JPH10293189A - Reactor wall cooling protection structure of fast reactor - Google Patents

Reactor wall cooling protection structure of fast reactor

Info

Publication number
JPH10293189A
JPH10293189A JP9115320A JP11532097A JPH10293189A JP H10293189 A JPH10293189 A JP H10293189A JP 9115320 A JP9115320 A JP 9115320A JP 11532097 A JP11532097 A JP 11532097A JP H10293189 A JPH10293189 A JP H10293189A
Authority
JP
Japan
Prior art keywords
liner
outer liner
flow
annulus
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9115320A
Other languages
Japanese (ja)
Other versions
JP2972162B2 (en
Inventor
Motohiko Nishimura
元彦 西村
Hideki Kamiide
英樹 上出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doryokuro Kakunenryo Kaihatsu Jigyodan
Power Reactor and Nuclear Fuel Development Corp
Original Assignee
Doryokuro Kakunenryo Kaihatsu Jigyodan
Power Reactor and Nuclear Fuel Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doryokuro Kakunenryo Kaihatsu Jigyodan, Power Reactor and Nuclear Fuel Development Corp filed Critical Doryokuro Kakunenryo Kaihatsu Jigyodan
Priority to JP9115320A priority Critical patent/JP2972162B2/en
Priority to FR9803230A priority patent/FR2762436B1/en
Publication of JPH10293189A publication Critical patent/JPH10293189A/en
Application granted granted Critical
Publication of JP2972162B2 publication Critical patent/JP2972162B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/02Arrangements or disposition of passages in which heat is transferred to the coolant; Coolant flow control devices
    • G21C15/12Arrangements or disposition of passages in which heat is transferred to the coolant; Coolant flow control devices from pressure vessel; from containment vessel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PROBLEM TO BE SOLVED: To prevent a thermosiphon from occurring by providing a partitioning wall whose lower edge is dipped to an area below a cooling material free surface between an outer liner and an inner liner of the upper part of an inner annulus part and preventing a heated rising flow from flowing into a submergence weir part. SOLUTION: A cylindrical outer liner 42 and inner liner 43 are arranged concentrically. An outer annulus part 48 is formed between a reactor container 10 and the outer liner 42 and an inner annulus part 49 is formed between the outer liner 42 and the inner liner 43, thus enabling the upper edge part of the outer liner to submerge below a free liquid surface. A low-temperature cooling material flows in from a flow hole 44 and rises, flows down the inner annulus part 49, passes the flow hole 46, and flows into an upper plenum 24. The flow that rises after being heated on the outer surface of the inner liner 43 cannot reach the free liquid surface between a partitioning wall 50 and the reactor container 10 and circulates so that it descends while being accompanied by the descending flow of the submergence weir (outer liner 42) part. Neither thermo fin nor temperature stratification occurs.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高速炉の炉壁を冷
却して構造健全性を維持するための炉壁冷却保護構造に
関し、更に詳しく述べると、低温冷却材を炉壁に沿って
循環させる潜り堰方式の高速炉の炉壁冷却保護構造に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a furnace wall cooling protection structure for cooling a furnace wall of a fast reactor to maintain structural integrity, and more particularly, circulates a low-temperature coolant along the furnace wall. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a submerged weir type fast reactor furnace wall cooling protection structure.

【0002】[0002]

【従来の技術】高速炉においては、有意なプラント効率
の低下を招くことなく原子炉容器の構造健全性を維持す
るために、炉壁冷却保護構造が設置されている。この炉
壁冷却保護構造には、図3に示すような溢れ堰方式や図
4に示すような潜り堰方式などがある。高速炉は、炉容
器10の内部に炉心12が位置し、該炉容器10の上部
開口を遮蔽プラグ14で閉塞し、該遮蔽プラグ14に炉
心上部機構16を取り付け、コールドレグ配管18を高
圧プレナム20に導き入れ、ホットレグ配管22を上部
プレナム24から導き出す構造である。冷却材ナトリウ
ムは、コールドレグ配管18から高圧プレナム20に入
り、低圧プレナム21を通って炉心12に到り、該炉心
12で加熱されて、上部プレナム24に出て、ホットレ
グ配管22を通って炉容器外の中間熱交換器(図示せ
ず)へと到る。なお、低圧プレナム21を通る冷却材の
一部は中間プレナム23へ流れ出る。
2. Description of the Related Art In a fast reactor, a reactor wall cooling protection structure is installed in order to maintain the structural integrity of a reactor vessel without causing a significant reduction in plant efficiency. This furnace wall cooling protection structure includes an overflow weir system as shown in FIG. 3 and a dive weir system as shown in FIG. In the fast reactor, a core 12 is located inside a furnace vessel 10, an upper opening of the furnace vessel 10 is closed with a shielding plug 14, a core upper mechanism 16 is attached to the shielding plug 14, and a cold leg pipe 18 is connected to a high pressure plenum 20. And the hot leg piping 22 is led out from the upper plenum 24. Coolant sodium enters the high pressure plenum 20 from the cold leg piping 18, reaches the core 12 through the low pressure plenum 21, is heated in the core 12, exits to the upper plenum 24, passes through the hot leg piping 22, and enters the furnace vessel. An external intermediate heat exchanger (not shown) is reached. A part of the coolant passing through the low-pressure plenum 21 flows out to the intermediate plenum 23.

