JP2005024369A - Core structure of reactor - Google Patents

Core structure of reactor Download PDF

Info

Publication number
JP2005024369A
JP2005024369A JP2003189645A JP2003189645A JP2005024369A JP 2005024369 A JP2005024369 A JP 2005024369A JP 2003189645 A JP2003189645 A JP 2003189645A JP 2003189645 A JP2003189645 A JP 2003189645A JP 2005024369 A JP2005024369 A JP 2005024369A
Authority
JP
Japan
Prior art keywords
flow guide
core
flow
reactor
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003189645A
Other languages
Japanese (ja)
Other versions
JP4220845B2 (en
Inventor
Yuko Nakayama
雄行 中山
Kenji Umeda
賢治 梅田
Teruyuki Nagano
晃之 永野
Daigo Fujimura
大悟 藤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2003189645A priority Critical patent/JP4220845B2/en
Priority to US10/867,686 priority patent/US7245689B2/en
Priority to EP04291525A priority patent/EP1489624B1/en
Priority to DE602004032193T priority patent/DE602004032193D1/en
Publication of JP2005024369A publication Critical patent/JP2005024369A/en
Application granted granted Critical
Publication of JP4220845B2 publication Critical patent/JP4220845B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a core structure of a reactor in which collision of coolant flows into a lower plenum from different directions is prevented, the coolant flows uniformly in the core and the pressure loss of the coolant flows is reduced by straightening the flows. <P>SOLUTION: Around a lower connection plate 10 in a lower plenum 8, a flow guide 31 for the connection plate is arranged so as to cover the periphery 10a of the lower connection plate 10. The flow guide 31 for the connection plate has an outer surface 33 consisting of a curved surface whose ramping becomes large as it goes up and is a cylindrical shape with a smaller diameter toward the end. The outer surface 33 is concave toward the inside so that it is projected on the inner surface. On the outer surface 33, plate shape circumferential flow suppressing members 32 extending to the diameter direction are arranged in the circumferential direction. At the bottom of the lower plenum 8, a flow guide 41 for lower core support columns is arranged so as to cover around the lower core support columns 42. The flow guide 41 for the lower core support columns has an outer surface 43 consisting of 4 trapezoid faces which respectively become depressed to the center side. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、原子炉の炉内構造に関し、特に原子力容器の下部プレナムの構造に関するものである。
【0002】
【従来の技術】
原子炉の1次冷却系の冷却材の流れに関する、従来技術として、特許文献1〜3があり、図4に従来の加圧水型原子炉の原子炉容器内の基本的構造を示す。
冷却材1は、原子炉容器2の両端に形成された一対ずつの冷却材入口ノズル3から流入し、原子炉容器2と炉心槽4との間の環状に形成された下降流路、すなわちダウンカマー部5内を下向きに下降流6として流れ、キー溝構造により炉心槽4の下部と原子炉容器2との位置決めを行うラジアルキー部7を通過し、下部プレナム8に至る。下部プレナム8では、冷却材1は、球面状の内面9に沿って向きを変えられ、上昇し、下部連接板10、上部連接板11および下部炉心支持板12等を通過した後、炉心13に流入する。炉心13に流入した上昇流14は、炉心13内の燃料集合体15で発生する熱エネルギーを吸収して高温となり、上部プレナム16の冷却材出口ノズル17を通り、図示しない蒸気発生器へと流出する。その後、冷却材1は、蒸気発生器内の冷却水に熱を伝え加熱沸騰させた後、冷却材循環ポンプにより再び原子炉容器2に送られ、冷却材入口ノズル3より原子炉容器2内に戻される。
【0003】
【特許文献1】
特許第2999124号公報(第2−3頁、図3、図4)
【特許文献2】
特許第3193532号公報(第3−4頁、図2、図3)
【特許文献3】
特開平8−62372号公報(第2−2頁、図4)
【0004】
【発明が解決しようとする課題】
冷却材は高レイノルズ数の乱流の状態で炉内を流れており、乱流の特性上、小さな渦が発生・消滅を繰り返し、ランダムな速度の成分を有して流れている。一方、ダウンカマー部5の下部のラジアル連結部7において、冷却材1の流れに剥離が起こり剥離流となり、物体後流の剥離渦が発生する。このような状態で、冷却材1が下部プレナム8内に流れ込んだ主流同士が下部プレナム8の中心付近で衝突し、さらに、これらが衝突流となって剥離流と合流すると、複雑な流れになるだけでなく、合流の仕方によってはこれらの渦が安定、あるいは助長され、炉心に流入する流量分布が変動する可能性もあり得る。原子炉の出力性能に問題はなくても、安定・最適な流量分布・流動状態を常に形成することが、流体上また安定した原子炉のために望ましい。
【0005】
