JPS6125114B2 - - Google Patents

Info

Publication number
JPS6125114B2
JPS6125114B2 JP53067283A JP6728378A JPS6125114B2 JP S6125114 B2 JPS6125114 B2 JP S6125114B2 JP 53067283 A JP53067283 A JP 53067283A JP 6728378 A JP6728378 A JP 6728378A JP S6125114 B2 JPS6125114 B2 JP S6125114B2
Authority
JP
Japan
Prior art keywords
reactor
reactor vessel
coolant
liquid level
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53067283A
Other languages
Japanese (ja)
Other versions
JPS54159581A (en
Inventor
Sho Imayoshi
Mutsuhiko Hayano
Fumio Kudo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Atomic Power Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Atomic Power Industries Inc filed Critical Mitsubishi Atomic Power Industries Inc
Priority to JP6728378A priority Critical patent/JPS54159581A/en
Publication of JPS54159581A publication Critical patent/JPS54159581A/en
Publication of JPS6125114B2 publication Critical patent/JPS6125114B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 本発明は高速増殖炉に関し、特に炉容器周囲の
雰囲気を空気調和装置により所定の比較的低い温
度に維持するようにされる、冷却材の自由液面を
有する高速増殖炉に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fast breeder reactor, and more particularly to a fast breeder reactor having a free liquid level of coolant, in which the atmosphere around the reactor vessel is maintained at a predetermined relatively low temperature by means of an air conditioner. It is related to furnaces.

高速増殖炉の炉容器は500℃を越える高温で使
用されるので、クリープを伴う熱被労強度が問題
になる。特に冷却材液面が自由液面である原子炉
の炉容器に於ては、液面下の炉容器壁は液体金属
冷却材に接しているため熱伝達が良く、炉容器壁
温度は冷却材温度の変化に短時間の遅れだけで追
従するが、冷却材流面上はカバーガスの充填され
たガス空間であるため熱伝達が悪く、炉容器壁温
度の冷却材温度変化への追従が大きな遅れを持つ
ことになる。従つて一般に冷却材温度が変化する
と、冷却材液面近傍の炉容器壁に大きな熱応力が
発生する。
Since the reactor vessel of a fast breeder reactor is used at high temperatures exceeding 500°C, thermal stress associated with creep becomes a problem. In particular, in the reactor vessel of a nuclear reactor where the coolant liquid level is a free liquid level, heat transfer is good because the reactor vessel wall below the liquid level is in contact with the liquid metal coolant, and the temperature of the reactor vessel wall is lower than that of the coolant. It follows temperature changes with only a short delay, but since the coolant flow surface is a gas space filled with cover gas, heat transfer is poor, and the furnace vessel wall temperature follows changes in coolant temperature to a large extent. There will be delays. Therefore, in general, when the coolant temperature changes, a large thermal stress is generated in the wall of the furnace vessel near the coolant liquid level.

この熱応力は原子炉のスクラム時に特に大きく
なる。即ち、スクラム時には冷却材温度が急激に
低下して、炉容器壁の接液部温度も僅かな時間だ
け遅れて追従降下するが、炉容器壁の接ガス部温
度降下の遅れと冷却材の温度降下による体積収縮
とが主な原因となつて、冷却材液面近傍の炉容器
壁に大きな温度勾配が生じ、高い熱応力が発生す
る。
This thermal stress becomes particularly large during a nuclear reactor scram. In other words, during a scram, the coolant temperature drops rapidly, and the temperature of the part of the reactor vessel wall in contact with the liquid drops with a slight delay, but the delay in the temperature drop of the part of the reactor vessel wall in contact with the gas and the temperature of the coolant Volumetric contraction due to the drop is the main cause, creating a large temperature gradient on the wall of the reactor vessel near the coolant liquid level, generating high thermal stress.

