JPS5926584Y2 - oil-filled electrical equipment - Google Patents

oil-filled electrical equipment

Info

Publication number
JPS5926584Y2
JPS5926584Y2 JP14616379U JP14616379U JPS5926584Y2 JP S5926584 Y2 JPS5926584 Y2 JP S5926584Y2 JP 14616379 U JP14616379 U JP 14616379U JP 14616379 U JP14616379 U JP 14616379U JP S5926584 Y2 JPS5926584 Y2 JP S5926584Y2
Authority
JP
Japan
Prior art keywords
oil
electrical equipment
filled electrical
orifice
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14616379U
Other languages
Japanese (ja)
Other versions
JPS5663026U (en
Inventor
宣輝 藤村
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝 filed Critical 株式会社東芝
Priority to JP14616379U priority Critical patent/JPS5926584Y2/en
Publication of JPS5663026U publication Critical patent/JPS5663026U/ja
Application granted granted Critical
Publication of JPS5926584Y2 publication Critical patent/JPS5926584Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Transformer Cooling (AREA)

Description

【考案の詳細な説明】 本考案は油自然循環冷却方式と送油冷却方式の二重定格
油入電気機器に係わり、特にその冷却器配管抽選構造の
改良に関するものである。
[Detailed Description of the Invention] The present invention relates to dual-rated oil-filled electrical equipment using the oil natural circulation cooling method and the oil feeding cooling method, and particularly relates to an improvement of the cooler piping drawing structure.

油自然循環冷却と送油冷却の二重定格油入電気機器では
、油自然循環時に油流系統に直列に送油ポンプが入るこ
とになる。
In dual-rated oil-filled electrical equipment with natural oil circulation cooling and oil feed cooling, an oil feed pump is inserted in series with the oil flow system during natural oil circulation.

油自然循環時の油循環力は非常に弱い上に油流系統に入
っている送油ポンプを油が通過する時に多くの圧力損失
を受け、油循環力が低下し、必要な油流量が不足してし
まう。
The oil circulation force during natural oil circulation is very weak, and when the oil passes through the oil feed pump in the oil flow system, it suffers a lot of pressure loss, which reduces the oil circulation force and the required oil flow rate is insufficient. Resulting in.

これを補なうため、第1図に示すように油入電気機器本
体1と冷却器2との間に設けられる送油ポンプ3と並列
に角度θで逆止弁4を1設は二系統の経路を構成するよ
うにしたものがある。
To compensate for this, as shown in Fig. 1, check valves 4 are installed in parallel with the oil feed pump 3 installed between the oil-filled electrical equipment main body 1 and the cooler 2 at an angle θ. There is one that configures the route.

即ち、油入電気機器本体1よりやや位置を高くして冷却
器2を配設し、この冷却器2の上端と油入電気機器本体
1の上部とを共通抽選5で連絡する。
That is, the cooler 2 is disposed at a position slightly higher than the oil-filled electrical equipment body 1, and the upper end of the cooler 2 and the upper part of the oil-filled electrical equipment body 1 are connected by a common drawing 5.

そして、冷却器2の下部には水平に共通抽選6を設ける
と共に油入電気機器本体1の下部に水平に抽選7aを設
ける。
A common lottery 6 is provided horizontally in the lower part of the cooler 2, and a lottery 7a is provided horizontally in the lower part of the oil-filled electrical equipment main body 1.

そして更にこの抽選7aに前記送油ポンプ3を取り付け
、この送油ポンプ3から垂直上方に伸ばした抽選7bを
前記共通抽選6に接続する。
Further, the oil pump 3 is attached to this lottery 7a, and a lottery 7b extending vertically upward from the oil pump 3 is connected to the common lottery 6.

また、前記油入電気機器1の下部に抽選8を設け、この
抽選8と前記共通抽選6とを前記逆止弁4を介して連絡
する。
Further, a lottery 8 is provided at the bottom of the oil-filled electrical equipment 1, and this lottery 8 and the common lottery 6 are communicated via the check valve 4.

