JPS6147581A - Liquid-metal cooling type fast breeder reactor - Google Patents

Liquid-metal cooling type fast breeder reactor

Info

Publication number
JPS6147581A
JPS6147581A JP59168797A JP16879784A JPS6147581A JP S6147581 A JPS6147581 A JP S6147581A JP 59168797 A JP59168797 A JP 59168797A JP 16879784 A JP16879784 A JP 16879784A JP S6147581 A JPS6147581 A JP S6147581A
Authority
JP
Japan
Prior art keywords
coolant
reactor
liquid level
liquid
reactor vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59168797A
Other languages
Japanese (ja)
Inventor
鵜原 義彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59168797A priority Critical patent/JPS6147581A/en
Publication of JPS6147581A publication Critical patent/JPS6147581A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は原子炉容器および炉心上部機構に冷却材液面近
傍に発生ずる熱応力の緩和手段を講じた液体金属冷却型
高速増殖炉に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a liquid metal cooled fast breeder reactor in which a reactor vessel and an upper core mechanism are provided with means for alleviating thermal stress generated near the coolant liquid level.

[発明の技術的背景コ 一般に、液体金属冷F!I型高速増殖炉においては、ナ
トリウム等の液体金属が冷却材どして用いられている。
[Technical Background of the Invention] In general, liquid metal refrigeration F! In type I fast breeder reactors, liquid metals such as sodium are used as coolants.

このような冷却材は、周知のように金属であるために熱
伝導率が極めて大きく、さらに液体であるために対流に
よっても熱を伝達するので、その熱搬送能力が非常に大
きい。
As is well known, such a coolant has an extremely high thermal conductivity because it is a metal, and furthermore, because it is a liquid, it also transfers heat by convection, so its heat transfer ability is extremely large.

一方、冷却材の液面上には、アルゴンガス等のカバーガ
スが封入されており、このカバーガスは、冷却材に比べ
て熱搬送能力が極めて小さい。したがって、高温の冷却
材からの熱は、そのはどんとか原子炉容器に伝熱され、
原子炉容器に伝熱された熱は、原子炉容器壁中を上方に
伝わろうとする。
On the other hand, a cover gas such as argon gas is sealed above the liquid surface of the coolant, and this cover gas has an extremely small heat transfer ability compared to the coolant. Therefore, heat from the hot coolant is somehow transferred to the reactor vessel,
Heat transferred to the reactor vessel tends to be transmitted upward through the reactor vessel wall.

ところが、原子炉容器は、一般にステラ1ノス鋼で形成
されており、このステンレス鋼は熱伝導率が小さいので
、冷却材液面から上方にか[)で比較的大きな温度勾配
が生じる。
However, the reactor vessel is generally made of Stella 1 stainless steel, and since this stainless steel has low thermal conductivity, a relatively large temperature gradient occurs above the coolant liquid level.

このため、原子炉容器のうち冷却材と接する部分では、
温度が一定で温度勾配が零であるのに対し、冷却材液面
より上方の部分では比較的大ぎな温度勾配となり、冷却
材の液面近傍で温度勾配の不連続が生じる。そして、そ
の結果冷却材液面近傍に過大な熱応力が発生し、原子炉
容器の健全性に悪影響を及ぼすおそれがある。特に原子
炉起動時、停止時等の冷却材温度が急激に変化する場合
は、温度勾配の不連続性が一層大きく、それによる熱応
力も非常に大きくなる。
Therefore, in the part of the reactor vessel that comes into contact with the coolant,
While the temperature is constant and the temperature gradient is zero, there is a relatively large temperature gradient above the coolant liquid level, and a discontinuity in the temperature gradient occurs near the coolant liquid level. As a result, excessive thermal stress is generated near the coolant liquid level, which may adversely affect the integrity of the reactor vessel. Particularly when the coolant temperature changes rapidly, such as when the reactor is started or shut down, the discontinuity of the temperature gradient becomes even greater, and the resulting thermal stress becomes extremely large.