この発明は、このような課題を解決するためになされたもので、下部プレナムにおいて、剥離流と衝突流のランダムな合流を抑制して安定した炉内流動を実現する原子炉の炉内構造を提供することを目的とする。
【0006】
【課題を解決するための手段】
この発明に係る原子炉の炉内構造は、冷却材入口ノズルと、底部に下部プレナムを画設する圧力容器と、この圧力容器内に配置された炉心と、この炉心の周囲に配置された炉心槽と、圧力容器と炉心槽との間に画設される環状のダウンカマー部とを備えた原子炉において、下部プレナム内に、上方に向かうにつれて傾斜が大きくなる曲面からなる外周面を有するフローガイドを有し、冷却材入口ノズルから導入されダウンカマー部を流れて下部プレナム内に流れ込んだ冷却材が、このフローガイドの外周面に沿って炉心側に上昇するようにしたことを特徴とするものである。
また、下部プレナム内に連接板を備え、フローガイドは、連接板用フローガイドとして、連接板の外周縁を覆うように配置されてもよい。
さらに、下部プレナムの底部には、連接板を貫通して下部プレナムの底部に向かって延びる下部炉心支持柱を備え、フローガイドは、下部炉心支持柱用フローガイドとして、下部炉心支持柱の周囲を覆うように配置されてもよい。
また、フローガイドの外周面は、先細の筒状であってもよく、4つの台形面から構成されていてもよい。
さらに、フローガイドの外周面には、径方向に延びる板状の周方向流れ抑制部材を設けてもよい。
【0007】
【発明の実施の形態】
以下に、この発明の実施の形態を添付の図面に基づいて説明する。
実施の形態1.
図1は、この実施の形態1に係る原子炉の炉内構造を示す断面図である。この原子炉は加圧水型原子炉であり、その炉内構造は、圧力容器である原子炉容器2は、着脱自在の蓋により上部開口が閉じられ、そこから炉心槽4が垂下支持されている。炉心槽4の下部には水平な下部炉心板4aに支持された炉心13を構成する多数の燃料集合体15が下部炉心板4a上に並べられている。
また、原子炉容器2の上部の両端には、一対ずつの冷却材入口ノズル3が設けられ、90°位相のずれた位置には、それぞれ一対ずつの冷却材出口ノズル17が設けられている。原子炉容器2と炉心槽4との間には、冷却材1が流れる環状の流路であるダウンカマー部5が画設されている。ダウンカマー部5の下部で、下部炉心支持板12の外側には、炉心槽4を原子炉容器2に対して固定するラジアルキー部7が設けられている。
さらに、原子炉容器2は、底部に半球面状の下部プレナム8が画設されており、下部炉心支持板12に連結した下部炉心支持柱42が上部連接板11及び下部連接板10を貫通して、下部プレナム8の底部に向かって延び緩衝板20に連絡している。
下部連接板10の周囲には、図2に詳述する連接板用のフローガイド31が下部連接板10の外周縁10aを覆うように配置されている。下部プレナム8の底部には、図3に詳述する下部炉心支持柱用のフローガイド41が、下部炉心支持柱42の周囲を覆うように配置されている。
【0008】
図2に示されるように、連接板用フローガイド31は、上方に向かうにつれて傾斜が大きくなる曲面からなる外周面33を有し、先細の円筒状である。外周面33は中心側が凸形状になるように内側にくぼんでいる。
外周面33には、径方向に延びる矩形の板状部材である周方向流れ抑制部材32が円周方向に例えば8つ配置されている。周方向流れ抑制部材32は、円周状に均等な間隔をおいて配置されているが、均等ではなく、冷却材1の主流が流れる付近に、より狭い間隔をおいて密に配置するようにしてもよく、8つに限定されるものでもない。
図3に示されるように、下部炉心支持柱用フローガイド41は、それぞれ中心側にくぼんだ4つの台形面からなる外周面43を有し、内部を下部炉心支持柱42が貫通し、底部44で緩衝板20に接続されている。
【0009】
次に、この発明の実施の形態に係る原子炉の内部構造の冷却材の流れを図1に基づいて説明する。
冷却材1は、原子炉容器2の両端の冷却材入口ノズル3から流入し、ダウンカマー部5内を下向きに下降流6として流れ、キー溝構造により炉心槽4の下部と原子炉容器2との位置決めを行うラジアルキー部7を通過し、下部プレナム8に至る。
下部プレナム8に到達した冷却材1は、内面9に沿って下部プレナム8の中心に向かって進むが、連接板用フローガイド31の外周面33に沿って向きを変え、炉心13側に上昇する。また、下部プレナム8の内面9と連接板用フローガイド31との間を通過した冷却材1も、下部炉心支持柱用フローガイド41の外周面43に沿って向きを変え、炉心13側に上昇する。
このように、下部プレナム8に流れ込んだ冷却材1が、連接板用フローガイド31及び下部炉心支持柱用フローガイド41に沿って上昇し、冷却材1同士が下部プレナム8中心付近で衝突しない。したがって、冷却材1は炉心13に常に均一に流れ込み、また流れを整流化して乱流渦、剥離渦の発展を抑制することにより、冷却材1の流れの圧力損失を低減することができる。
また、連接板用フローガイド31の外周面33に設けられた周方向流れ抑制部材32によって、外周面33に沿って上昇する冷却材1の一部が連接板用フローガイド31の周方向に流れるのを遮り、流れを整流化して乱流渦、剥離渦の発展を防止できる。
【0010】
なお、上述した実施の形態において、連接板用フローガイド31、下部炉心支持柱用フローガイド41の形状は、上述した形状に限定されるものではなく、下部プレナム8内に異なる方向から流れ込む冷却材1同士の衝突を避けて、冷却材1を炉心13側に上昇させることができる形状であればよい。
また、下部炉心支持柱用フローガイド41を、連接板用フローガイド31のような先細の円筒形状にしてもよい。さらに、下部炉心支持柱用フローガイド41の外周面43に周方向流れ抑制部材32のような形状の部材を設けてもよい。
また、連接板用フローガイド31は、上部連接板11の上部に設けてもよい。これによっても、冷却材1の流れを整流化し、乱流渦、剥離渦の発生、発展を抑制することができる。
【0011】
【発明の効果】
以上説明したように、請求項1に記載の発明によれば、下部プレナム内に、上方に向かうにつれて傾斜が大きくなる曲面からなる外周面を有するフローガイドを設けたので、下部プレナムにおいて、流れを整流化して乱流渦、剥離渦の発展を抑制し、安定した炉内流動を実現することができる。
請求項2に記載の発明によれば、連接板の外周縁を覆うように配置された連接板用フローガイドが配置されているので、冷却材が互いに衝突するのを回避して連接板の上下を下部プレナムの中心に向かって進み、流れが整流化され、乱流渦、剥離渦の発生、発展を抑制することができる。また、流れの整流化および渦の抑制化により、冷却材の流れの圧力損失を低減することができる。
請求項3に記載の発明によれば、下部炉心支持柱用フローガイドが下部炉心支持柱の周囲を覆うように配置されているので、冷却材1が下部炉心支持柱に衝突するのを回避して流れを整流化し、乱流渦、剥離渦の発生、発展を抑制することができる。
請求項4に記載の発明によれば、フローガイドの外周面は先細の筒状に形成されているので、冷却材を下部プレナムから炉心に向かってなめらかに導くことができる。
請求項5に記載の発明によれば、フローガイドの外周面は4つの台形面に形成されているので、冷却材が主に流れてくる方向に各4つの面を向けることによって下部プレナムから炉心に向かって冷却材をなめらかに導くことができる。
請求項6に記載の発明によれば、フローガイドの外周面には、径方向に延びる板状の周方向流れ抑制部材が設けられているので、流れを整流化すると共に、周方向の流れの自由度空間があるために剥離渦が発展する、という可能性を防ぐことができる。
【図面の簡単な説明】
【図1】この発明の実施形態1に係る原子炉の炉内構造の立断面図である。
【図2】図1の連接板用フローガイドの斜視図である。
【図3】図1の下部炉心支持柱用フローガイドの斜視図である。
【図4】この発明の実施形態1に係る原子炉の炉内構造の立断面図である。
【符号の説明】
1 冷却材、2 原子炉容器、3 冷却材入口ノズル、4 炉心槽、5 ダウンカマー部、8 下部プレナム、10 下部連接板、10a 外周縁、13 炉心、31 連接板用フローガイド、32 周方向流れ抑制部材、33、43 外周面、41 下部炉心支持柱用フローガイド。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an in-core structure of a nuclear reactor, and more particularly to a structure of a lower plenum of a nuclear vessel.
[0002]
[Prior art]
As prior art relating to the flow of coolant in the primary cooling system of a nuclear reactor, there are Patent Documents 1 to 3, and FIG. 4 shows a basic structure in a reactor vessel of a conventional pressurized water reactor.
The coolant 1 flows in from a pair of coolant inlet nozzles 3 formed at both ends of the reactor vessel 2, and is a downflow path formed in an annular shape between the reactor vessel 2 and the reactor core 4, that is, down It flows downward as a downward flow 6 in the cumer portion 5, passes through the radial key portion 7 that positions the lower portion of the reactor core 4 and the reactor vessel 2 by the keyway structure, and reaches the lower plenum 8. In the lower plenum 8, the coolant 1 is changed in direction along the spherical inner surface 9, rises, passes through the lower connecting plate 10, the upper connecting plate 11, the lower core support plate 12, and the like, and then enters the core 13. Inflow. The upward flow 14 that has flowed into the core 13 absorbs heat energy generated in the fuel assemblies 15 in the core 13 and becomes high temperature, passes through the coolant outlet nozzle 17 of the upper plenum 16, and flows out to a steam generator (not shown). To do. Thereafter, the coolant 1 is heated and boiled by transferring heat to the cooling water in the steam generator, and then sent again to the reactor vessel 2 by the coolant circulation pump, and into the reactor vessel 2 from the coolant inlet nozzle 3. Returned.
[0003]
[Patent Document 1]
Japanese Patent No. 2999124 (page 2-3, FIG. 3, FIG. 4)
[Patent Document 2]
Japanese Patent No. 3193532 (page 3-4, FIG. 2, FIG. 3)
[Patent Document 3]
JP-A-8-62372 (page 2-2, FIG. 4)
[0004]
[Problems to be solved by the invention]
The coolant flows in the furnace in a turbulent state with a high Reynolds number. Due to the characteristics of turbulent flow, small vortices are repeatedly generated and disappeared, and flow with a component of random velocity. On the other hand, in the radial connection portion 7 below the downcomer portion 5, separation occurs in the flow of the coolant 1 to form a separation flow, and a separation vortex in the wake of the object is generated. In such a state, the main flows into which the coolant 1 flows into the lower plenum 8 collide with each other near the center of the lower plenum 8, and when these flow into a collision flow and merge with the separated flow, the flow becomes complicated. In addition, depending on the way of merging, these vortices may be stabilized or promoted, and the flow distribution flowing into the core may fluctuate. Even if there is no problem in the output performance of the nuclear reactor, it is desirable for a reactor that is fluid and stable to always form a stable and optimal flow distribution and flow state.
[0005]
The present invention has been made to solve such a problem. In the lower plenum, a reactor internal structure of a nuclear reactor that realizes stable in-core flow by suppressing random merging of separation flow and collision flow is provided. The purpose is to provide.
[0006]
[Means for Solving the Problems]
A reactor internal structure according to the present invention includes a coolant inlet nozzle, a pressure vessel defining a lower plenum at the bottom, a core disposed in the pressure vessel, and a core disposed around the core. In a nuclear reactor provided with a tank and an annular downcomer section provided between a pressure vessel and a reactor core, a flow having an outer peripheral surface made of a curved surface whose inclination increases toward the upper side in the lower plenum The coolant has a guide, and the coolant introduced from the coolant inlet nozzle and flowing into the lower plenum through the downcomer portion rises to the core side along the outer peripheral surface of the flow guide. Is.
Further, a connecting plate may be provided in the lower plenum, and the flow guide may be arranged as a connecting plate flow guide so as to cover the outer peripheral edge of the connecting plate.
Furthermore, the bottom of the lower plenum is provided with a lower core support column that extends through the connecting plate toward the bottom of the lower plenum, and the flow guide serves as a flow guide for the lower core support column and surrounds the lower core support column. You may arrange | position so that it may cover.
Further, the outer peripheral surface of the flow guide may be a tapered cylinder or may be composed of four trapezoidal surfaces.
Furthermore, you may provide the plate-shaped circumferential direction flow control member extended in radial direction in the outer peripheral surface of a flow guide.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings.
Embodiment 1 FIG.
FIG. 1 is a cross-sectional view showing the in-core structure of the nuclear reactor according to the first embodiment. This nuclear reactor is a pressurized water nuclear reactor, and the reactor vessel 2 as a pressure vessel has an upper opening closed by a detachable lid, from which a reactor core 4 is suspended and supported. A large number of fuel assemblies 15 constituting a core 13 supported by a horizontal lower core plate 4a are arranged on the lower core plate 4a at the bottom of the core tank 4.
A pair of coolant inlet nozzles 3 are provided at both ends of the upper portion of the reactor vessel 2, and a pair of coolant outlet nozzles 17 are provided at positions shifted by 90 ° phase. Between the reactor vessel 2 and the reactor core 4, a downcomer portion 5, which is an annular channel through which the coolant 1 flows, is provided. A radial key portion 7 for fixing the core tank 4 to the reactor vessel 2 is provided below the downcomer portion 5 and outside the lower core support plate 12.
Further, the reactor vessel 2 is provided with a hemispherical lower plenum 8 at the bottom, and a lower core support column 42 connected to the lower core support plate 12 penetrates the upper connecting plate 11 and the lower connecting plate 10. Thus, it extends toward the bottom of the lower plenum 8 and communicates with the buffer plate 20.
Around the lower connecting plate 10, a flow guide 31 for connecting plate, which will be described in detail in FIG. 2, is arranged so as to cover the outer peripheral edge 10 a of the lower connecting plate 10. At the bottom of the lower plenum 8, a flow guide 41 for a lower core support column, which will be described in detail in FIG. 3, is disposed so as to cover the periphery of the lower core support column 42.
[0008]
As shown in FIG. 2, the connecting plate flow guide 31 has an outer peripheral surface 33 formed of a curved surface whose inclination increases toward the upper side, and has a tapered cylindrical shape. The outer peripheral surface 33 is recessed inward so that the center side is convex.
On the outer peripheral surface 33, for example, eight circumferential flow suppression members 32, which are rectangular plate-like members extending in the radial direction, are arranged in the circumferential direction. The circumferential flow restraining members 32 are arranged at equal intervals in the circumferential shape, but are not uniform, and are arranged densely at smaller intervals near the main flow of the coolant 1. It may be, and is not limited to eight.
As shown in FIG. 3, the flow guide 41 for the lower core support column has an outer peripheral surface 43 composed of four trapezoidal surfaces that are recessed toward the center, and the lower core support column 42 penetrates through the inside, and a bottom portion 44. To the buffer plate 20.
[0009]
Next, the flow of the coolant in the internal structure of the nuclear reactor according to the embodiment of the present invention will be described with reference to FIG.
The coolant 1 flows in from the coolant inlet nozzles 3 at both ends of the reactor vessel 2 and flows downward in the downcomer portion 5 as a downward flow 6. The key groove structure causes the lower portion of the reactor core 4, the reactor vessel 2, Passes through the radial key portion 7 for positioning, and reaches the lower plenum 8.
The coolant 1 that has reached the lower plenum 8 travels along the inner surface 9 toward the center of the lower plenum 8, but changes its direction along the outer peripheral surface 33 of the flow guide 31 for connecting plates and rises toward the core 13 side. . Further, the coolant 1 that has passed between the inner surface 9 of the lower plenum 8 and the connecting plate flow guide 31 also changes its direction along the outer peripheral surface 43 of the lower core support column flow guide 41 and rises toward the core 13 side. To do.
Thus, the coolant 1 that has flowed into the lower plenum 8 rises along the flow guide 31 for the connecting plate and the flow guide 41 for the lower core support column, and the coolants 1 do not collide near the center of the lower plenum 8. Accordingly, the coolant 1 always flows uniformly into the core 13 and the flow loss is rectified to suppress the development of turbulent vortices and separation vortices, thereby reducing the pressure loss of the coolant 1 flow.
Further, a part of the coolant 1 rising along the outer peripheral surface 33 flows in the circumferential direction of the connecting plate flow guide 31 by the circumferential flow suppressing member 32 provided on the outer peripheral surface 33 of the connecting plate flow guide 31. The flow can be rectified to prevent the development of turbulent vortices and separation vortices.
[0010]
In the above-described embodiment, the shapes of the flow guide 31 for the connecting plate and the flow guide 41 for the lower core support column are not limited to the shapes described above, and the coolant flows into the lower plenum 8 from different directions. Any shape can be used as long as the coolant 1 can be raised to the core 13 side while avoiding collision between the two.
Further, the flow guide 41 for the lower core support column may have a tapered cylindrical shape like the flow guide 31 for the connecting plate. Further, a member having a shape like the circumferential flow suppressing member 32 may be provided on the outer peripheral surface 43 of the flow guide 41 for the lower core support column.
Further, the connecting plate flow guide 31 may be provided on the upper portion of the upper connecting plate 11. Also by this, the flow of the coolant 1 can be rectified, and the generation and development of turbulent vortices and separation vortices can be suppressed.
[0011]
【The invention's effect】
As described above, according to the first aspect of the present invention, the flow guide having the outer peripheral surface formed of the curved surface whose inclination increases toward the upper side is provided in the lower plenum. The flow can be rectified to suppress the development of turbulent vortices and separation vortices, and realize stable furnace flow.
According to the second aspect of the present invention, since the connecting plate flow guide is disposed so as to cover the outer peripheral edge of the connecting plate, the coolant is prevented from colliding with each other, so To the center of the lower plenum, the flow is rectified, and the generation and development of turbulent vortices and separation vortices can be suppressed. Moreover, the pressure loss of the coolant flow can be reduced by rectifying the flow and suppressing the vortex.
According to the third aspect of the present invention, the flow guide for the lower core support column is disposed so as to cover the periphery of the lower core support column, so that the coolant 1 is prevented from colliding with the lower core support column. The flow can be rectified, and the generation and development of turbulent vortices and separation vortices can be suppressed.
According to the invention described in claim 4, since the outer peripheral surface of the flow guide is formed in a tapered cylindrical shape, the coolant can be smoothly guided from the lower plenum toward the core.
According to the fifth aspect of the present invention, since the outer peripheral surface of the flow guide is formed into four trapezoidal surfaces, the core is formed from the lower plenum by directing each of the four surfaces in the direction in which the coolant mainly flows. The coolant can be smoothly guided toward
According to the sixth aspect of the present invention, since the plate-like circumferential flow restraining member extending in the radial direction is provided on the outer circumferential surface of the flow guide, the flow is rectified and the circumferential flow is prevented. It is possible to prevent the possibility that the separation vortex develops due to the freedom space.
[Brief description of the drawings]
FIG. 1 is an elevational sectional view of a reactor internal structure according to a first embodiment of the present invention.
2 is a perspective view of the flow guide for connecting plates of FIG. 1. FIG.
3 is a perspective view of a flow guide for a lower core support column in FIG. 1. FIG.
FIG. 4 is an elevational sectional view of the in-core structure of the nuclear reactor according to Embodiment 1 of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Coolant, 2 Reactor vessel, 3 Coolant inlet nozzle, 4 Reactor core tank, 5 Downcomer part, 8 Lower plenum, 10 Lower connecting plate, 10a Outer periphery, 13 Core, 31 Flow guide for connecting plate, 32 Circumferential direction Flow control member, 33, 43 Outer peripheral surface, 41 Flow guide for lower core support column.

Claims (6)

冷却材入口ノズルと、底部に下部プレナムを画設する圧力容器と、この圧力容器内に配置された炉心と、この炉心の周囲に配置された炉心槽と、圧力容器と炉心槽との間に画設される環状のダウンカマー部と
を備えた原子炉において、
下部プレナム内に、上方に向かうにつれて傾斜が大きくなる曲面からなる外周面を有するフローガイドを有し、
冷却材入口ノズルから導入されダウンカマー部を流れて下部プレナム内に流れ込んだ冷却材が、このフローガイドの外周面に沿って炉心側に上昇するようにしたことを特徴とする原子炉の炉内構造。
A coolant inlet nozzle, a pressure vessel having a lower plenum at the bottom, a core arranged in the pressure vessel, a core vessel arranged around the core, and between the pressure vessel and the core vessel In a nuclear reactor with an annular downcomer section
In the lower plenum, it has a flow guide having an outer peripheral surface composed of a curved surface whose inclination increases toward the upper side,
The reactor inside the reactor is characterized in that the coolant introduced from the coolant inlet nozzle and flowing through the downcomer section and into the lower plenum rises to the core side along the outer peripheral surface of the flow guide. Construction.
下部プレナム内に連接板を備え、
フローガイドは、連接板の外周縁を覆うように配置された連接板用フローガイドである請求項1に記載の原子炉の炉内構造。
A connecting plate in the lower plenum,
The reactor internal structure according to claim 1, wherein the flow guide is a flow guide for connecting plates arranged so as to cover an outer peripheral edge of the connecting plate.
下部プレナム内には、連接板を貫通して下部プレナムの底部に向かって延びる下部炉心支持柱を備え、
フローガイドは、下部炉心支持柱の周囲を覆うように配置された下部炉心支持柱用フローガイドである請求項1または2に記載の原子炉の炉内構造。
The lower plenum includes a lower core support column that extends through the connecting plate toward the bottom of the lower plenum,
The reactor internal structure according to claim 1, wherein the flow guide is a flow guide for a lower core support column arranged so as to cover the periphery of the lower core support column.
フローガイドの外周面は、先細の筒状である請求項1〜3のいずれか一項に記載の原子炉の炉内構造。The in-core structure of a nuclear reactor according to any one of claims 1 to 3, wherein an outer peripheral surface of the flow guide has a tapered cylindrical shape. フローガイドの外周面は、4つの台形面からなる請求項1〜3のいずれか一項に記載の原子炉の炉内構造。The in-core structure of a nuclear reactor according to any one of claims 1 to 3, wherein the outer peripheral surface of the flow guide includes four trapezoidal surfaces. フローガイドの外周面には、径方向に延びる板状の周方向流れ抑制部材が設けられた請求項1〜5のいずれか一項に記載の原子炉の炉内構造。The in-core structure of a nuclear reactor according to any one of claims 1 to 5, wherein a plate-like circumferential flow restraining member extending in a radial direction is provided on an outer circumferential surface of the flow guide.
JP2003189645A 2003-06-18 2003-07-01 Reactor internal structure Expired - Fee Related JP4220845B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003189645A JP4220845B2 (en) 2003-07-01 2003-07-01 Reactor internal structure
US10/867,686 US7245689B2 (en) 2003-06-18 2004-06-16 Nuclear reactor internal structure
EP04291525A EP1489624B1 (en) 2003-06-18 2004-06-17 Nuclear reactor internal structure
DE602004032193T DE602004032193D1 (en) 2003-06-18 2004-06-17 Nuclear reactor internal structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003189645A JP4220845B2 (en) 2003-07-01 2003-07-01 Reactor internal structure