このような大きな熱応力の発生を防ぐために
は、通常運転時の応力レベルを下げておく方法と
して、炉容器壁面を常時冷却して炉容器壁の使用
温度を下げて保護する方法およびガス空間を長く
取り通常運転時の温度勾配を小さくしておく方法
がある。しかしながら、冷却する方法の場合には
炉心冷却流量の外に多量の冷却流量を確保する無
駄が生じ、またガス空間を長くする方法の場合に
は炉容器自体が長くなり高価になる。更に、炉容
器壁を強制冷却することも提案されているが、こ
の場合にはこの強制冷却を原子炉冷却材の状態と
連動して行なう必要があり、合理的なものが考え
られていない。
In order to prevent the occurrence of such large thermal stress, there are two ways to lower the stress level during normal operation: to constantly cool the furnace vessel wall to lower its operating temperature, and to protect the gas space. There is a way to keep the temperature gradient small during normal operation by taking a long time. However, in the case of the cooling method, there is a waste of securing a large amount of cooling flow in addition to the core cooling flow, and in the case of the method of lengthening the gas space, the reactor vessel itself becomes long and expensive. Furthermore, forced cooling of the reactor vessel wall has been proposed, but in this case, this forced cooling must be performed in conjunction with the condition of the reactor coolant, and no rational solution has been considered.

従つて本発明の目的は、冷却材温度変化により
炉容器壁に発生する熱応力を簡単な構造により効
果的に軽減した高速増殖炉を提供することであ
る。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a fast breeder reactor in which the thermal stress generated in the wall of the reactor vessel due to changes in coolant temperature is effectively reduced by a simple structure.

次に添附図面に示す本発明の一実施例に沿つて
本発明を説明する。
Next, the present invention will be explained along with an embodiment of the present invention shown in the accompanying drawings.

第1図は、本発明の高速増殖炉の本発明に関連
する部分の断面図である。図示してない部分は周
知の高速増殖炉と同じである。第1図に於て、本
発明の高速増殖炉は、炉容器1と、炉容器1の上
部に設けられた遮蔽プラグ2と、炉容器1を囲み
かつ支持する遮蔽コンクリート構造体3とを備え
ている。炉容器1の内面近傍には、熱衝撃を緩和
するための熱遮蔽板4が取付られている。ナトリ
ウム等の液体金属冷却材の液面5は自由液面であ
り、冷却材液面5の下方の炉容器内表面は接液部
となり、冷却材液面5の上方の空間にはカバーガ
スが封入されているのでこの空間に面する炉容器
内表面は接ガス部となつている。
FIG. 1 is a sectional view of a portion of the fast breeder reactor of the present invention related to the present invention. Portions not shown are the same as well-known fast breeder reactors. In FIG. 1, the fast breeder reactor of the present invention includes a reactor vessel 1, a shielding plug 2 provided at the top of the reactor vessel 1, and a shielding concrete structure 3 surrounding and supporting the reactor vessel 1. ing. A heat shield plate 4 is attached near the inner surface of the furnace vessel 1 to alleviate thermal shock. The liquid level 5 of a liquid metal coolant such as sodium is a free liquid level, the inner surface of the reactor vessel below the coolant liquid level 5 becomes a wetted part, and the space above the coolant liquid level 5 has a cover gas. Since it is sealed, the inner surface of the furnace vessel facing this space is in contact with the gas.

炉容器1は、上端開口部のフランジを遮蔽コン
クリート構造体3のペデスタル6上に設けられた
ソールプレート7上に置くことにより、遮蔽コン
クリート構造体3内に据付られている。炉容器1
の外表面と遮蔽コンクリート構造体3との間の空
間8内には、周知の如く、ポンプ9および熱交換
器10を含む空気調和装置11により50℃乃至60
℃の比較的低温に保たれた雰囲気が充填されてい
る。空気調和装置11からの低温雰囲気はノズル
12から空間8内に供給され、図示してない適当
な装置により排気循環される。
The furnace vessel 1 is installed in the shielding concrete structure 3 by placing the flange of the upper end opening on a sole plate 7 provided on the pedestal 6 of the shielding concrete structure 3. Furnace vessel 1
The space 8 between the outer surface of the shielding concrete structure 3 and the shielding concrete structure 3 is heated to a temperature of 50°C to 60°C by an air conditioner 11 including a pump 9 and a heat exchanger 10, as is well known.
The atmosphere is kept at a relatively low temperature of ℃. The low-temperature atmosphere from the air conditioner 11 is supplied into the space 8 through the nozzle 12, and is exhausted and circulated by an appropriate device (not shown).

ノズル12と空気調和装置11との間の導管1
3の適当な箇所からは配管14が延びている。配
管14の先端は、環状閉塞体15の外周下部に設
けられた環状のヘツダ16に連通している。ヘツ
ダ16からは環状閉塞体15の下部を通り炉容器
1の外表面の冷却材液面下方に直接接触する流路
17が延びている。この流路17は、第1図に示
す原子炉の運転状態に於ては、環状閉塞体の突出
した内周面18と炉容器1の外表面とが密着して
いるために閉塞されている。内周面18の上方に
は、炉容器1の外表面と環状閉塞体15との間に
環状の空間19が形成され、この空間19は環状
閉塞体15の上端を越えて低温雰囲気で満された
空間8に連通している。要約すると、空気調和装
置11からの導管13、配管14、ヘツダ16、
流路17および空間19が空気調和装置11から
の低温雰囲気を原子炉の冷却材液面近傍の炉容器
外表面に直接供給する流路20を構成しているの
である。
Conduit 1 between nozzle 12 and air conditioner 11
A pipe 14 extends from an appropriate location of 3. The tip of the pipe 14 communicates with an annular header 16 provided at the lower part of the outer periphery of the annular closure body 15 . A flow path 17 extends from the header 16 through the lower part of the annular closure 15 and comes into direct contact with the lower part of the coolant liquid level on the outer surface of the furnace vessel 1 . In the operating state of the reactor shown in FIG. 1, this flow path 17 is closed because the protruding inner circumferential surface 18 of the annular closure body and the outer surface of the reactor vessel 1 are in close contact. . Above the inner peripheral surface 18, an annular space 19 is formed between the outer surface of the furnace vessel 1 and the annular closure 15, and this space 19 is filled with a low temperature atmosphere beyond the upper end of the annular closure 15. It communicates with space 8. To summarize, the conduit 13 from the air conditioner 11, the piping 14, the header 16,
The flow path 17 and the space 19 constitute a flow path 20 that directly supplies the low temperature atmosphere from the air conditioner 11 to the outer surface of the reactor vessel near the coolant liquid level of the reactor.

環状閉塞体15は、第2図にその一部を示す如
く、全体として環状となる複数の区画により構成
すると、製作および据付が容易であるので望まし
い。即ち、各区画は第1図の断面図に示す如く内
部に断熱材21を充填した中空の略々箱形ステン
レス鋼製の部材であり、その炉容器1に面する面
の下部に、他の部分から突出した内周面18を備
えている。内周面18は炉容器1の熱膨張率と
略々等しい熱膨張率を有し、比較的大きな所定熱
容量を有するステンレス鋼等の中実ブロツク22
の一表面である。環状閉塞体15の各区画には、
互いに結合して一体の環状体を形成するために、
ボルト穴23を有するフランジ24ならびにほぞ
25およびほぞ穴26が設けられ、また当て板2
7も設けられている。環状閉塞体15は、炉容器
1の外表面に設けられている断熱材28上に置か
れ、適当な固着装置により遮蔽コンクリート構造
体3により固定支持されている。
It is preferable that the annular closure body 15 is composed of a plurality of sections having an annular shape as a whole, as partially shown in FIG. 2, because manufacturing and installation are easy. That is, each compartment is a hollow, approximately box-shaped stainless steel member filled with a heat insulating material 21, as shown in the cross-sectional view of FIG. It has an inner circumferential surface 18 protruding from the portion. The inner circumferential surface 18 is made of a solid block 22 of stainless steel or the like having a coefficient of thermal expansion approximately equal to the coefficient of thermal expansion of the furnace vessel 1 and having a relatively large predetermined heat capacity.
This is one side of the story. In each section of the annular closure body 15,
to combine with each other to form an integral annular body.
A flange 24 with bolt holes 23 and tenons 25 and mortises 26 are provided, and a caul plate 2
7 is also provided. The annular closure 15 rests on a heat insulating material 28 provided on the outer surface of the furnace vessel 1 and is fixedly supported by the shielding concrete structure 3 by means of suitable fastening devices.