【0003】高速炉の上部プレナム温度は500℃以上
であり、この自由液面が直接炉容器壁と接した場合、液
面変動が炉容器壁に温度変動をもたらし、高サイクル熱
疲労による炉容器構造健全性への影響が懸念される。そ
のため、炉壁冷却保護構造が設けられている。この炉壁
冷却保護構造は、基本的には上部プレナムの炉容器内面
に低温冷却材ナトリウムの冷却流路を接するように形成
し、炉容器に接する自由液面温度を低く保持するように
機能する。
[0003] The upper plenum temperature of a fast reactor is 500 ° C or higher, and when this free liquid level comes into direct contact with the furnace vessel wall, the liquid level fluctuation causes temperature fluctuation on the furnace vessel wall, and the furnace vessel due to high cycle thermal fatigue. There is concern about the impact on structural integrity. Therefore, a furnace wall cooling protection structure is provided. This furnace wall cooling protection structure basically forms a cooling flow path for low-temperature coolant sodium on the inner surface of the furnace vessel in the upper plenum, and functions to keep the free liquid surface temperature in contact with the furnace vessel low. .

【0004】図3に示す溢れ堰方式の炉壁冷却保護構造
30は、炉容器10の側壁面の近傍に間隔をおいて配置
した外側ライナ32と内側ライナ33からなる二重アニ
ュラス構造を設け、中間プレナム23から下部のフロー
ホール34を通って流入した低温冷却材が、外側アニュ
ラス部38(外側ライナ32と炉容器10との間)を上
昇し、外側ライナ32の上端部から溢れ出て内側アニュ
ラス部39を流下する構成である。しかし、この種の溢
れ堰方式は、ライナの振動、溢流の際のガス巻き込み、
液面の揺動などの固有の問題がある。
The overflow weir-type furnace wall cooling protection structure 30 shown in FIG. 3 is provided with a double annulus structure comprising an outer liner 32 and an inner liner 33 arranged at intervals near the side wall surface of the furnace vessel 10. The low-temperature coolant flowing from the intermediate plenum 23 through the lower flow hole 34 rises in the outer annulus 38 (between the outer liner 32 and the furnace vessel 10), overflows from the upper end of the outer liner 32, and flows inward. The configuration is such that the annulus portion 39 flows down. However, this type of overflow weir system involves liner vibration, gas entrapment during overflow,
There are inherent problems such as fluctuation of the liquid level.

【0005】これらの問題を解決するため、炉容器壁に
沿って上昇する冷却材に旋回流成分を付与して旋回流を
起こさせる構成が提案されている(特開平7−1040
91号公報参照)。あるいはライナ上部にチャンネルを
設け、該チャンネル底部から冷却材を流下させる連結流
路を設ける構成が提案されている(特開平8−1366
87号公報)。
In order to solve these problems, there has been proposed a configuration in which a swirling flow component is given to a coolant rising along a furnace vessel wall to generate a swirling flow (Japanese Patent Laid-Open No. 7-1040).
No. 91). Alternatively, a configuration has been proposed in which a channel is provided at the top of the liner, and a connecting flow path for allowing the coolant to flow down from the bottom of the channel is provided (Japanese Patent Laid-Open No. 8-1366).
No. 87).

【0006】それに対して図4に示す潜り堰方式の炉壁
冷却保護構造40は、炉容器10の側壁面の近傍にそれ
ぞれ間隔をおいて外側ライナ42と内側ライナ43とを
設けて二重アニュラス構造(外側アニュラス部48と内
側アニュラス部49)とし、中間プレナム23から下部
のフローホール44を通って流入した低温冷却材が、外
側ライナ42と炉容器10との間を上昇し、外側ライナ
42の上端部を通って内側ライナ43と外側ライナ42
との間を流下し、内側ライナ43の下部に形成したフロ
ーホール46を通って流出する構成である。炉容器10
と内側ライナ43との間は共通の自由液面となってお
り、外側ライナ42の上端部はその自由液面よりも下方
に没しているために、潜り堰方式と呼ばれる。この潜り
堰方式は、本質的に前記溢れ堰方式で生じるライナ振
動、液面揺動、ガス巻き込みなどの問題が生じ難いとい
う利点がある。
On the other hand, a submerged-furnace type furnace wall cooling protection structure 40 shown in FIG. 4 is provided with an outer liner 42 and an inner liner 43 near the side wall surface of the furnace vessel 10 at a distance from each other. The structure (the outer annulus portion 48 and the inner annulus portion 49) has a structure in which the low-temperature coolant flowing from the intermediate plenum 23 through the lower flow hole 44 rises between the outer liner 42 and the furnace vessel 10, and the outer liner 42 Inner liner 43 and outer liner 42 through the upper end of
And flows out through a flow hole 46 formed in the lower part of the inner liner 43. Furnace container 10
A common free liquid level is provided between the inner liner 43 and the inner liner 43, and the upper end of the outer liner 42 is submerged below the free liquid level. The submerged weir system has an advantage that problems such as liner vibration, liquid level fluctuation, gas entrainment, and the like that occur in the overflow weir system are essentially unlikely to occur.