以上は原子炉容器について述べたが炉心上部機構におい
ても同様である。
The above description has been made regarding the reactor vessel, but the same applies to the upper core mechanism.

ところで、従来この液面近傍の熱応力を軽減する手段と
し°C1例えばパケット方式、液位制御方式、炉壁冷却
方式が提案されている。パケット方式どは、液面近傍の
炉壁に冷7Il材を入れたバケツ1〜を設り、パケット
内の液面を炉内の液面より高いレベルに保持することに
よって、パケット内の冷却材の熱伝導効果により、液面
近傍の温度勾配の不連続を緩和し、温度勾配の不連続に
伴って発生ずる熱応力を軽減する方法である。
Incidentally, as means for reducing the thermal stress near the liquid level, for example, a packet method, a liquid level control method, and a furnace wall cooling method have been proposed. In the packet method, a bucket 1 containing cold 7Il material is installed on the furnace wall near the liquid level, and the coolant in the packet is maintained at a higher level than the liquid level in the furnace. This method uses the heat conduction effect to alleviate discontinuities in the temperature gradient near the liquid surface, and to reduce thermal stress that occurs due to discontinuities in the temperature gradient.

液位制御方式は、前記パケット内に冷却材を注入するオ
ーバーフローノズルを覗け、このオーバーフローノズル
によってパケット内の注入される冷却材の量を調節する
ことによってパケット内の液位を上下に変動させるもの
である。そして、これによって高温の冷却材が原子炉容
器に接する位置にある程度の幅を持たせ、この幅内で原
子炉容器の液面近傍における温度分布を平均化すること
によって温度勾配の不連続を緩和している。
In the liquid level control method, the overflow nozzle that injects the coolant into the packet is looked into, and the liquid level in the packet is varied up and down by adjusting the amount of coolant injected into the packet by this overflow nozzle. It is. This creates a certain width at the point where the high-temperature coolant contacts the reactor vessel, and within this width, the temperature distribution near the liquid surface of the reactor vessel is averaged, thereby alleviating discontinuities in the temperature gradient. are doing.

また、炉壁冷却方式は、高圧ブレナムから低温高圧の冷
却材を取り出し、この冷却材を引き回して冷却材液面近
傍部の原子炉壁を冷2J] した後、その一部を高温の
冷却材中に放出するもので、原子炉容器温度を低下させ
ると共に高温の冷却材の熱搬送能力を弱めることによっ
て一度勾配の不連続を緩和している。
In addition, the reactor wall cooling method extracts low-temperature, high-pressure coolant from the high-pressure blemish, routes this coolant to cool the reactor wall near the coolant liquid level by 2 J], and then transfers a portion of it to the high-temperature coolant. This reduces the temperature of the reactor vessel and weakens the heat transfer ability of the high-temperature coolant, thereby alleviating the discontinuity of the gradient.

[背景技術の問題点] しかしながら、前記の各方式にはそれぞれ次のよう4【
欠点がある。すなわち、パケット方式では、パケット内
の冷IJ材の蒸発等によりパケット内の冷却材の液位が
低下した場合、もしくは炉内の液位の制御に失敗し、炉
内の液位が上昇した場合等で、パケット内の液面が炉内
の液面より白くなった場合には、前記熱応力の緩和効果
が得られないという欠点がある。
[Problems with the background art] However, each of the above methods has the following 4 [
There are drawbacks. In other words, in the packet method, if the liquid level of the coolant in the packet decreases due to evaporation of the cold IJ material in the packet, or if control of the liquid level in the furnace fails and the liquid level in the furnace rises. If the liquid level in the packet becomes whiter than the liquid level in the furnace, there is a drawback that the effect of alleviating the thermal stress cannot be obtained.

