ing. Furnace wall cooling liner 6
The height of the coolant in the upper plenum 11 (16
slightly higher than the height determined. Plenum 1 in the packet
An opening 17 of the overflow pipe 12 opens at a position that determines the liquid level in the overflow pipe 12.

このように構成された原子炉容器内オーバフロー構造で
は、液体金属冷却材はまず下部プレナム8に供給され、
そのうちの大部分は、炉心4を通過し、その間に炉心4
から受熱して上部プレナム11に達する。一方下部ブレ
ナム8に供給された冷却材のうち一部分、たとえば約2
%程度は原子−5− 炉容器壁と炉壁冷却ライナー6との間の流路7を1−冒
し、炉壁冷却ライリー6の子端を乗越えてバ11ツト内
ブレナ1114内にオーバフローする。
In the reactor vessel overflow structure configured in this way, the liquid metal coolant is first supplied to the lower plenum 8,
Most of it passes through the core 4, during which time the core 4
The heat is received from and reaches the upper plenum 11. On the other hand, a portion of the coolant supplied to the lower brenum 8, e.g.
Approximately 5% of the atoms invade the flow path 7 between the reactor vessel wall and the reactor wall cooling liner 6, and overflow over the terminal end of the reactor wall cooling relay 6 into the vent 1114.

炉心4を通過して1一部プレーj−1\11に達1)だ
冷却材は上端部の連通穴15を通してバグツト内ブ1ノ
ノム14内に入り、パケット内ブレナム14内の液位を
形成する。また、上部プレナム11の液位16が眉常に
十昇した場合には、上部ブレナム11内の冷却材は、連
通穴15を通してパケット内プレナム14内にオーパフ
D−’tlる。一方、流路7内を流れる冷却材は炉壁冷
却ライナー6の上端部を乗越えてバケツ1〜内プ1ノナ
ム14にオーバフローする。パケット内プレナム14内
の冷却材は液位を決定する所定の高さに聞11’!Jる
A−パフロー管12によって液位を決定され、その液位
以上にある冷却材はA−パフロー管12を通して、原子
炉容器外の謁−バフロータンク(図示しない)へ導かれ
る。この場合、Δ−バフロー管12は原子炉容器1を貫
通して外部へ導かれる。しかるにバケット内プレナム1
4内には炉心4を通して上−6− 部l(ノナ1)11に達した冷11+材と、流路7を流
れて炉壁冷却ライナー6の上端部をオルバフ日−しτ流
入Cするものとの二種類があるが、炉心4を通り上部プ
レナム11から連通穴15を通し・てバケツ1〜内プレ
ナム14内に入る冷却材は流れがiγ1的で、バフラ1
へ内プレナム14内を撹拌けず、しかもその世は液4(
lの変動に対応する分だりの極め−C小帛である。一方
流路7から流入する冷却材はオーパフ[1−管12の間
口部17が位置するバケツ1〜内プレナム14の上部に
流入するから、結局A−バフD−管12に流れ込む冷t
Ji材のほとんどは流路7から流入した低温のものであ
る。したがって、オーパフ[コー管12は低温であり、
かつ、オーバフロー管12が原子炉容器1を目通16部
分八へは原子炉容器1とオーバフロー管12との間に大
ぎな温度差が存在せず、熱に関する条件が緩和されて段
泪が容易である。
The coolant that passes through the core 4 and reaches the play j-1\111) enters the bulge 1 gnome 14 in the bag through the communication hole 15 at the upper end, forming a liquid level in the brenum 14 in the packet. do. Further, when the liquid level 16 in the upper plenum 11 rises by 10 degrees, the coolant in the upper plenum 11 flows into the intra-packet plenum 14 through the communication hole 15. On the other hand, the coolant flowing in the flow path 7 passes over the upper end of the furnace wall cooling liner 6 and overflows into the bucket 1 to the inner pipe 1 nonum 14. The coolant in the plenum 14 within the packet reaches a predetermined height that determines the liquid level 11'! The liquid level is determined by the A-puff flow pipe 12, and the coolant above the liquid level is guided through the A-puff flow pipe 12 to a audience-buff flow tank (not shown) outside the reactor vessel. In this case, the Δ-buffflow tube 12 passes through the reactor vessel 1 and is guided to the outside. However, plenum 1 inside the bucket
4 contains cold material that has passed through the core 4 and reached the upper part 11, and material that flows through the channel 7 and passes through the upper end of the reactor wall cooling liner 6 and flows into the There are two types of coolant;
The inside of the inner plenum 14 cannot be stirred, and the liquid 4 (
This is a small piece of the master-C technique that corresponds to the variation of l. On the other hand, the coolant flowing from the flow path 7 flows into the upper part of the inner plenum 14 through the bucket 1 where the opening 17 of the over-puff [1-pipe 12 is located], so the coolant eventually flows into the A-buff D-pipe 12.
Most of the Ji material is low-temperature material that flows in from the flow path 7. Therefore, the Opaf tube 12 is at a low temperature,
In addition, since there is no large temperature difference between the reactor vessel 1 and the overflow pipe 12 when the overflow pipe 12 passes through the reactor vessel 1 and the overflow pipe 12 passes through the reactor vessel 1, the thermal conditions are relaxed and the step-up process is facilitated. It is.

なJ3、流路7を流れる冷LD材を積極的にバケツ1〜
内プレナム14内に流入さげる必要がある場合には、炉
壁冷却ライナー6の対応する部分21の−7− 高さを他の部分22よりし若干低くηることが化えら4
する0、1:た、他の実施例としては、第4図に承りご
とく口のパケット内プレナム14を炉壁冷7Jlライナ
ー6の周方向に部分的に形成するの−で′はなくて、炉
壁冷却ライJ−−6の内側全周にnつ(説(→ても良い
J3, actively pumps the cold LD material flowing through channel 7 into buckets 1~
If it is necessary to reduce the inflow into the inner plenum 14, the height of the corresponding portion 21 of the furnace wall cooling liner 6 may be made slightly lower than the other portions 22.
0, 1: In another embodiment, the plenum 14 in the mouth packet is formed partially in the circumferential direction of the furnace wall cooling 7Jl liner 6, as shown in FIG. There are n pieces (→ may be used) all around the inner circumference of the furnace wall cooling lie J--6.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の原子炉容器内A−バフI:1−+i’r
乃を示す説明図、第2図はこの発明の一実施例に係わる
原子炉容器内オーパフ[1−描込を示す説明図、第3図
は原子炉容器内オーバフロー構造を示′!1′縦断面部
分図、及び第4図は原子炉容器内オーバフロー構造を示
す斜視部分図である。 1・・・原子炉容器  3・・・遮蔽プラグ  4・・
・炉心5・・・炉心上部機構  6・・・炉壁冷lJ′
Iライナー7・・・流路  8・・・下部プレナム  
11・・・上部プレナム  12・・・オーバフロー管
  13・・・バクット壁  14・・・バケット内プ
レ太ム一  8 − 15・・・連通穴  16・・・液位  17・・・開
口部特許出願人  三菱原子カニ業株式会社代理人弁理
十     川 井 治 男−〇   − 竺3図 11
Figure 1 shows the conventional reactor vessel A-buff I:1-+i'r
FIG. 2 is an explanatory diagram showing an overflow structure in a reactor vessel according to an embodiment of the present invention; FIG. 1' is a vertical sectional partial view, and FIG. 4 is a partial perspective view showing an overflow structure within the reactor vessel. 1... Reactor vessel 3... Shielding plug 4...
・Core 5... Core upper mechanism 6... Reactor wall cooling lJ'
I liner 7...Flow path 8...Lower plenum
11... Upper plenum 12... Overflow pipe 13... Back wall 14... Pre-thickness in bucket 8-15... Communication hole 16... Liquid level 17... Opening patent application Person Mitsubishi Atomic Crab Industry Co., Ltd. Attorney 10 Osamu Kawai - 〇 - Figure 3 11

Claims (2)

【特許請求の範囲】[Claims] (1)原子炉容器ら♀(J治・)で炉室冷ム11用冷ノ
、1材が流れる流路を形成する炉らY冷1.11ライノ
ーを設(づ、かつ、連通穴を通して上部ブレツムと連通
する内部空間を持つバケット4−17Q +J、1)i
7記流r8から流出りる炉壁冷り口用冷甜月が前記バノ
r =t l−内に流入’Jるように構成し、かつ、前
記バケツ1〜内の液位を法定ηるイ◇侃にΔ−バフ1コ
ー管を聞「1さけてイよることを特徴とする原子炉容器
内A−バノ1]−構造。
(1) In the reactor vessel ♀ (Jji), install a cold 1.11 liner for the reactor room cold 11, which forms a flow path for the cold 11 material to flow, and pass it through the communication hole. Bucket 4-17Q +J, 1)i with an internal space communicating with the upper bretsum
7. The structure is such that the cold sweet water for the furnace wall cooling port flowing out from the flow r8 flows into the vane r=tl-, and the liquid level in the buckets 1 to 1 is set to the legal value η. Rui ◇Inside the reactor vessel A-Bano 1 structure characterized by the fact that the Δ-buff 1-column tube is inserted into the reactor vessel.
(2)前記炉壁冷却ライナーの上端部分の内、前記バケ
ッ1〜ど対応する部分の高さを他の部分よりも低(して
あ委ことを特徴とする特許請求の範囲第1項記載の原子
炉容器内オーパフ「1−構造。 =  1 −
(2) The height of the portion of the upper end portion of the furnace wall cooling liner that corresponds to the buckets 1 to 1 is lower than other portions. Overpuff inside the reactor vessel of “1-Structure. = 1-
JP57198071A 1982-11-11 1982-11-11 Overflow structure in reactor container Pending JPS5987394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57198071A JPS5987394A (en) 1982-11-11 1982-11-11 Overflow structure in reactor container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57198071A JPS5987394A (en) 1982-11-11 1982-11-11 Overflow structure in reactor container

Publications (1)

Publication Number Publication Date
JPS5987394A true JPS5987394A (en) 1984-05-19

Family

ID=16385034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57198071A Pending JPS5987394A (en) 1982-11-11 1982-11-11 Overflow structure in reactor container

Country Status (1)

Country Link
JP (1) JPS5987394A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60228475A (en) * 1984-04-27 1985-11-13 Neos Co Ltd Novel 1,3-dioxane and preparation thereof
US4927597A (en) * 1986-10-09 1990-05-22 Novatome Device for cooling the main vessel of a fast neutron nuclear reactor cooled by a liquid metal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60228475A (en) * 1984-04-27 1985-11-13 Neos Co Ltd Novel 1,3-dioxane and preparation thereof
US4927597A (en) * 1986-10-09 1990-05-22 Novatome Device for cooling the main vessel of a fast neutron nuclear reactor cooled by a liquid metal

Similar Documents

Publication Publication Date Title
JPS5987394A (en) Overflow structure in reactor container
EA000604B1 (en) Refractory assemblies
JPS5857096A (en) Method and device for preventing distortion of shaft generated in lateral type circulating pump transporting medium having high temperature
JPS6040763A (en) Cylinder block
US3994777A (en) Nuclear reactor overflow line
JPH0226773B2 (en)
CN217252619U (en) Sand box for pouring
JPS6246290A (en) Core upper mechanism
JP2601407Y2 (en) Immersion tube structure of vacuum degassing tank
KR910007675B1 (en) Totally enclosed rotary machine
JPS5926584Y2 (en) oil-filled electrical equipment
JPS61112994A (en) Nuclear fuel aggregate
JPS5913412Y2 (en) exhaust valve
JPS6073098A (en) Foam pump
JPS6147581A (en) Liquid-metal cooling type fast breeder reactor
JPH1030118A (en) Method for preventing float-up of bedded brick in vacuum degassing vessel and device therefor
JPS5834390A (en) Liquid metal cooled type fast breeder
JPH10293189A (en) Reactor wall cooling protection structure of fast reactor
JPH03252106A (en) Current introducing terminal for superconducting magnet device
JPH0495896A (en) Fast breeder reactor
JPS6264460A (en) Continuous, vacuum treatment and casting method of metal anddevice thereof
JPS61153586A (en) Tank type fast breeder reactor
JPS6343316A (en) Apparatus for manufacturing semiconductor device
JPS61180195A (en) Liquid metal cooling type fast breeder reactor
JPH04327351A (en) Method for flowing cooling water into mold built in stirrer