【0007】[0007]

【発明が解決しようとする課題】しかし潜り堰方式で
は、低流速条件において流動が不安定となる。多次元熱
流動解析による検討では、温度成層化及びサーモサイフ
ォンが発生し、炉容器等構造材に大きな温度差が印加さ
れて、その構造健全性が損なわれる可能性が示唆され
た。
However, in the submerged weir system, the flow becomes unstable under low flow rate conditions. Investigation by multi-dimensional heat and fluid analysis suggested that thermal stratification and thermosiphon might occur, and a large temperature difference was applied to structural materials such as furnace vessels, which could impair the structural integrity.

【0008】内側ライナを介して上部プレナム内の高温
冷却材からの加熱を受けて、内側アニュラスの冷却材が
浮力により上昇し、潜り堰部の自由液面に高温部が形成
される。そして外側アニュラスから内側アニュラスへと
転回する低温冷却材は、自由液面に接する高温流体の下
部を流れるため、潜り堰上部の自由液面近傍では、上部
の高温流体と下部を流れる低温流体の間に大きな温度勾
配を持つ温度成層が形成される。これら液面の高温化と
温度勾配とが、炉容器壁構造健全性に影響を与える。
[0008] Upon receiving the heating from the high-temperature coolant in the upper plenum via the inner liner, the coolant in the inner annulus rises by buoyancy, and a high-temperature portion is formed on the free liquid surface of the dive weir. And since the low-temperature coolant that turns from the outer annulus to the inner annulus flows under the high-temperature fluid in contact with the free liquid level, near the free liquid level above the dive weir, the low-temperature coolant flows between the upper high-temperature fluid and the low-temperature fluid flowing through the lower part. A temperature stratification having a large temperature gradient is formed. The rise in temperature of the liquid surface and the temperature gradient affect the soundness of the furnace vessel wall structure.

【0009】他方、潜り堰部の下部では、内側アニュラ
ス49の温度は、外側アニュラス48から内側アニュラ
ス49へと転回し流下する冷却材よりも高温となってお
り、その結果、上が低温、下が高温となるサーモサイフ
ォン状の流動場が形成されることになる。この流動場
は、上の流体が重く、下の流体が軽いことから、不安定
である。例えば、冷却条件を、全定格流量の2%の冷却
材が395℃で外側アニュラス底部から流入し、550
℃の上部プレナムに排出されるものとした多次元熱流動
解析では、重い低温流体が周方向の限定された2箇所か
ら選択的に滝のように下降する流れが予測されており、
周方向で50℃を越える温度差が生じる結果が得られて
いる。このような周方向温度差は内側及び外側ライナの
構造健全性に影響を及ぼす可能性がある。
On the other hand, in the lower part of the dive weir, the temperature of the inner annulus 49 is higher than that of the coolant that turns from the outer annulus 48 to the inner annulus 49 and flows down. , A thermosiphon-like flow field is formed. This flow field is unstable because the upper fluid is heavy and the lower fluid is light. For example, the cooling conditions are such that 2% of the total rated flow of coolant flows at 395 ° C. from the bottom of the outer annulus and reaches 550 ° C.
In the multi-dimensional heat-hydraulic analysis, which is assumed to be discharged to the upper plenum at ℃, the heavy low-temperature fluid is predicted to flow down from two limited locations in the circumferential direction as a waterfall.
A result has been obtained in which a temperature difference exceeding 50 ° C. occurs in the circumferential direction. Such circumferential temperature differences can affect the structural integrity of the inner and outer liners.

【0010】これらの問題は、冷却材の流量を上げれば
流動不安定が解消するために防止できるが、それではプ
ラント効率の低下を招く。従って、従来構造では炉壁保
護の本来の目的を達成し難い。
[0010] These problems can be prevented by increasing the flow rate of the coolant because the instability of the flow is eliminated, but this leads to a decrease in plant efficiency. Therefore, it is difficult to achieve the original purpose of protecting the furnace wall with the conventional structure.