液位制御方式は、オーバーフローノズルなどの付属設備
を必要とするので構造が複¥IE化し、パケット内の液
位を常時制御するために、冷却系システムどの設置上や
運転上の取合条件が複雑となり、蓮転要領の繁fjIL
化がまぬがれなくなる。また、パケット内の液位制御に
失敗した場合の対応も別途形えねばならないという欠点
がある。
The liquid level control method requires accessory equipment such as an overflow nozzle, so the structure becomes complex, and in order to constantly control the liquid level in the packet, the installation and operation conditions of the cooling system etc. It becomes complicated and the lotus transfer point is complicated.
The transformation becomes unavoidable. Furthermore, there is a drawback in that a countermeasure must be taken separately in case liquid level control within the packet fails.

炉壁冷却方式の場合は、上述した如く高圧プレナムから
低温の冷7J] Uを取り出すために原子炉容器内を引
き回1゛冷ムロ材の流路が必要となるので構造が複雑化
し、ざらに液面近傍の周囲に均等な冷lJ1効宋をえる
ために流路をfiW度よく製作、組立づ゛る必要がある
ので建設コストが高くなるという欠点がある。また低温
の冷却材の一部を高温の冷却材中に放出するため、プラ
ントの熱効率も悪くなる。
In the case of the reactor wall cooling method, as mentioned above, in order to take out the low-temperature cold 7J] U from the high-pressure plenum, it is necessary to route the cold material through the reactor vessel, making the structure complicated and rough. In order to obtain a uniform cooling lJ1 effect around the liquid surface, it is necessary to fabricate and assemble the flow path with great precision, which has the disadvantage of increasing construction cost. Additionally, some of the low temperature coolant is released into the high temperature coolant, which reduces the thermal efficiency of the plant.

[発明の目的] 本発明の目的は、特に原子炉の起動時や停止時に原子炉
容器および炉心上部機構の液面近傍に生ずる軸方向温度
勾配を軽減さぼて熱応力を低減させ、原子炉容器および
炉心上部機構の破(員を防止するようにした液体金属型
高速僧殖炉を提供ザるにある。
[Objective of the Invention] The object of the present invention is to reduce the thermal stress by reducing the axial temperature gradient that occurs near the liquid level of the reactor vessel and the upper core mechanism, especially during startup and shutdown of the reactor. We also provide a liquid metal fast-breeding reactor designed to prevent damage to the upper core mechanism.

[発明の概曹] 本発明による液体金属型盲速増殖炉は、冷uJ イ3液
面近傍に7ニユラス部を設け、その下端[ユじゅうぶん
冷却材中に浸るように設置し、上端は冷却材液面上に位
置するように設置し、かつアニユラス部に微細な管群を
押入り−るが、金属ポーラスもしくは金属ウールを詰め
ることによっても毛細管現象により、アニユラス部の冷
却(A液面を上昇さぜるようイj1¥成したことを特徴
とするものである。
[Summary of the Invention] The liquid metal blind fast breeder reactor according to the present invention has a cold uJ (3) provided with a 7-nuclear portion near the liquid level, the lower end of which is fully immersed in the coolant, and the upper end of which is immersed in the coolant. The material is placed above the liquid level, and a group of fine tubes are inserted into the annulus. However, by filling the annulus with metal porous or metal wool, capillary action can be used to cool the annulus (lower the A liquid level). It is characterized by the fact that it is made to rise.

〔発明の実施例コ 以下本発明を原子炉容器に実施した場合を示す−図面を
参照して詳Illに説明する。本発明の液体金属型品速
増殖炉のtlj(n8構成を示す第1図において、原子
炉容器1内には炉心3を収納した炉心槽2が設?1され
ている3、また、この原子炉容器1内には液体金属の冷
JJI材4が同図に示プ゛液位まで蓄えられている。こ
の冷却材4は冷却材流入管5を通って常時炉心4ffi
 2内の下部に供給されてJ3す、炉心1!!I2内の
下部に供給された冷却材4は、炉心3内を上方に流れて
加熱され、原子炉容器1内上方に高温どなって流出する
。そして、高温どなった冷却材4は、冷1.11材流出
管6を通って原子炉容器1外方へ流出し、中間熱交換器
(図示せず)で二次冷却材と熱交換されて冷却される。
[Embodiments of the Invention] Hereinafter, a case in which the present invention is implemented in a nuclear reactor vessel will be described in detail with reference to the drawings. In FIG. 1 showing the configuration of the liquid metal rapid breeder reactor of the present invention, a reactor vessel 1 has a core tank 2 housing a reactor core 3. A cold JJI material 4 of liquid metal is stored in the reactor vessel 1 up to the liquid level shown in the figure.
2 is supplied to the lower part of J3, core 1! ! The coolant 4 supplied to the lower part of I2 flows upward in the reactor core 3, is heated, and flows upward into the reactor vessel 1 at a high temperature. The high-temperature coolant 4 then flows out of the reactor vessel 1 through the cold 1.11 material outflow pipe 6, and is heat exchanged with the secondary coolant in an intermediate heat exchanger (not shown). and cooled down.

中間熱交換器によっ−(低温どなった冷却材4は、再び
冷却材流入管5を通って炉心槽2内の下部に供給され、
上述した経路を循環している。
By the intermediate heat exchanger, the coolant 4 which has become low temperature is again supplied to the lower part of the core tank 2 through the coolant inlet pipe 5.
It circulates along the route mentioned above.

原子炉容器1の上端は、遮蔽プラグによって閉塞され、
原子炉容器1内は密閉されている。また、原子炉容器1
内の冷却材液面から上方にか(プて形成されたカバーガ
ス空間8には、アルゴンガス等のカバーガスが封入され
ている。上記遮蔽プラグ7は固定プラグ7a、大回転プ
ラグ71)、および小回転プラグ7Cとから(1°11
成され、小回転プラグ7Cには制御俸駆動懇構(図示せ
ず)や冷1.1′1月4の計測系などを内蔵した炉心上
部は横9と燃料交換機10が設けられている。また、原
子炉容器1の内部の液面近傍には、本発明による炉壁保
護装置20が設けられている。
The upper end of the reactor vessel 1 is closed by a shielding plug,
The inside of the reactor vessel 1 is sealed. In addition, reactor vessel 1
A cover gas such as argon gas is sealed in a cover gas space 8 formed above the coolant liquid level in the shielding plug 7 (fixed plug 7a, large rotation plug 71), and From small rotation plug 7C (1°11
The small rotating plug 7C is provided with a horizontal 9 and a fuel exchanger 10 in the upper part of the reactor core, which incorporates a control salvage drive mechanism (not shown), a cooling 1.1'1/4 measurement system, and the like. Further, near the liquid level inside the reactor vessel 1, a reactor wall protection device 20 according to the present invention is provided.

この炉壁保護装置20は、第2図に示すように原子炉容
器1の内側の液面近1z部に設けた内側仕切板21でア
ニユラス部20aを形成し、その仕切板21下端をじゅ
うぶん冷却材に浸る位置で原子炉容器1に溶接し、その
上端は炉内の液面が変動してもじゅうぶん液面上に位置
するまで延長し、アニユラス内部20aには微細な管群
22が挿入しである。
As shown in FIG. 2, this reactor wall protection device 20 forms an annulus portion 20a with an inner partition plate 21 provided near the liquid surface 1z inside the reactor vessel 1, and cools the lower end of the partition plate 21 sufficiently. It is welded to the reactor vessel 1 at a position where it is immersed in the material, and its upper end is extended until it is sufficiently above the liquid level even if the liquid level in the reactor fluctuates, and a group of fine tubes 22 are inserted into the annulus interior 20a. It is.

まI〔前記アニユラス部20の仕切板21には、アニユ
ラス部内外を冷却材が自由に移動できるように多数の穴
23を設けである。
Also, the partition plate 21 of the annulus section 20 is provided with a large number of holes 23 so that the coolant can freely move inside and outside the annulus section.

第3図は、本発明における炉壁保護装置20の第2の実
施例を示している。前述の第1の実施例と同様原子炉容
器1の内側の液面近傍部にアニユラスl;120aを設
(プ、アニユラス内部20aには、金属ポーラスもしく
は金属ウール24を詰めである。また、本実施例の場合
、金属ポーラスもしくは金属ウールの破片24が原子炉
内部に落下しないように、前記アニユラス部の仕切21
の穴23に金属の綱25を取り付けである。
FIG. 3 shows a second embodiment of the furnace wall protection device 20 according to the present invention. As in the first embodiment described above, an annulus 120a is provided inside the reactor vessel 1 near the liquid level (the interior of the annulus 20a is filled with metal porous or metal wool 24. In the case of the embodiment, the partition 21 of the annulus part is installed to prevent metal porous or metal wool fragments 24 from falling into the reactor interior.
A metal rope 25 is attached to the hole 23.

次に以上のように構成した本発明の実施例の作用につい
て説明する。本発明によって設けた炉壁保護装置“20
において、冷却材は上皿1管現象によって吸い上げられ
、原子炉容器1内の液面H+からアニユラス部20aの
液面ト1よは−l二昇する。一般に、上皿1管現象によ
って上昇する高さは、表面張力による力と上がした部分
のf3fflのバランスによって決まるから、上昇づ°
る高さを1−1、表面張力をσ、冷却Hの密度をγ、管
の断面積をA、ぬれふら艮ざをS、冷却材と管の接触角
をθとすると、1」 −σCOSθS/Aγ で表わされる。いま冷nj材の表面張力をσ= 1.6
xlO’kgf/m 、接触角をθ=O℃、比重ffi
を7 = 830 k(1/ m’とし、細管として直
径1mmの円管を用いた場合、Hは約80mmどなる。
Next, the operation of the embodiment of the present invention constructed as above will be explained. Furnace wall protection device “20” provided according to the present invention
At this time, the coolant is sucked up by the upper plate one-tube phenomenon, and rises from the liquid level H+ in the reactor vessel 1 to the liquid level T1 or -l2 in the annulus portion 20a. In general, the height that rises due to the upper plate one tube phenomenon is determined by the balance between the force due to surface tension and f3ffl of the raised part, so the height of the rise is
If the height of the coolant is 1-1, the surface tension is σ, the density of the cooling H is γ, the cross-sectional area of the tube is A, the wettability is S, and the contact angle between the coolant and the tube is θ, then 1'' -σCOSθS /Aγ. Now the surface tension of the cold NJ material is σ = 1.6
xlO'kgf/m, contact angle θ=O℃, specific gravity ffi
If we assume that 7 = 830 k (1/m') and use a circular tube with a diameter of 1 mm as the thin tube, H will be approximately 80 mm.

金属ポーラス、金属ウールを用いた場合には、さらに液
面は上昇する。
If metal porous or metal wool is used, the liquid level will further rise.

ところで、アニユラス部20aの冷却材液面が上昇する
と、冷却材の熱伝導効果により原子炉容器1の炉壁は加
熱(原子炉起動時)又は冷IJ1(原子炉停止時)され
る。
By the way, when the coolant liquid level in the annulus portion 20a rises, the reactor wall of the reactor vessel 1 is heated (at reactor startup) or cold IJ1 (at reactor shutdown) due to the heat conduction effect of the coolant.

第4図は原子炉容器1の液面H+とアニユラス部20a
の液面H2の近傍から炉壁上端までのIIMl+方向温
度分布を示す線図で、(a>は原子炉起動時、(b、)
は原子炉停止時の代表的な温度分布である。
Figure 4 shows the liquid level H+ of the reactor vessel 1 and the annulus section 20a.
This is a diagram showing the temperature distribution in the IIMl+ direction from the vicinity of the liquid level H2 to the top of the reactor wall, where (a> is at reactor startup, (b,)
is a typical temperature distribution during reactor shutdown.

図中実線TaおよびTbは、本発明の炉壁保護装置20
を用いた場合の温度分布を、破線taおよびtbは、保
護装置20なしの温度分布を示づ゛。第4図より明らか
な通り、本発明の保度装(ろ′20を設置した場合は、
保護装置なしとくらべて原子炉起動時、原子炉停止共に
軸方向温度勾配の最大値が緩和されてJ3す、その結果
、熱応力・し軽減される。
Solid lines Ta and Tb in the figure indicate the furnace wall protection device 20 of the present invention.
The broken lines ta and tb show the temperature distribution when the protection device 20 is used. As is clear from FIG. 4, when the maintenance device (filter 20) of the present invention is installed,
Compared to a case without a protection device, the maximum value of the axial temperature gradient is reduced both when the reactor is started and when the reactor is stopped, and as a result, the thermal stress is reduced.

以上の実施例では、炉容器の炉壁保讃装置20として(
史用しlご場合を示したが本発明を炉心、L部1幾t!
’19の保RW装置20どして採用し、その周りにアニ
」、ラス部20aを設りICC会合J3いても、その効
果は大である。
In the above embodiment, as the furnace wall protection device 20 of the furnace vessel (
Although the present invention has been used in the past, the L part of the reactor core is 1 ton!
Even if it is adopted as the protection RW device 20 of 2019, and the last part 20a is installed around it, the effect will be great.

さらに本発明においては、例えば炉壁の液体ナト・リウ
ムと接している部分を外側からガス冷却するなどの他の
方法とを組み合ぼれば、その応力の緩fl効果により大
となる。
Furthermore, in the present invention, if other methods are combined, such as cooling the portion of the furnace wall that is in contact with liquid sodium/lium from the outside with gas, the stress relaxation fl effect will be greater.

[発明の効果] 以上述べたにうに本発明によれば、原子炉容器J5 、
j:び炉心上部数構の冷却材液面近傍に冷却材と通じる
アニユラス部を設け、このアニユラス部に毛細管現象(
こJ:り冷却材の液面を上昇させる物質を詰めた保’、
sr、装置r)を1ihえたことにより、原子炉起動1
1i’iや停止ヒ時に原子炉容器液面近傍に生ずる軸方
向’L:+A度勾配を軽減できるため、熱応力が低減で
きて原子炉容器の破10を防止できる。
[Effect of the invention] As described above, according to the present invention, the reactor vessel J5,
J: An annulus communicating with the coolant is provided near the coolant liquid level in several sections above the core, and this annulus is affected by capillary action (
J: Packed with a substance that raises the liquid level of the coolant,
sr, equipment r), the reactor startup 1
Since it is possible to reduce the axial direction 'L: +A degree gradient that occurs near the liquid level of the reactor vessel at the time of 1i'i or shutdown, thermal stress can be reduced and damage to the reactor vessel can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る液体余尺冷却型高速増殖炉の一実
施例を示ず縦断面図、第21剥jJ5 J:び第3図は
本発明に使用づる炉壁保’ilh 菰jNjのそれぞれ
異なる実施例を示す縦断面図、第4図(a)J5よび(
b)は原子炉の起動時J5よび停止時における炉容器の
軸方向の温度分布を示す特性図である。 1・・・原子炉容器 4・・・冷却材 7・・・遮蔽プラグ 8・・・カバーガス 20・・・炉容器保護装置 20a・・・アニユラス部 21・・・仕切板 22・・・微11Iな管群 23・・・穴 24・・・金属ポーラスもしくは金属ウール(7317
)代理人 弁理士 則 近 憲 佑(ばか1名) 第  1  図 第  2  図 第  3  図 ″
Fig. 1 is a vertical cross-sectional view showing an embodiment of a liquid-cooled fast breeder reactor according to the present invention; FIG. 4(a) is a vertical sectional view showing different embodiments of J5 and (
b) is a characteristic diagram showing the temperature distribution in the axial direction of the reactor vessel at the time of startup J5 and at the time of shutdown of the reactor. 1... Reactor vessel 4... Coolant 7... Shielding plug 8... Cover gas 20... Reactor vessel protection device 20a... Annulus portion 21... Partition plate 22... Micro 11I tube group 23...hole 24...metal porous or metal wool (7317
)Representative Patent Attorney Noriyuki Chika (one idiot) Figure 1 Figure 2 Figure 3 ″

Claims (3)

【特許請求の範囲】[Claims] (1)炉心および炉心を循環する冷却材等を収納する原
子炉容器および制御棒駆動機構等を支持する炉心上部機
構の液面近傍に仕切板でアニュラス部を形成し、その仕
切板の上端は液面上部に開放し、その下端は充分に冷却
材に浸る位置で炉容器に溶接し、かつアニュラス部を形
成する仕切板の冷却材に接している部分に穴をあけ、さ
らにアニュラス部には微細な管群を挿入した保護装置を
設けたことを特徴とする液体金属冷却型高速増殖炉。
(1) An annulus is formed with a partition plate near the liquid level of the reactor vessel that houses the reactor core and the coolant circulating in the core, and the upper core mechanism that supports the control rod drive mechanism, etc., and the upper end of the partition plate is It is open above the liquid level, its lower end is welded to the furnace vessel at a position where it is sufficiently immersed in the coolant, and a hole is made in the part of the partition plate that forms the annulus that is in contact with the coolant. A liquid metal cooled fast breeder reactor characterized by a protection device with a group of fine tubes inserted.
(2)保護装置のアニュラス部に金属ポーラスを詰めた
ことを特徴とする特許請求の範囲第1項記載の液体金属
冷却型高速増殖炉。
(2) A liquid metal cooled fast breeder reactor according to claim 1, characterized in that the annulus portion of the protection device is filled with metal porous material.
(3)保護装置のアニュラス部に金属ウールを詰めたこ
とを特徴とする特許請求の範囲第1項記載の液体金属冷
却型高速増殖炉。
(3) The liquid metal cooled fast breeder reactor according to claim 1, wherein the annulus portion of the protection device is filled with metal wool.
JP59168797A 1984-08-14 1984-08-14 Liquid-metal cooling type fast breeder reactor Pending JPS6147581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59168797A JPS6147581A (en) 1984-08-14 1984-08-14 Liquid-metal cooling type fast breeder reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59168797A JPS6147581A (en) 1984-08-14 1984-08-14 Liquid-metal cooling type fast breeder reactor

Publications (1)

Publication Number Publication Date
JPS6147581A true JPS6147581A (en) 1986-03-08

Family

ID=15874650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59168797A Pending JPS6147581A (en) 1984-08-14 1984-08-14 Liquid-metal cooling type fast breeder reactor

Country Status (1)

Country Link
JP (1) JPS6147581A (en)

Similar Documents

Publication Publication Date Title
KR100597722B1 (en) Stable and passive decay heat removal system for liquid metal reator
KR100935089B1 (en) Passive safety-grade decay heat removal system from a sodium freezing issue at the intermediate heat removal sodium loop
JPS6147581A (en) Liquid-metal cooling type fast breeder reactor
JP2003139881A (en) Reactor cooled with supercritical pressure water, channel box, water rod and fuel assembly
JPH01174897A (en) Heat pipe
US4676947A (en) Device for thermal protection of a component of a fast-neutron nuclear reactor
JPS6046483A (en) Protective device for container of nuclear reactor
JPS59163588A (en) Protection device for reactor container
JPH0332037B2 (en)
JPS6130237B2 (en)
JP2000121774A (en) Reactor vessel structure for fast reactor
JPS58127199A (en) Emergency reactor cooling system
JP3126550B2 (en) Reactor vessel wall cooling mechanism
JPS61792A (en) Nuclear reactor loof slab
JPS5811892A (en) Reactor container
JPS6125114B2 (en)
JPS61209388A (en) Nuclear reactor structure
JPS6129789A (en) Tank type fast breeder reactor
JPH0735882A (en) Liquid metal cooled fast reactor
JPS59108983A (en) Thermal shield layer structure
JPS58171698A (en) Liquid metal cooled fast reactor
JPS6170486A (en) Fast breeder reactor
JPH0224480B2 (en)
JPS58191994A (en) Over flow pump-up system for reactor
JPS61180190A (en) Heat shielding device for fast breeder reactor