冷却器2は高い位置にあり、送油ポンプ3側はその抽選
が抽選6に対し垂直下方に導かれるので、前記逆止弁4
はこれに対してθなる角度をもって配置することにより
冷却器2より流下する絶縁油を落差を利用して油入電気
機器本体1下部側に流し、上昇流があるときはこれを阻
止して油の自然循環冷却を少ない圧力損失で行なえるよ
うにする。
The cooler 2 is located at a high position, and the lottery on the oil pump 3 side is guided vertically downward with respect to the lottery 6, so the check valve 4
By arranging the insulating oil at an angle of θ with respect to this, the insulating oil flowing down from the cooler 2 flows to the lower side of the oil-filled electrical equipment main body 1 using the head, and when there is an upward flow, this is blocked and the oil is natural circulation cooling with less pressure loss.

第2図は逆止弁4の詳細を示す断面図である。FIG. 2 is a sectional view showing details of the check valve 4.

図において4aは外筐、4bはこの外筐4a内に設けら
れた弁座、4Cは上端をピン4dにより軸支され図下部
側より反時計方向に回動される弁座4bに密着して閉路
する弁体であり、油圧の弱い自然循環時に実線の矢印A
で示す流下方向の絶縁油に対しては油圧損失を出来るだ
け少なくして通し、また点線矢印Bで示す上昇流に対し
ては確実にこれを抑止するため、この逆止弁4は垂直軸
に対してθなる角度で図示の如く傾斜して設置する構造
となっている。
In the figure, 4a is an outer casing, 4b is a valve seat provided in the outer casing 4a, and 4C is in close contact with a valve seat 4b whose upper end is pivotally supported by a pin 4d and rotated counterclockwise from the bottom side of the figure. It is a valve body that closes the circuit, and when the oil pressure is weak and naturally circulates, the solid line arrow A
This check valve 4 is installed on the vertical axis in order to pass the insulating oil in the downward direction shown by with as little hydraulic loss as possible, and to reliably prevent the upward flow shown by the dotted arrow B. The structure is such that it is installed at an angle of θ as shown in the figure.

尚4eはフランジである。従って、このような逆止弁4
をθなる傾斜をもって送油ポンプ3の経路と並列に設け
たことにより、その弁体4Cは重力によって垂直下方に
垂れ下がり、通常時は弁が開かれた状態になる。
Note that 4e is a flange. Therefore, such a check valve 4
By providing the valve body 4C with an inclination of θ in parallel with the path of the oil feed pump 3, the valve body 4C hangs vertically downward due to gravity, and the valve is normally in an open state.

そのためこの逆止弁4における抵抗は小さいがら、自然
循環時は抵抗の大きな送油ポンプ3側を避けて絶縁油は
この逆止弁4の経路を辿って流れる。
Therefore, although the resistance in the check valve 4 is small, during natural circulation, the insulating oil flows along the path of the check valve 4, avoiding the oil feed pump 3 side where the resistance is large.

一方、送油冷却時は送油ポンプ3が駆動されるためにこ
の送油ポンプ3から送られた絶縁油は油大電気機器本体
1へ強制的に送り込まれる。
On the other hand, since the oil pump 3 is driven during oil cooling, the insulating oil sent from the oil pump 3 is forcibly fed into the main body 1 of the oil-rich electrical equipment.

同時に送油圧が大きいから油入電気機器本体1に流入し
た絶縁油の一部が逆止弁4側へ逆流するが、この逆流に
より弁体4Cは反時計方向に回動され、弁座4bに点線
の如く密着して閉路される。
At the same time, since the hydraulic pressure is large, a part of the insulating oil that has flowed into the oil-filled electrical equipment main body 1 flows back toward the check valve 4, but due to this back flow, the valve body 4C is rotated counterclockwise, and the valve body 4C is rotated counterclockwise. A closed circuit is formed in close contact as shown by the dotted line.

これにより、逆流は阻止される。This prevents backflow.

よって送油ポンプ3からの油流はすべて油入電気機器本
体1内に入り、内部冷却後、冷却器2へと流れることに
なる。
Therefore, all of the oil flow from the oil pump 3 enters the oil-filled electrical equipment main body 1 and flows to the cooler 2 after being internally cooled.

ところで、逆止弁4は油流圧によって開閉するため、送
油ポンプ3の起動時には大きな圧力の逆流を受けて閉じ
ることから、弁体4Cが弁座4bに強い衝撃でぶつかり
、その際、大きな音を発生する。
By the way, since the check valve 4 is opened and closed by hydraulic pressure, when the oil pump 3 is started, it closes due to the large pressure backflow, so the valve body 4C hits the valve seat 4b with a strong impact, causing a large impact. generate sound.