【0011】本発明の目的は、潜り堰方式の炉壁冷却保
護構造において、冷却効率、プラント効率、及び安全性
を損なうことなく、温度成層化及びサーモサイフォンの
発生を防止できる新しい流動安定化方策を提案すること
である。
[0011] It is an object of the present invention to provide a new flow stabilization method capable of preventing temperature stratification and the generation of a thermosiphon without impairing cooling efficiency, plant efficiency and safety in a submerged weir-type furnace wall cooling protection structure. It is to propose.

【0012】[0012]

【課題を解決するための手段】本発明は、高速炉の炉容
器壁の内側に、円筒状の外側ライナと内側ライナを同心
状に間隔をあけて配することにより、炉容器壁と外側ラ
イナとの間に外側アニュラス部を、外側ライナと内側ラ
イナとの間に内側アニュラス部をそれぞれ形成し、外側
ライナ上端部が自由液面下に没するように構成し、低温
冷却材が外側アニュラス部の下方のフローホールから流
入して上昇し、外側ライナ上端部を転回して内側アニュ
ラス部を流下し、内側ライナの下部に形成したフローホ
ールを通って炉容器本体内に流入する潜り堰方式の炉壁
冷却保護構造である。ここで本発明の特徴は、内側アニ
ュラス部の上部の外側ライナと内側ライナとの間に、下
端が冷却材自由液面下まで浸漬するリング状の仕切り壁
を設けた点にある。
SUMMARY OF THE INVENTION The present invention provides a furnace vessel wall and an outer liner which are concentrically spaced apart from each other inside a furnace vessel wall of a fast reactor. The outer annulus portion is formed between the outer liner and the inner liner, and the inner annulus portion is formed between the outer liner and the inner liner, so that the upper end of the outer liner is submerged below the free liquid level. A dive weir system that flows in from the lower flow hole and rises, turns the upper end of the outer liner, flows down the inner annulus, and flows into the furnace vessel body through the flow hole formed at the lower part of the inner liner. Furnace wall cooling protection structure. Here, the feature of the present invention is that a ring-shaped partition wall whose lower end is immersed below the coolant free liquid level is provided between the outer liner and the inner liner above the inner annulus.

【0013】仕切り壁を設けることによって、外側ライ
ナの上部から内側アニュラスへ向かう下降流の流速が増
す。また、内側ライナ外面で加熱され上昇してくる流れ
が、潜り堰の自由液面、即ち炉容器壁と仕切り壁との間
の自由液面に到達できなくなる。その結果、サーモサイ
フォン及び温度成層化は発生しなくなり、流動不安定も
防止できる。この仕切り壁を設ける構成は、構造が単純
でしかも解析によると単なる旋回付与方式よりも顕著な
流動安定化効果が得られる点で優れている。
The provision of the partition wall increases the downward flow velocity from the upper part of the outer liner to the inner annulus. Further, the flow that is heated and rises on the outer surface of the inner liner cannot reach the free liquid level of the dive dam, that is, the free liquid level between the furnace vessel wall and the partition wall. As a result, thermosiphon and temperature stratification do not occur, and flow instability can be prevented. The configuration in which the partition wall is provided is excellent in that the structure is simple, and according to the analysis, a remarkable flow stabilizing effect is obtained as compared with a simple swiveling method.

【0014】[0014]

【発明の実施の形態】前記仕切り壁は、例えば、その全
周にわたってほぼ均等配置した多数の傾斜羽根状の固定
部材によって外側ライナに固定する。このような構造に
すると、外側ライナの上部から内側アニュラスへ向かう
下降流に旋回成分を付与でき、周方向の流体混合が促進
され、周方向温度差が低減されるために流れの安定化を
図ることができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The partition wall is fixed to the outer liner by, for example, a large number of inclined blade-like fixing members arranged substantially evenly over the entire circumference. With such a structure, a swirling component can be imparted to the downward flow from the upper part of the outer liner to the inner annulus, which promotes fluid mixing in the circumferential direction and reduces the temperature difference in the circumferential direction, thereby stabilizing the flow. be able to.