環状閉塞体15は、流路20内に突出して原子
路運転時に冷却材液面5よりも下方の炉容器外表
面に接触する内周面18を備え、ブロツク22が
炉容器1と略々等しい熱膨張率と所定の熱容量と
を有しており、環状閉塞体15は炉容器1の外部
の構造体により支持されている。従つて、原子炉
の通常運転時には、流路20は環状閉塞体15に
より閉塞され、空気調和装置11からの低温雰囲
気は炉容器1を不必要に冷却しない。一方、原子
路の運転状態が変化して冷却材温度が急激に変化
する場合には、冷却材の温度およびレベルの急激
かつ大きな変化により、冷却材液面近傍の炉容器
壁に大きな熱勾配が現われ、大きな熱応力が発生
する。
The annular closure body 15 has an inner circumferential surface 18 that protrudes into the flow path 20 and comes into contact with the outer surface of the reactor vessel below the coolant liquid level 5 during nuclear path operation, and the block 22 is approximately equal to the reactor vessel 1. It has a coefficient of thermal expansion and a predetermined heat capacity, and the annular closure 15 is supported by a structure outside the furnace vessel 1 . Therefore, during normal operation of the nuclear reactor, the flow path 20 is closed by the annular closure 15, and the low temperature atmosphere from the air conditioner 11 does not cool the reactor vessel 1 unnecessarily. On the other hand, when the operating conditions of the nuclear path change and the coolant temperature changes rapidly, the sudden and large change in coolant temperature and level creates a large thermal gradient on the reactor vessel wall near the coolant liquid level. appears and large thermal stress occurs.

例えば原子炉スクラム時に発生する熱勾配を第
3図のグラフに示す。このグラフに於て、通常運
転時には、炉容器1内には冷却材が冷却材液面5
まで満されている。このとき炉容器1の冷却材液
面5の下方の器壁は冷却材の温度と略々同じ529
℃であつて略々一様である。冷却材液面5の上方
の器壁の温度は、冷却材液面5から上方に離れる
に従つて温度が低くなる。このような通常運転時
の炉容器1の器壁の温度分布を第3図の実線の曲
線30で表わす。
For example, the thermal gradient that occurs during a nuclear reactor scram is shown in the graph of FIG. In this graph, during normal operation, the coolant in the reactor vessel 1 is at a coolant liquid level of 5.
It's filled to the brim. At this time, the temperature of the vessel wall below the coolant liquid level 5 of the furnace vessel 1 is approximately the same as the coolant temperature 529
℃ and is approximately uniform. The temperature of the vessel wall above the coolant liquid level 5 becomes lower as it moves upward away from the coolant liquid level 5. The temperature distribution on the wall of the furnace vessel 1 during such normal operation is represented by a solid curve 30 in FIG.

このような状態に在る高速増殖炉がスクラムさ
れると、第4図に示す如く冷却材温度はスクラム
後約50秒で約430℃となり、約6時間後には180℃
になり、同時に温度降下による体積収縮をしてレ
ベル変動ΔLが起こり、液面は冷却材液面29に
降下する。従つて冷却材液面29の下方の炉容器
1の器壁も約180℃という低温度になる。
When a fast breeder reactor in such a state is scrammed, the coolant temperature reaches about 430°C in about 50 seconds after the scram, and 180°C after about 6 hours, as shown in Figure 4.
At the same time, volume shrinks due to temperature drop, level fluctuation ΔL occurs, and the liquid level drops to the coolant liquid level 29. Therefore, the wall of the furnace vessel 1 below the coolant liquid level 29 also has a low temperature of about 180°C.

しかしながら、従来の熱応力対策を施してない
高速増殖炉に於ては、先に説明した通り冷却材液
面5上方の炉容器1の器壁はカバーガスに接して
いるため通常運転時の温度がなかなか降下せず、
冷却材液面5の位置では約6時間後でも約450℃
にしか降下せず、スクラム後の冷却材液面29の
位置(約180℃)との間に大きな熱勾配が発生す
る。この状態を第3図の破線の曲線31により示
す。
However, in fast breeder reactors that do not have conventional thermal stress countermeasures, the wall of the reactor vessel 1 above the coolant liquid level 5 is in contact with the cover gas, so the temperature during normal operation is low. does not descend easily,
At the position of coolant liquid level 5, the temperature is about 450℃ even after about 6 hours.
This causes a large thermal gradient between the coolant liquid level 29 after the scram (approximately 180° C.) and the position of the coolant liquid level 29 after the scram. This state is shown by the dashed curve 31 in FIG.

一方、本発明の環状閉塞体15を備えた高速増
殖炉に於ては、スクラム後冷却材温度が約180℃
まで低下すると、冷却材液面29下方の炉容器1
の器壁部分も温度が低下し、炉容器1のこの部分
の直径が収縮する。このため、支持構造体に支持
され所定の熱容量を有する環状閉塞体15の内周
面18と炉容器外表面との間に間隙が生じて空気
調和装置11からの低温雰囲気を炉容器外表面に
供給する流路20が開かれる。従つて、低温雰囲
気は配管14、ヘツダ16、炉容器1と内周面1
8との間の間隙、空間19を流れて空間8に至
り、炉容器1の冷却材液面近傍、即ちスクラム後
の冷却材液面29上方の部分を含む冷却材液面5
の近傍の炉容器1の器壁部分を冷却する。従つ
て、第3図の破線31で示す従来のものの温度分
布は、一点鎖線32で示す如くピークが約300℃
以下に低くなり、温度勾配の小さくなつた曲線と
なる。よつて炉容器1に発生する熱応力は従来の
ものに較べて極めて小さい。
On the other hand, in a fast breeder reactor equipped with the annular closure body 15 of the present invention, the coolant temperature after scram is approximately 180°C.
When the temperature decreases to 1, the furnace vessel 1 below the coolant liquid level 29
The temperature of the vessel wall portion also decreases, and the diameter of this portion of the furnace vessel 1 contracts. Therefore, a gap is created between the inner circumferential surface 18 of the annular closure body 15, which is supported by the support structure and has a predetermined heat capacity, and the outer surface of the furnace vessel, and the low temperature atmosphere from the air conditioner 11 is transferred to the outer surface of the furnace vessel. The supply channel 20 is opened. Therefore, the low-temperature atmosphere exists in the pipe 14, header 16, furnace vessel 1, and inner peripheral surface 1.
The coolant liquid level 5 flows through the space 19 between the reactor vessel 8 and the coolant liquid level 5, which includes the vicinity of the coolant liquid level in the reactor vessel 1, that is, the portion above the coolant liquid level 29 after scram.
The wall portion of the furnace vessel 1 in the vicinity of is cooled. Therefore, the temperature distribution of the conventional device shown by the broken line 31 in FIG. 3 has a peak of about 300°C as shown by the dashed line 32.
It becomes a curve with a smaller temperature gradient. Therefore, the thermal stress generated in the furnace vessel 1 is extremely small compared to the conventional one.

低温雰囲気による冷却は、炉容器1と環状閉塞
体15との間の温度差が小さくなるとそれらの間
の間隙が閉ざされるので停止される。
Cooling by the low-temperature atmosphere is stopped when the temperature difference between the furnace vessel 1 and the annular closure 15 becomes smaller, since the gap between them is closed.

以上の説明から明らかな如く、本発明の高速増
殖炉は、簡単な構成により、冷却材温度の変化に
よる炉容器への熱応力の発生を効果的に軽減でき
るものである。
As is clear from the above description, the fast breeder reactor of the present invention has a simple configuration and can effectively reduce the occurrence of thermal stress on the reactor vessel due to changes in coolant temperature.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の高速増殖炉の部分断面図、第
2図は第1図に示す環状閉塞体の斜視図、第3図
は炉容器壁温度分布を示すグラフ、第4図はスク
ラム後の冷却材温度の変化を示すグラフである。 1……炉容器、5……冷却材液面、15……環
状閉塞体、18……内周面、20……流路。
Figure 1 is a partial sectional view of the fast breeder reactor of the present invention, Figure 2 is a perspective view of the annular closure shown in Figure 1, Figure 3 is a graph showing the temperature distribution on the wall of the reactor vessel, and Figure 4 is after scram. 3 is a graph showing changes in coolant temperature of FIG. DESCRIPTION OF SYMBOLS 1... Furnace vessel, 5... Coolant liquid level, 15... Annular closure body, 18... Inner peripheral surface, 20... Channel.

Claims (1)

【特許請求の範囲】 1 原子炉容器周囲の雰囲気を空気調和装置によ
り所定の比較的低い温度に維持するようにされ、
冷却材の自由液面を有する高速増殖炉に於て、 上記空気調和装置からの低温雰囲気を冷却材液
面近傍の上記炉容器外表面に直接供給する流路
と、 上記流路内に突出して原子炉運転時に冷却材液
面下方の上記炉容器外表面に接触する内周面を持
ち、上記炉容器と略々等しい熱膨張率および所定
の熱容量を有し、原子炉運転時上記炉容器外表面
に上記内周面が直接接触して上記流路を閉じ、原
子路停止時上記炉容器の熱収縮にも拘らず実質的
に元の位置に留まつて上記流路を開く環状閉塞体
とを備えたことを特徴とする高速増殖炉。
[Claims] 1. The atmosphere around the reactor vessel is maintained at a predetermined relatively low temperature by an air conditioner,
In a fast breeder reactor having a free liquid surface of coolant, a flow path that directly supplies the low temperature atmosphere from the air conditioner to the outer surface of the reactor vessel near the coolant liquid surface, and a flow path that protrudes into the flow path. It has an inner circumferential surface that comes into contact with the outer surface of the reactor vessel below the coolant liquid level during reactor operation, has a coefficient of thermal expansion approximately equal to that of the reactor vessel, and has a predetermined heat capacity, an annular closure whose surface the inner peripheral surface directly contacts to close the flow passage, and which substantially remains in its original position to open the flow passage despite thermal contraction of the reactor vessel when the nuclear path is shut down; A fast breeder reactor characterized by being equipped with.
JP6728378A 1978-06-06 1978-06-06 Fast breeder type nuclear reactor Granted JPS54159581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6728378A JPS54159581A (en) 1978-06-06 1978-06-06 Fast breeder type nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6728378A JPS54159581A (en) 1978-06-06 1978-06-06 Fast breeder type nuclear reactor

Publications (2)

Publication Number Publication Date
JPS54159581A JPS54159581A (en) 1979-12-17
JPS6125114B2 true JPS6125114B2 (en) 1986-06-13

Family

ID=13340483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6728378A Granted JPS54159581A (en) 1978-06-06 1978-06-06 Fast breeder type nuclear reactor

Country Status (1)

Country Link
JP (1) JPS54159581A (en)

Also Published As

Publication number Publication date
JPS54159581A (en) 1979-12-17

Similar Documents

Publication Publication Date Title
US3930939A (en) Pressure suppression system for a nuclear reactor
KR20050071735A (en) Stable and passive decay heat removal system for liquid metal reator
JP3150451B2 (en) Reactor equipment
JPS6125114B2 (en)
JP3160476B2 (en) Reactor core debris cooling system
JPH0119118Y2 (en)
JP3110901B2 (en) Fast breeder reactor
JPH0131995Y2 (en)
JPS60205278A (en) Fast breeder reactor
US4676947A (en) Device for thermal protection of a component of a fast-neutron nuclear reactor
JPS60238788A (en) Liquid metal cooling type nuclear reactor
JPH0442800Y2 (en)
JPH06235787A (en) Fast breeder reactor
JPS6147581A (en) Liquid-metal cooling type fast breeder reactor
JPS6129790A (en) Tank type fast breeder reactor
JPH0224480B2 (en)
JPH0530237B2 (en)
JPH023158B2 (en)
JPH03257398A (en) Tank type fast breeder reactor
JPS62297785A (en) Roof slab
JPH03179295A (en) Protective structure of reactor vessel against heat
JPH1114781A (en) Reactor vessel wall cooling mechanism
JPS6331753B2 (en)
JPS6174987A (en) Bellows piping device
JPS627517B2 (en)