また、油流圧が低いと弁が完全に閉じず、ポンプ電源電
圧の変動等で油流圧が変動するときには弁体4Cと弁座
4bとの間で振動が発生することがある。
Further, if the oil flow pressure is low, the valve will not close completely, and when the oil flow pressure fluctuates due to fluctuations in the pump power supply voltage, etc., vibrations may occur between the valve body 4C and the valve seat 4b.

また、弁体4Cと云う可動部があり、しかも強い衝撃を
受けることから、この可動部が経年劣化でガタつく心配
もある。
Furthermore, since there is a movable part called the valve body 4C and it is subjected to strong impact, there is a concern that this movable part may become loose due to aging.

本考案は上記事情に鑑みて威されたもので、油自然循環
冷却方式と送油冷却方式の両定格を有し、送油ポンプ用
配管と並列に油自然循環用のバイパス配管を設けたもの
において、口径の一定な外管と、この外管の内側に油自
然循環時の油流方向に沿って口径を小さくした内管を設
けた二重管式オリフィスを前記バイパス配管に取り付け
ることにより前記欠点を除去し、送油ポンプによる送油
時の逆流を効果的に阻止すると共に逆止時、音の発生が
なく且つ経時劣化もない油入電気機器を提供することを
目的とする。
The present invention was developed in view of the above circumstances, and is rated for both natural oil circulation cooling method and oil feed cooling method, and has bypass piping for oil natural circulation installed in parallel with the oil pump piping. By attaching to the bypass piping a double-pipe orifice having an outer pipe with a constant diameter and an inner pipe with a smaller diameter along the oil flow direction during natural oil circulation inside the outer pipe, To provide an oil-filled electrical device which eliminates the drawbacks, effectively prevents backflow when oil is fed by an oil pump, does not generate noise when backstopped, and does not deteriorate over time.

以下、本考案の一実施例について第3図を参照しながら
説明する。
An embodiment of the present invention will be described below with reference to FIG.

第3図は前記送油ポンプ3の糸路に並列に設けられたバ
イパス配管部分に従来接続されていた前記逆止弁4に替
えて用いる二重管式のオリフィス30の構造を示す断面
図で、図中31は両端にフランジ31 aを設けた等口
径の外管、32はこの外管31内に設けられた内管で゛
ある。
FIG. 3 is a sectional view showing the structure of a double-pipe orifice 30 used in place of the check valve 4 conventionally connected to a bypass piping section provided in parallel to the thread path of the oil feed pump 3. In the figure, numeral 31 is an outer tube of equal diameter with flanges 31a provided at both ends, and numeral 32 is an inner tube provided within this outer tube 31.

この内管32は一端を外管31内壁に固定して取り付け
られ、他端は自由状態に置かれる。
This inner tube 32 has one end fixedly attached to the inner wall of the outer tube 31, and the other end left in a free state.

この他端側、即ち自由端側は固定端側より口径が小さい
例えば漏斗状に形成されており、且つ自由端側ではその
肉厚が先端程薄くしである。
The other end, ie, the free end, has a smaller diameter than the fixed end, and is formed, for example, in the shape of a funnel, and the wall thickness on the free end becomes thinner toward the tip.

また、自由端側では油自然循環時に必要な油流量に対し
て十分な口径を持たせである。
In addition, the free end side should have a diameter sufficient for the oil flow rate required during natural oil circulation.

このような構成のオリフィス30は内管32の自由端側
からの流入、即ち点線矢印B方向が逆止方向、固定端側
からの流入、即ち実線矢印A方向が順方向となる。
In the orifice 30 having such a configuration, the inflow from the free end side of the inner tube 32, that is, the direction of the dotted arrow B, is the check direction, and the inflow from the fixed end side, that is, the direction of the solid line arrow A, is the forward direction.

オリフィス30は順方向流に対しては自由端側開口が流
量に十分な口径となっており、しかも流れに対して順次
径が挾くなることから、抵抗が小さく弱い圧力の自然循
環流に対してもほとんど圧力損失が生ぜず自然循環流の
流れを妨げない。
The opening on the free end side of the orifice 30 has a diameter sufficient for the flow rate for forward flow, and the diameter gradually becomes narrower for the flow, so it is suitable for natural circulation flow with low resistance and weak pressure. However, there is almost no pressure loss and the natural circulation flow is not disturbed.

しかし、逆流(B方向流)に対しては広い外管31から
口径の小さい内管32の自由端側に流れがぶつかること
から大きな圧力損失が発生する。
However, for reverse flow (flow in direction B), a large pressure loss occurs because the flow collides with the free end side of the inner tube 32 having a small diameter from the wide outer tube 31.

このようなオリフィス30を第1図に示す装置の前記逆
止弁4に替えてバイパス配管である抽選6.8間に順方
向接続する。
Such an orifice 30 is connected in the forward direction between the drawings 6 and 8, which are bypass piping, in place of the check valve 4 of the apparatus shown in FIG.

このようにすると、油自然循環時にはその自然循環油流
方向である矢印A方向に絶縁油が流れることから、オリ
フィス内断面はまず一種のレジューサとして働き、その
後、断面の急拡大を経て抽選8へ絶縁油が流出する。
In this way, during natural oil circulation, the insulating oil flows in the direction of arrow A, which is the natural circulation oil flow direction, so the internal cross section of the orifice first acts as a kind of reducer, and then, after rapidly expanding the cross section, it moves to Lottery 8. Insulating oil leaks.

油流による圧力損失は圧力損失を係数をζ、拙速をV
(cm/5ec)、重力加速度g = 980 (cm
/5ec2)とするとおおよそζ×! で表わすことが
できる。
For the pressure loss due to oil flow, the pressure loss is the coefficient ζ, and the speed is V
(cm/5ec), gravitational acceleration g = 980 (cm
/5ec2), approximately ζ×! It can be expressed as

g オリフィス30の外管31直径を内管32の直径の倍に
した場合で第3図の如き形状の二重管式オリフィスの圧
力損失係数ζは約0.6程度である。
(g) When the diameter of the outer tube 31 of the orifice 30 is made twice the diameter of the inner tube 32, the pressure loss coefficient ζ of the double tube orifice having the shape as shown in FIG. 3 is about 0.6.

送油ポンプ3と二重管式のオリフィス30内の圧力損失
係数を比較し、二重管式のオリフィス30の方が十分に
低い値となるよう設計すると、油流の多くはバイパス配
管側に設けたこの二重管式のオリフィス30を通って油
入電気機器1に流入することになり、二重管式のオリフ
ィス30の内管32を油自然循環に対して十分な開口径
としておけば何ら支障なく自然循環を行なえる。
Comparing the pressure loss coefficients in the oil feed pump 3 and the double-pipe orifice 30, and designing the double-pipe orifice 30 to have a sufficiently lower value, most of the oil flow will flow to the bypass piping side. The oil will flow into the oil-filled electrical equipment 1 through the provided double-pipe orifice 30, and if the inner pipe 32 of the double-pipe orifice 30 is set to have a sufficient opening diameter for oil natural circulation. Natural circulation can be carried out without any hindrance.

一方、送油ポンプ3の駆動による送油時では送油ポンプ
3より吐出された絶縁油は一旦、油入電気機器本体1内
に送り込まれる。
On the other hand, when oil is fed by driving the oil feed pump 3, the insulating oil discharged from the oil feed pump 3 is once sent into the oil-filled electrical equipment main body 1.

そしてこの油入電気機器本体1の上部の冷却器用配管で
ある抽選5より冷却器2へ送り出されるが、一部はバイ
パス用配管である抽選8を経てオリフィス30へ逆流す
る。
The oil is then sent to the cooler 2 through the draw 5, which is a cooler piping at the top of the oil-filled electrical equipment main body 1, but a portion flows back to the orifice 30 via the draw 8, which is a bypass pipe.

この二重管式のオリフィス30内への流入方向は第3図
のB方向であり、前述したようにこのB方向なる逆方向
流に対してはオリフィス30は高い抵抗を示す。
The direction of flow into this double-tube orifice 30 is the B direction in FIG. 3, and as described above, the orifice 30 exhibits high resistance to the reverse flow in the B direction.

従って、オリフィス30内の圧力損失係数ζは非常に大
きく、10以上となる。
Therefore, the pressure loss coefficient ζ within the orifice 30 is very large, and is 10 or more.