【0015】また仕切り壁を設けた炉壁冷却保護構造に
おいて、更に外側アニュラス部の下方に、流入する低温
冷却材に旋回成分を付与する旋回付与構造を付設するこ
とも可能である。これによって外側アニュラスを上昇す
る流れに旋回成分を付与することができ、周方向の流体
混合が促進され、周方向温度差が低減されるために流れ
の安定化を図ることができる。旋回付与構造としては、
多数の傾斜羽根を並設する構造、低温冷却材のフローホ
ールに傾斜した入口配管を配列する構造、低温冷却材の
フローホールに傾斜した入口ノズルを設置する構造など
がある。
Further, in the furnace wall cooling protection structure provided with the partition wall, a swirl imparting structure for imparting a swirl component to the inflowing low-temperature coolant can be further provided below the outer annulus portion. This makes it possible to impart a swirl component to the flow rising in the outer annulus, promote fluid mixing in the circumferential direction, and reduce the circumferential temperature difference, thereby stabilizing the flow. As a turning application structure,
There are a structure in which a number of inclined blades are juxtaposed, a structure in which an inclined inlet pipe is arranged in a flow hole for a low-temperature coolant, and a structure in which an inclined inlet nozzle is installed in a flow hole for a low-temperature coolant.

【0016】[0016]

【実施例】図1は本発明に係る高速炉の炉壁冷却保護構
造の一実施例を示す要部説明図である。高速炉の全体構
成は図4に示した従来技術と同様であってよいので、そ
れについての説明は省略する。
FIG. 1 is an explanatory view of a main part showing an embodiment of a furnace wall cooling protection structure of a fast reactor according to the present invention. The entire configuration of the fast reactor may be the same as that of the prior art shown in FIG. 4, and a description thereof will be omitted.

【0017】図1に示すように、高速炉の炉容器10の
内側に、円筒状の外側ライナ42と内側ライナ43を同
心状に間隔をあけて配することにより、炉容器10と外
側ライナ42との間に外側アニュラス部48を、外側ラ
イナ42と内側ライナ43との間に内側アニュラス部4
9をそれぞれ形成し、外側ライナ上端部が自由液面下に
没するように構成する。低温冷却材は、白抜き矢印に示
すように、外側アニュラス部48の下方のフローホール
44から流入して上昇し、外側ライナ上端部を転回して
内側アニュラス部49を流下し、内側ライナの下部に形
成したフローホール46を通って炉容器本体内の上部プ
レナム24に流入する。このようにして炉容器壁が低温
冷却材に接するために、冷却保護されることになる。
As shown in FIG. 1, a cylindrical outer liner 42 and an inner liner 43 are arranged concentrically inside the furnace vessel 10 of the fast reactor, so that the furnace vessel 10 and the outer liner 42 Between the outer liner 42 and the inner liner 43.
9 are formed so that the upper end of the outer liner is submerged below the free liquid level. The low-temperature coolant flows in from the flow hole 44 below the outer annulus portion 48 and rises, as shown by a white arrow, turns around the upper end of the outer liner, flows down the inner annulus portion 49, and flows down the lower portion of the inner liner. Flows into the upper plenum 24 in the furnace vessel main body through a flow hole 46 formed in the furnace vessel. In this way, the furnace vessel wall comes into contact with the low-temperature coolant, so that it is cooled and protected.

【0018】ここで本発明では、内側アニュラス部49
の上部の外側ライナ42と内側ライナ43との間に、下
端が冷却材自由液面下まで浸漬するリング状の仕切り壁
50を設けており、この点に特徴を有するものである。
つまり、仕切り壁50と炉容器10との間で共通の自由
液面が形成され、その自由液面よりも下方に外側ライナ
42が完全に潜る形、言い換えると外側ライナ42の上
端部が自由液面よりも下方に位置する形となる。このた
め外側ライナ42を潜り堰と呼ぶ。
Here, in the present invention, the inner annulus portion 49
A ring-shaped partition wall 50 whose lower end is immersed below the free coolant level is provided between the upper outer liner 42 and the inner liner 43, which is characterized in this point.
That is, a common free liquid level is formed between the partition wall 50 and the furnace vessel 10, and the outer liner 42 is completely submerged below the free liquid level, in other words, the upper end of the outer liner 42 is free liquid. It will be located below the surface. For this reason, the outer liner 42 is called a descent weir.

【0019】具体的数値の一例をもって説明すると次の
ごとくである。例えば半径約5mの炉容器に対して、炉
壁冷却保護構造の高さは、約6.5m程度であり、炉心
のほぼ上端に対応する位置から上方に向かって設けられ
る。即ち、炉壁冷却保護構造の適用範囲は、上部プレナ
ムの炉容器内面の範囲とする。炉容器及び各ライナは鋼
材からなり、仕切り壁も同様である。外側アニュラス部
48の幅(半径方向寸法)を約70mm、内側アニュラス
部49の幅を約120mm、外側ライナ42の潜り量(自
由液面と外側ライナ上端との距離)を約100mm程度、
外側ライナ内面と仕切り壁間の距離を約50mm程度とす
る。
The following is a description of an example of specific numerical values. For example, for a furnace vessel having a radius of about 5 m, the height of the furnace wall cooling protection structure is about 6.5 m, and is provided upward from a position corresponding to substantially the upper end of the core. That is, the applicable range of the furnace wall cooling protection structure is the range of the inner surface of the furnace vessel in the upper plenum. The furnace vessel and each liner are made of steel, and the partition wall is also the same. The width (radial dimension) of the outer annulus part 48 is about 70 mm, the width of the inner annulus part 49 is about 120 mm, and the dive amount (distance between the free liquid surface and the upper end of the outer liner) of the outer liner 42 is about 100 mm.
The distance between the inner surface of the outer liner and the partition wall is about 50 mm.

【0020】上記のように内側アニュラス中央の自由液
面部にリング状の仕切り壁50を設けると、潜り堰(外
側ライナ42)の上端部を転回して流下する冷却材の流
速が増すことになる。そして、内側ライナ43の外面で
加熱されて上昇してくる流れ(黒矢印で示す)は、潜り
堰部の自由液面、即ち仕切り壁50と炉容器10との間
の自由液面に到達できなくなり、しかも潜り堰部の下降
流に同伴して下降するよう循環する。そのためサーモサ
イフォン及び温度成層化は発生せず、流動不安定も防止
できるようになる。
When the ring-shaped partition wall 50 is provided at the free liquid level in the center of the inner annulus as described above, the flow rate of the coolant flowing down by turning the upper end of the dive weir (outer liner 42) is increased. Become. The flow (indicated by the black arrow) heated by the outer surface of the inner liner 43 and rising can reach the free liquid surface of the submerging weir portion, that is, the free liquid surface between the partition wall 50 and the furnace vessel 10. It circulates so as to descend along with the descending flow of the dive weir. Therefore, thermosiphon and temperature stratification do not occur, and flow instability can be prevented.

【0021】仕切り壁の取り付け構造は任意であるが、
例えば内側ライナや外側ライナ等に固定する。仕切り壁
を外側ライナあるいは炉容器壁側から固定する場合に
は、角度を持たせた羽根状の固定部材を用いることで流
れに旋回成分を付与することが可能である。その一例を
図2に示す。これは、仕切り壁50を、全周にわたって
ほぼ均等配置した多数の傾斜羽根状の固定部材52によ
って外側ライナ42に固定した例である。傾斜羽根状の
固定部材52の設置枚数は、36〜120枚程度とし、
それぞれ鉛直方向に対して30〜60°程度の角度に設
定する。また傾斜羽根状の固定部材52の長さは、隣接
する傾斜羽根状の固定部材同士が軸方向に重なり合う面
積を有する程度とする。これによって潜り堰(外側ライ
ナ42)の上部を転回して下降する流れに旋回成分が付
与され、周方向の流体混合が促進されるため、周方向の
温度差が低減され、より一層の流動安定化を図ることが
できる。
The mounting structure of the partition wall is optional,
For example, it is fixed to an inner liner or an outer liner. When the partition wall is fixed from the outside liner or the furnace vessel wall side, it is possible to impart a swirling component to the flow by using an angled blade-like fixing member. An example is shown in FIG. This is an example in which the partition wall 50 is fixed to the outer liner 42 by a large number of inclined blade-shaped fixing members 52 which are arranged substantially evenly over the entire circumference. The number of inclined blade-shaped fixing members 52 to be installed is about 36 to 120,
Each is set at an angle of about 30 to 60 ° with respect to the vertical direction. In addition, the length of the inclined blade-shaped fixing member 52 is set to such an extent that adjacent inclined blade-shaped fixing members have an area where the fixing members overlap in the axial direction. As a result, a swirling component is imparted to the flow that descends by turning over the dive weir (outer liner 42) and promotes fluid mixing in the circumferential direction. Can be achieved.

【0022】なお外側アニュラス部の下方に、流入する
低温冷却材に旋回成分を付与する機構を別に付加しても
よい。これには例えばフローホールのやや上方に多数の
傾斜羽根を並設する構造、フローホールに傾斜した入口
配管を接続する構造、あるいはフローホールに傾斜した
入口ノズルを設置する構造などがある。
A mechanism for imparting a swirl component to the flowing low-temperature coolant may be additionally provided below the outer annulus portion. For example, there are a structure in which a number of inclined blades are juxtaposed slightly above the flow hole, a structure in which an inclined inlet pipe is connected to the flow hole, and a structure in which an inclined inlet nozzle is installed in the flow hole.

【0023】[0023]

【発明の効果】本発明は上記のように、内側アニュラス
部の上部の外側ライナと内側ライナとの間に、下端が冷
却材自由液面下まで浸漬するリング状の仕切り壁を設け
たことにより、潜り堰部の下降流の流速が増し、内側ラ
イナ外面で加熱された上昇流が潜り堰部に流入するのが
妨げられることにより、温度成層化及びサーモサイフォ
ンの発生が防止され、流動安定性が達成される。そのた
め、低流速条件においても流動状態は安定し、冷却効
率、プラント効率、及び安全性が損なわれることはな
い。
According to the present invention, as described above, a ring-shaped partition wall having a lower end immersed below the free coolant level is provided between the outer liner and the inner liner above the inner annulus. The flow velocity of the descending flow of the dive weir increases, and the ascending flow heated on the outer surface of the inner liner is prevented from flowing into the dive weir, thereby preventing temperature stratification and the generation of thermosiphon, and fluid stability. Is achieved. Therefore, even under low flow rate conditions, the flow state is stable, and the cooling efficiency, plant efficiency, and safety are not impaired.

【0024】特に各種の旋回付与構造を付設すると、周
方向の流体混合が促進され、周方向温度差が低減される
ため、より一層冷却材流動の安定化を図ることができ
る。
In particular, when various types of swirl imparting structures are provided, the mixing of fluid in the circumferential direction is promoted and the temperature difference in the circumferential direction is reduced, so that the flow of the coolant can be further stabilized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る炉壁冷却保護構造の一実施例を示
す要部説明図。
FIG. 1 is a main part explanatory view showing one embodiment of a furnace wall cooling protection structure according to the present invention.

【図2】その仕切り壁の外側ライナへの取り付け構造の
一例を示す説明図。
FIG. 2 is an explanatory view showing an example of a structure for attaching the partition wall to an outer liner.

【図3】従来の溢れ堰方式の炉壁冷却保護構造を有する
高速炉の一例を示す説明図。
FIG. 3 is an explanatory view showing an example of a fast reactor having a conventional overflow weir type furnace wall cooling protection structure.

【図4】従来の潜り堰方式の炉壁冷却保護構造を有する
高速炉の一例を示す説明図。
FIG. 4 is an explanatory view showing an example of a conventional fast reactor having a submerged weir type furnace wall cooling protection structure.

【符号の説明】[Explanation of symbols]

10 炉容器 12 炉心 18 コールドレグ配管 20 高圧プレナム 22 ホットレグ配管 24 上部プレナム 42 外側ライナ 43 内側ライナ 44,46 フローホール 48 外側アニュラス部 49 内側アニュラス部 50 仕切り壁 DESCRIPTION OF SYMBOLS 10 Furnace container 12 Core 18 Cold leg piping 20 High pressure plenum 22 Hot leg piping 24 Upper plenum 42 Outer liner 43 Inner liner 44, 46 Flow hole 48 Outer annulus part 49 Inner annulus part 50 Partition wall

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 高速炉の炉容器壁の内側に、円筒状の外
側ライナと内側ライナを同心状に間隔をあけて配するこ
とにより、炉容器壁と外側ライナとの間に外側アニュラ
ス部を、外側ライナと内側ライナとの間に内側アニュラ
ス部をそれぞれ形成し、外側ライナ上端部が自由液面下
に没するように構成し、低温冷却材が外側アニュラス部
の下方のフローホールから流入して上昇し、外側ライナ
上端部を転回して内側アニュラス部を流下し、内側ライ
ナの下部に形成したフローホールを通って炉容器本体内
に流入する潜り堰方式の炉壁冷却保護構造において、 内側アニュラス部の上部の外側ライナと内側ライナとの
間に、下端が冷却材自由液面下まで浸漬するリング状の
仕切り壁を設けたことを特徴とする高速炉の炉壁冷却保
護構造。
A cylindrical outer liner and an inner liner are concentrically spaced apart from each other inside a furnace vessel wall of a fast reactor, thereby forming an outer annulus between the furnace vessel wall and the outer liner. An inner annulus is formed between the outer liner and the inner liner so that the upper end of the outer liner is submerged below the free liquid level, and the low-temperature coolant flows from a flow hole below the outer annulus. In the submerged weir-type furnace wall cooling protection structure, which rises, turns the upper end of the outer liner, flows down the inner annulus, and flows into the furnace vessel body through the flow hole formed in the lower part of the inner liner, A furnace wall cooling protection structure for a fast reactor, wherein a ring-shaped partition wall whose lower end is immersed below the free coolant level is provided between an outer liner and an inner liner at an upper portion of an annulus portion.
【請求項2】 仕切り壁を、全周にわたってほぼ均等配
置した多数の傾斜羽根状の固定部材によって外側ライナ
に固定する請求項1記載の高速炉の炉壁冷却保護構造。
2. A cooling wall protection structure for a fast reactor according to claim 1, wherein the partition wall is fixed to the outer liner by a plurality of inclined blade-like fixing members arranged substantially evenly over the entire circumference.
JP9115320A 1997-04-17 1997-04-17 Furnace wall cooling protection structure of fast reactor Expired - Fee Related JP2972162B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP9115320A JP2972162B2 (en) 1997-04-17 1997-04-17 Furnace wall cooling protection structure of fast reactor
FR9803230A FR2762436B1 (en) 1997-04-17 1998-03-17 REACTOR VESSEL COOLING SYSTEM FOR RAPID REACTORS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9115320A JP2972162B2 (en) 1997-04-17 1997-04-17 Furnace wall cooling protection structure of fast reactor

Publications (2)

Publication Number Publication Date
JPH10293189A true JPH10293189A (en) 1998-11-04
JP2972162B2 JP2972162B2 (en) 1999-11-08

Family

ID=14659678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9115320A Expired - Fee Related JP2972162B2 (en) 1997-04-17 1997-04-17 Furnace wall cooling protection structure of fast reactor

Country Status (2)

Country Link
JP (1) JP2972162B2 (en)
FR (1) FR2762436B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100810964B1 (en) 2000-08-16 2008-03-10 페블 베드 모듈러 리엑터(프로프라이어터리) 리미티드 Nuclear reactor plant
JP2012215475A (en) * 2011-03-31 2012-11-08 Mitsubishi Heavy Ind Ltd Reactor vessel structure and operation method of reactor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002049042A1 (en) 2000-12-14 2002-06-20 Eskom Cooling system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2248583B1 (en) * 1973-10-18 1976-10-01 Commissariat Energie Atomique
FR2291580A1 (en) * 1974-11-14 1976-06-11 Commissariat Energie Atomique THERMAL PROTECTION DEVICE FOR THE TANK OF A REACTOR
FR2394870A1 (en) * 1977-06-13 1979-01-12 Commissariat Energie Atomique Heat protection elements for metal cooled nuclear reactor - made up by superimposed layers of metal mesh on wall of cooling annulus
FR2506062B1 (en) * 1981-05-13 1985-11-29 Novatome INTERNAL TANK FOR A FAST NEUTRAL NUCLEAR REACTOR
FR2605136B1 (en) * 1986-10-09 1990-05-04 Novatome DEVICE FOR COOLING THE MAIN TANK OF A FAST NEUTRAL NUCLEAR REACTOR COOLED BY A LIQUID METAL
DE3712893A1 (en) * 1987-04-15 1988-11-03 Interatom Tank wall cooling for nuclear reactors
FR2632760B1 (en) * 1988-06-09 1992-10-23 Novatome INTERNAL SHELL OF A FAST NEUTRAL NUCLEAR REACTOR COMPRISING A THERMAL PROTECTION DEVICE
JPH07104091A (en) * 1993-09-30 1995-04-21 Toshiba Corp Vessel wall cooling structure for reactor vessel
JPH08136687A (en) * 1994-11-04 1996-05-31 Toshiba Corp Cooling structure for vessel wall of reactor vessel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100810964B1 (en) 2000-08-16 2008-03-10 페블 베드 모듈러 리엑터(프로프라이어터리) 리미티드 Nuclear reactor plant
JP2012215475A (en) * 2011-03-31 2012-11-08 Mitsubishi Heavy Ind Ltd Reactor vessel structure and operation method of reactor

Also Published As

Publication number Publication date
FR2762436B1 (en) 1999-10-15
FR2762436A1 (en) 1998-10-23
JP2972162B2 (en) 1999-11-08

Similar Documents

Publication Publication Date Title
US7867309B2 (en) Steam-water separator
JP2972162B2 (en) Furnace wall cooling protection structure of fast reactor
JP2009257929A (en) Molten corium holding device, and reactor containment vessel
JPH07104091A (en) Vessel wall cooling structure for reactor vessel
US5940463A (en) In-vessel structure for fast reactors
JP7394041B2 (en) Reactor
JPH0815476A (en) Incore lower structure of pressurized water reactor
US3994777A (en) Nuclear reactor overflow line
JP4220845B2 (en) Reactor internal structure
JP2002257971A (en) Nuclear reactor vessel
JPH01197696A (en) Natural-circulation type nuclear reactor
JPH08136687A (en) Cooling structure for vessel wall of reactor vessel
JPH01132996A (en) Reactor wall cooling structure
JPS594679B2 (en) liquid metal cooled fast reactor
JPS5836079Y2 (en) Reactor
JPH03277994A (en) Tank-shaped fast breeder
JP3126550B2 (en) Reactor vessel wall cooling mechanism
JP2507361Y2 (en) Vortex prevention device in the upper plenum of the reactor vessel
JPS6381297A (en) Internal pump
JPH1114781A (en) Reactor vessel wall cooling mechanism
JPH0746156B2 (en) Reactor with low core coolant intake
JPH01245192A (en) Core upper mechanism of fast breeder
JPS58132694A (en) Reactor
JPH01217192A (en) Intermediate heat exchanger
JPS58225389A (en) Lmfbr type breeder

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070827

Year of fee payment: 8

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070827

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070827

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees