JPH0442800Y2 - - Google Patents

Info

Publication number
JPH0442800Y2
JPH0442800Y2 JP1982183706U JP18370682U JPH0442800Y2 JP H0442800 Y2 JPH0442800 Y2 JP H0442800Y2 JP 1982183706 U JP1982183706 U JP 1982183706U JP 18370682 U JP18370682 U JP 18370682U JP H0442800 Y2 JPH0442800 Y2 JP H0442800Y2
Authority
JP
Japan
Prior art keywords
standpipe
temperature
temperature gas
intervals
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982183706U
Other languages
Japanese (ja)
Other versions
JPS5987697U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1982183706U priority Critical patent/JPS5987697U/en
Publication of JPS5987697U publication Critical patent/JPS5987697U/en
Application granted granted Critical
Publication of JPH0442800Y2 publication Critical patent/JPH0442800Y2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Thermal Insulation (AREA)

Description

【考案の詳細な説明】 この考案は断熱装置に係り、特に高温ガス炉に
実施すると効果的な断熱されたスタンドパイプの
構造に関する。
[Detailed Description of the Invention] This invention relates to an insulating device, and particularly to the structure of an insulated standpipe that is effective when implemented in a high-temperature gas furnace.

この内部に高温ガスを収容または内部に受け入
れたガスを高温にする高温容器の一例として高温
ガス炉がある。高温ガス炉は他の原子炉では得ら
れない800℃以上の高い温度が得られるため、原
子力製鉄を始めとして発生した熱を発電所以外に
も多目的に使用することが期待されている。一
方、高温ガス炉は原子炉内で発生した熱を高温で
取り出すため、燃料の溶融の防止、冷却材の特性
の劣化防止等の対策はもとより、原子炉と外部と
の断熱もきわめて重要な問題である。
A high-temperature gas furnace is an example of a high-temperature container that stores high-temperature gas therein or heats the gas received therein to a high temperature. High-temperature gas reactors can reach temperatures above 800°C that cannot be obtained with other nuclear reactors, so it is expected that the heat generated will be used for many purposes other than power plants, including nuclear steel manufacturing. On the other hand, high-temperature gas reactors extract heat generated within the reactor at high temperatures, so in addition to measures such as preventing melting of fuel and preventing deterioration of coolant properties, insulation between the reactor and the outside is an extremely important issue. It is.

この高温ガス炉の一例を部分切り欠きした全体
図を第5図に示す。第1図は第5図のA部として
示す高温ガス炉の上部構造を示す。図において、
符号1はスタンドパイプと称する筒状体であり、
一端は原子炉圧力容器の上鏡2に接続している。
他方は圧力容器保温材8を挿通して一次遮蔽体5
内に配置される。スタンドパイプ1の内部にはさ
らに別の遮蔽体6が形成配置してあり、この遮蔽
体6を介して冷却材の流量を調節するオリフイス
駆動装置3、制御棒を駆動する装置4が配置して
ある。図中符号9は制御棒案内管、7は案内管9
を支持する支持板である。つまり現在のスタンド
パイプ1の構造においては支持板7と遮蔽体6の
間は空間となつており、原子炉側の熱の相当量が
オリフイス駆動装置3等の機器側に伝達される虞
れがある。
FIG. 5 shows an overall partially cutaway view of an example of this high-temperature gas furnace. FIG. 1 shows the upper structure of the high temperature gas furnace shown as section A in FIG. In the figure,
Reference numeral 1 is a cylindrical body called a standpipe,
One end is connected to the upper mirror 2 of the reactor pressure vessel.
The other side is inserted through the pressure vessel heat insulating material 8 and connected to the primary shield 5.
placed within. Another shield 6 is formed and arranged inside the standpipe 1, and an orifice drive device 3 for regulating the flow rate of the coolant and a device 4 for driving the control rod are arranged through this shield 6. be. In the figure, reference numeral 9 is a control rod guide tube, and 7 is a guide tube 9.
This is a support plate that supports. In other words, in the current structure of the standpipe 1, there is a space between the support plate 7 and the shield 6, and there is a risk that a considerable amount of heat from the reactor side will be transferred to the equipment side such as the orifice drive device 3. be.

第2図は伝熱状態の概略を示すものであり、ス
タンドパイプ1の外周部と一次遮蔽体5との間に
形成した空間部には約40℃の換気用空気Aが流動
下降しておりスタンドパイプ1を冷却している。
一方圧力容器保温材8の下部空間は原子炉から発
生する熱により約400℃に加熱されている。この
ためスタンドパイプ1内には矢印Bで示す如く対
流現象が生じ、遮蔽体6側に相当多量の熱が伝達
される。このため、前記オリフイス駆動装置3及
び制御棒駆動装置4を配置した空間の温度も80〜
100℃程度にまで上昇してしまうことがある。こ
こで、これら各種機器を配置した部分の温度は低
くしておくことが必要であり、通常、機器が正常
に作動するためには約60℃以下に保持しておくこ
とが必要である。このため、前記の如く温度が80
℃以上にも上昇すると機器の作動不良や故障の虞
れが生じスタンドパイプ下部空間の断熱が要望さ
れている。
Figure 2 shows an outline of the heat transfer state, in which ventilation air A at about 40°C flows down into the space formed between the outer periphery of the standpipe 1 and the primary shield 5. Standpipe 1 is being cooled.
On the other hand, the space below the pressure vessel heat insulating material 8 is heated to about 400° C. by heat generated from the nuclear reactor. Therefore, a convection phenomenon occurs in the standpipe 1 as shown by arrow B, and a considerable amount of heat is transferred to the shield 6 side. For this reason, the temperature of the space in which the orifice drive device 3 and the control rod drive device 4 are arranged also ranges from 80 to 80°C.
Temperatures can rise to around 100℃. Here, it is necessary to keep the temperature of the parts where these various devices are arranged low, and usually it is necessary to keep it at about 60°C or less in order for the devices to operate normally. Therefore, as mentioned above, the temperature is 80
If the temperature rises above ℃, there is a risk of equipment malfunction or failure, and insulation of the space below the standpipe is required.

スタンドパイプの断熱方法としては、セラミツ
クフアイバ等のフアイバ系断熱材の使用が考えら
れるが、これらの断熱材は圧縮しても気孔率が90
%以上あり、熱伝達率はこの空間部を占めるヘリ
ウムガスとあまり相違がなく断熱効果は乏しい。
また断熱材料の粉化等により一次冷却材中にダス
トが混入する虞れもある。
As a method of insulating the standpipe, it is possible to use fiber-based insulation materials such as ceramic fiber, but these insulation materials have a porosity of 90% even when compressed.
% or more, the heat transfer coefficient is not much different from that of the helium gas occupying this space, and the heat insulation effect is poor.
There is also a risk that dust may be mixed into the primary coolant due to powdering of the heat insulating material.

この考案の目的は上述した問題点を除去しスタ
ンドパイプ内の温度の上昇を効果的に防止できる
断熱装置を提供することにある。
The purpose of this invention is to provide a heat insulating device that can eliminate the above-mentioned problems and effectively prevent a rise in temperature within the standpipe.

要するにこの考案は、その内部に制御棒案内管
を有する高温ガス炉のスタンドパイプにおいて、
該スタンドパイプの内部にその軸心を横断する複
数の遮蔽板を水平に設け、さらにこれら遮蔽板の
間隔は、スタンドパイプの温度勾配が大きい部分
ではその間隔を密にし、その温度勾配が小さい部
分ではその間隔を粗にするようにした高温ガス炉
の断熱されたスタンドパイプであることを特徴と
する。
In short, this idea is based on the stand pipe of a high temperature gas reactor that has a control rod guide tube inside.
A plurality of shielding plates are installed horizontally inside the standpipe to cross its axis, and the intervals between these shielding plates are set close in areas of the standpipe where the temperature gradient is large, and in areas where the temperature gradient is small. This is characterized by an insulated standpipe for a high-temperature gas furnace whose spacing is coarse.

以下この考案の実施例を図面により説明する。 Examples of this invention will be described below with reference to the drawings.

第3図において、スタンドパイプ1のうち遮蔽
体6と支持板7との間のスタンドパイプ下部空間
に対しては、ステンレス等の遮蔽板たる金属板1
1が、一定の空間を介して複数段水平に配置して
ある。この金属板11は下部空間内に直接設置す
る外、下部空間内に形成配置したケース10内に
設置し、これら金属板11とケース10とをユニ
ツト化しておいてもよい。
In FIG. 3, for the lower space of the standpipe 1 between the shielding body 6 and the support plate 7, a metal plate 1, which is a shielding plate made of stainless steel, etc.
1 are arranged horizontally in multiple stages with a certain space between them. The metal plate 11 may be installed directly in the lower space, or may be installed in a case 10 formed and arranged in the lower space, and the metal plate 11 and the case 10 may be made into a unit.

次に各金属板間の距離の設定につき説明する。 Next, the setting of the distance between each metal plate will be explained.

ここで、下部には加熱用の、上部には冷却用の
二枚の平板を平行に配置した場合を想定すると
Gr・Pr<1700であれば自然対流が発生しないこ
とが確認されている。ここでGrはグラフホフ数
を示し、グラフホフ数は次式に示す関係を有す
る。
Here, suppose that two flat plates are placed in parallel, one for heating at the bottom and one for cooling at the top.
It has been confirmed that natural convection does not occur if Gr・Pr<1700. Here, Gr represents the Grafhoff number, and the Grafhoff number has the relationship shown in the following equation.

Gr=S3gβ(T1−T2)/r2 Pr:プラントル指数 S :平板間の距離 g :動力加速度 β :流体の熱膨張率 T1:下板の温度 T2:上板の温度 r :流体の動粘性係数 以上に示した条件からS≒20mmとすれば自然対
流を防止することができる。また平板(金属板)
の厚さは約0.1mmの薄板で十分である。符号12
は呼吸孔であり、ケース10内の気体を逃し、一
次冷却材により外圧が加わるのを防止する。
Gr=S 3 gβ (T 1 − T 2 )/r 2 Pr: Prandtl index S: Distance between plates g: Power acceleration β: Coefficient of thermal expansion of fluid T 1 : Temperature of lower plate T 2 : Temperature of upper plate r: Kinematic viscosity coefficient of fluid Based on the conditions shown above, if S≒20 mm, natural convection can be prevented. Also flat plate (metal plate)
A thin plate with a thickness of about 0.1 mm is sufficient. code 12
is a breathing hole, which allows gas inside the case 10 to escape and prevents external pressure from being applied by the primary coolant.

第4図は別の実施例を示す。スタンドパイプ1
において、圧力容器保温材8の近傍ではスタンド
パイプ軸方向の温度勾配が大きく、他の部分では
比較的小さい。つまり温度勾配の大きな部分にお
いて特に熱伝達量が大きくなるため、この部分の
金属板の配置密度を高めると共に他の部分の配置
密度を減少させ、全体として断熱能力を低下させ
ることなく金属板の配置枚数を減少させるように
構成したものである。
FIG. 4 shows another embodiment. stand pipe 1
In this case, the temperature gradient in the standpipe axial direction is large near the pressure vessel heat insulating material 8, and is relatively small in other parts. In other words, the amount of heat transfer is particularly large in areas with large temperature gradients, so the arrangement density of metal plates in these areas is increased and the arrangement density in other areas is reduced, and the metal plates are arranged without reducing the overall insulation capacity. It is configured to reduce the number of sheets.

この考案を実施することによりスタンドパイプ
下部空間部の断熱性を大幅に向上させることがで
きるのでスタンドパイプ内に配置した機器が熱に
より影響を受けることがない。
By implementing this invention, the heat insulation of the space below the standpipe can be greatly improved, so that equipment placed inside the standpipe will not be affected by heat.

またフアイバ系断熱材の如く繊維の粉化等の問
題もないので、一次冷却材たるガス中にダストが
混入する虞れもない。
Furthermore, unlike fiber-based heat insulating materials, there is no problem such as pulverization of the fibers, so there is no risk of dust getting mixed into the gas, which is the primary coolant.

さらに、通常の断熱材構造と比較して簡単かつ
軽量に仕上げることができる。
Furthermore, it is simpler and lighter in weight than ordinary insulation structures.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来型の高温ガス炉のスタンドパイプ
の断面図、第2図はスタンドパイプ内の対流の状
態を示す模式図、第3図はこの考案に係る断熱装
置を取り付けたスタンドパイプの断面図、第4図
は別の実施例を示すスタンドパイプの断面図、第
5図は高温ガス炉の部分切り欠き斜視図である。 1……スタンドパイプ、2……上鏡、11……
遮蔽板。
Figure 1 is a cross-sectional view of a standpipe of a conventional high-temperature gas furnace, Figure 2 is a schematic diagram showing the state of convection in the standpipe, and Figure 3 is a cross-section of a standpipe equipped with the heat insulation device according to this invention. FIG. 4 is a sectional view of a stand pipe showing another embodiment, and FIG. 5 is a partially cutaway perspective view of a high temperature gas furnace. 1...stand pipe, 2...upper mirror, 11...
Shield.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] その内部に制御棒案内管を有する高温ガス炉の
スタンドパイプにおいて、該スタンドパイプの内
部にその軸心を横断する複数の遮蔽板を水平に設
け、さらにこれら遮蔽板の間隔は、スタンドパイ
プの温度勾配が大きい部分ではその間隔を密に
し、その温度勾配が小さい部分ではその間隔を粗
にするようにしたことを特徴とする高温ガス炉の
断熱されたスタンドパイプ。
In a standpipe for a high-temperature gas reactor that has a control rod guide tube inside, a plurality of shielding plates are horizontally provided inside the standpipe to cross its axis, and the intervals between these shielding plates are determined by the temperature of the standpipe. An insulated standpipe for a high-temperature gas furnace, characterized in that the intervals are close in parts where the temperature gradient is large, and the intervals are coarse in parts where the temperature gradient is small.
JP1982183706U 1982-12-06 1982-12-06 Insulated standpipe of high temperature gas furnace Granted JPS5987697U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1982183706U JPS5987697U (en) 1982-12-06 1982-12-06 Insulated standpipe of high temperature gas furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1982183706U JPS5987697U (en) 1982-12-06 1982-12-06 Insulated standpipe of high temperature gas furnace

Publications (2)

Publication Number Publication Date
JPS5987697U JPS5987697U (en) 1984-06-13
JPH0442800Y2 true JPH0442800Y2 (en) 1992-10-09

Family

ID=30397518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1982183706U Granted JPS5987697U (en) 1982-12-06 1982-12-06 Insulated standpipe of high temperature gas furnace

Country Status (1)

Country Link
JP (1) JPS5987697U (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5436656A (en) * 1977-08-26 1979-03-17 Hitachi Ltd Special mutistratiform plate adiabatic structure
JPS57179695A (en) * 1981-04-28 1982-11-05 Tokyo Shibaura Electric Co Shielding plug of fast breeder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5436656A (en) * 1977-08-26 1979-03-17 Hitachi Ltd Special mutistratiform plate adiabatic structure
JPS57179695A (en) * 1981-04-28 1982-11-05 Tokyo Shibaura Electric Co Shielding plug of fast breeder

Also Published As

Publication number Publication date
JPS5987697U (en) 1984-06-13

Similar Documents

Publication Publication Date Title
US4478784A (en) Passive heat transfer means for nuclear reactors
USH91H (en) Safety apparatus for nuclear reactor to prevent structural damage from overheating by core debris
CA1096513A (en) Nuclear power plant with collector vessel for melting core masses
US4072561A (en) Bottom cooler for nuclear reactors
US4289582A (en) Nuclear reactor collecting tank with thermal insulation
US4795607A (en) High-temperature reactor
JPH0442800Y2 (en)
JP7443451B2 (en) Liquid metal cooled nuclear reactor incorporating a fully passive decay heat removal (DHR) system with modular cold sources
US4021676A (en) Waste canister for storage of nuclear wastes
US4351794A (en) Fast neutron reactor
EP0119845B1 (en) Fast breeder reactor
US3322643A (en) Heat transfer apparatus arrangement
US3769161A (en) Reactor vessel supporting device
JPH0119118Y2 (en)
US3377207A (en) Space heat reactor
US3105804A (en) Nuclear reactors
US4587091A (en) Nuclear fuel assembly
US3070535A (en) Nuclear reactor safety device
Walz et al. The" Sphere Dump"-A New Low-Cost High-Power Beam Dump Concept and a Catalytic Hydrogen-Oxygen Recombiner for Radioactive Water Systems
JPS623392B2 (en)
JPS6125114B2 (en)
JPS5990092A (en) Supporting device for weight material fixed in high temperature gas
JP2716859B2 (en) Thermal diffusion tower
JPS61268994A (en) Intermediate heat exchanger
JPS60238787A (en) Cooling device of roof slab for tank type fast breeder reactor