そのため、このオリフィス30内を逆流する絶縁油は上
記の圧力損失係数によって決まる圧力損失を受ける。
Therefore, the insulating oil flowing back through the orifice 30 suffers a pressure loss determined by the above-mentioned pressure loss coefficient.

従って、送油時の油流で油人電気機器本体1→冷却器2
→送油ポンプ3→油入電気機器本体1の系統での圧力損
失を油入電気機器本体1→油道8→オリフイス30→送
油ポンプ3→油入電気機器本体1の経路における圧力損
失に比較して十分小さな値にしておけば油流の多くは油
入電気機器本体1→冷却器2→送油ポンプ3→油入電気
機器本体]の系統に流れる。
Therefore, due to the oil flow during oil transfer, the main body of electrical equipment 1 → cooler 2
→ Pressure loss in the system of oil-filled electrical equipment 1 → Oil-filled electrical equipment 1 → Oil pipe 8 → Orifice 30 → Oil-filled electrical equipment 3 → Oil-filled electrical equipment main body 1 If the value is set to a sufficiently small value in comparison, most of the oil flow will flow to the system of oil-filled electrical equipment main body 1 → cooler 2 → oil feed pump 3 → oil-filled electrical equipment main body].

二重管式のオリフィス30を逆流する油流を完全に阻止
することはできないが、この量はわずかであり、冷却さ
れないまま送油ポンプ3を経て油入電気機器本体1に入
るものの、油温度上昇にはほとんど影響を与えない。
Although it is not possible to completely prevent the oil flow from flowing backward through the double-pipe orifice 30, the amount is small, and although it enters the oil-filled electrical equipment main body 1 via the oil feed pump 3 without being cooled, the oil temperature remains low. It has little effect on the rise.

このように油自然循環冷却方式と送油冷却方式の一方式
を備えた油入電気機器において送油用のポンプに並列に
バイパス配管を設け、このバイパス配管に逆流抑制用の
二重管式オリフィスを設けてこのバイパス配管経路を油
自然循環用の経路としたので、油自然循環時にはバイパ
ス配管経路により圧力損失がほとんど無い状態で支障な
く自然循環による冷却を行なうことができ、また、送油
冷却時にはオリフィスにより送油による逆流を抑えるこ
とができ、二つの冷却方式をそれぞれ有効に利用できる
他、逆流抑制用に二重管式オリフィスを用いたので可動
部がないから経年劣化によるガタつき等がなく、また油
圧変動による動作の不安定のため生ずる振動や、衝撃音
の発生もない等、安価且つ動作の安定した抽選構造を有
する油入電気機器を提供することができる。
In this way, in oil-filled electrical equipment equipped with both the oil natural circulation cooling method and the oil feed cooling method, a bypass pipe is installed in parallel with the oil feed pump, and a double pipe orifice is installed in this bypass pipe to suppress backflow. Since this bypass piping route is used as a route for natural oil circulation, during natural oil circulation, the bypass piping route allows cooling by natural circulation without any problems with almost no pressure loss. In some cases, the orifice can suppress backflow due to oil supply, allowing each of the two cooling methods to be used effectively.In addition, a double pipe orifice is used to suppress backflow, so there are no moving parts, so there is no rattling due to aging. Furthermore, it is possible to provide an oil-filled electrical device having a drawing structure that is inexpensive and stable in operation, without vibrations or impact noises caused by unstable operation due to oil pressure fluctuations.

尚、本考案は上記し且つ図面に示す実施例に限定するこ
となくその要旨を変更しない範囲内で適宜変形して実施
し得るものであり、特に二重管式オリフィスの構造は第
3図に示す如き漏斗状の内管形状である必要はなく、油
流方向によって圧力損失が大きく異なるよう内管の径が
異なるようにしてあれば良い。
The present invention is not limited to the embodiments described above and shown in the drawings, and can be implemented with appropriate modifications within the scope of the gist thereof. In particular, the structure of the double-pipe orifice is shown in Fig. 3. It is not necessary that the inner tube has a funnel-like shape as shown, but it is sufficient that the inner tube has a different diameter so that the pressure loss varies greatly depending on the oil flow direction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は油入電気機器の構成を説明するための図、第2
図は従来用いていた逆止弁の構成を示す図、第3図は本
考案装置に用いる二重管式オリフィスの構成を示す図で
ある。 1・・・・・・油入電気機器本体、2・・・・・・冷却
器、3・・・・・・送油ポンプ、5,6,7 a 、7
b 、8・・・・・・抽選、30・・・・・・オリフ
ィス、31・・・・・・外管、32・・・・・・内管。
Figure 1 is a diagram for explaining the configuration of oil-filled electrical equipment, Figure 2
The figure shows the structure of a conventionally used check valve, and FIG. 3 shows the structure of a double pipe orifice used in the device of the present invention. 1...Oil-filled electrical equipment body, 2...Cooler, 3...Oil pump, 5, 6, 7 a, 7
b, 8... Lottery, 30... Orifice, 31... Outer tube, 32... Inner tube.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 油自然循環冷却方式と送油冷却方式の三方式を備えた油
入電気機器において、冷却器よる油入電気機器本体へ送
油するポンプの糸路に並列にバイパス用の管路を設け、
この管路の内側に油流方向に沿って口径が犬から小に変
化するように形成されたオリフィスを設けて油自然循環
冷却時の流路としたことを特徴とする油入電気機器。
In oil-filled electrical equipment equipped with three methods: oil natural circulation cooling method and oil feeding cooling method, a bypass pipe line is provided in parallel to the pump line that sends oil to the oil-filled electrical equipment main body by the cooler,
An oil-filled electrical device characterized in that an orifice is provided inside the conduit with an orifice whose diameter changes from small to small along the oil flow direction to serve as a flow path during oil natural circulation cooling.
JP14616379U 1979-10-22 1979-10-22 oil-filled electrical equipment Expired JPS5926584Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14616379U JPS5926584Y2 (en) 1979-10-22 1979-10-22 oil-filled electrical equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14616379U JPS5926584Y2 (en) 1979-10-22 1979-10-22 oil-filled electrical equipment

Publications (2)

Publication Number Publication Date
JPS5663026U JPS5663026U (en) 1981-05-27
JPS5926584Y2 true JPS5926584Y2 (en) 1984-08-02

Family

ID=29377327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14616379U Expired JPS5926584Y2 (en) 1979-10-22 1979-10-22 oil-filled electrical equipment

Country Status (1)

Country Link
JP (1) JPS5926584Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5253507B2 (en) * 2007-09-10 2013-07-31 コメット アクチェンゲゼルシャフト Cooling system for variable capacitance vacuum condenser

Also Published As

Publication number Publication date
JPS5663026U (en) 1981-05-27

Similar Documents

Publication Publication Date Title
JPS5926584Y2 (en) oil-filled electrical equipment
EP3078528B1 (en) Structure of intercooler cover integrated into fan shroud for turbocharged engine and method for operating the same
US4422502A (en) Integrated water box and expansion chamber device for a heat exchanger such as the radiator in the cooling circuit of an internal combustion engine
US6418751B1 (en) Accumulator-dehydrator assembly with anti-bump/venturi effect oil return feature for an air conditioning system
KR937003691A (en) Chiller of electric vehicle mounted transformer
US6843224B2 (en) Throttle apparatus
JPH01501081A (en) Heat exchanger for fuel cooling
JP3140162B2 (en) Heat transfer tube automatic cleaning device
JP2001073889A (en) Precleaner
US2250130A (en) Float valve
CN207080278U (en) Enging cabin and there is its automobile
SE438821B (en) DRIVING DEVICE FOR A WIRE CIRCUIT
JPH0585197A (en) Intake device for engine
US1409072A (en) Radiator and thermostat unit construction
CN219457299U (en) Transformer oil pillow
CN209054144U (en) It is a kind of to be easily installed fixed ball valve
JPH1151207A (en) Gate valve provided with intake or exhaust function
JPS5911908A (en) Hot water circuit of automobile heater
JP2607788Y2 (en) Piping structure of automotive air conditioner
JPS6324399Y2 (en)
CN106347393A (en) Condensed-water draining device for rail vehicle
JP2565404Y2 (en) Cooling structure of internal combustion engine
JPH0893005A (en) Noise preventive device for water flowing into storage tank, etc.
JP2006077901A (en) On-off valve structure
KR100822526B1 (en) Heater core