Publications (2)

Publication Number Publication Date
JP2005024369A true JP2005024369A (en) 2005-01-27
JP4220845B2 JP4220845B2 (en) 2009-02-04

Family

ID=34187791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003189645A Expired - Fee Related JP4220845B2 (en) 2003-06-18 2003-07-01 Reactor internal structure

Country Status (1)

Country Link
JP (1) JP4220845B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010518402A (en) * 2007-02-12 2010-05-27 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー Pressurized water reactor skirt rectifier

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7873757B2 (en) 2007-02-16 2011-01-18 Arm Limited Controlling complex non-linear data transfers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010518402A (en) * 2007-02-12 2010-05-27 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー Pressurized water reactor skirt rectifier

Also Published As

Publication number Publication date
JP4220845B2 (en) 2009-02-04

Similar Documents

Publication Publication Date Title
EP2016990B1 (en) Gas-water separator
JP4786616B2 (en) Reactor
US7245689B2 (en) Nuclear reactor internal structure
JP4599319B2 (en) Steam separator
KR101491734B1 (en) Pressure water reactor
JP4220845B2 (en) Reactor internal structure
JP2009075001A (en) Nuclear reactor
JP4202197B2 (en) Reactor internal structure
JP2999124B2 (en) Substructure inside a pressurized water reactor
JP4202200B2 (en) Reactor internal structure
JPH0862372A (en) Internal structure of pressurized water reactor
JP2012058113A (en) Steam separation facility for nuclear reactor
US11881320B2 (en) Molten fuel reactors and orifice ring plates for molten fuel reactors
JP2012112590A (en) Steam generator, and nuclear power plant
JP7394041B2 (en) Reactor
EP2237282A2 (en) Steam flow vortex straightener
JP2000111682A (en) Core internal structure of pressurized water reactor
JP2008292355A (en) Intermediate heat exchanger for fast reactor
JP2002257971A (en) Nuclear reactor vessel
JP4358561B2 (en) Reactor coolant supply structure
JPS6319595A (en) Intermediate heat exchanger
JPH10111379A (en) Internal structure of pressurized water reactor
JPH01217292A (en) Tank reactor
JPH0746156B2 (en) Reactor with low core coolant intake
JPH05157876A (en) Tank type fast breeder reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051215

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070314

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070606

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4220845

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees